POSIX Lexing with Bitcoded Derivatives

Chengsong Tan =
King’s College London

Christian Urban &
King’s College London

—— Abstract

Sulzmann and Lu described a lexing algorithm that calculates Brzozowski derivatives using bitcodes annotated
to regular expressions. Their algorithm generates POSIX values which encode the information of how a regular
expression matches a string—that is, which part of the string is matched by which part of the regular expression.
The purpose of the bitcodes is to generate POSIX values incrementally while derivatives are calculated. They
also help with designing an “aggressive” simplification function that keeps the size of derivatives small. Without
simplification the size derivatives can grow exponentially resulting in an extremely slow lexing algorithm. In this
paper we describe a variant of Sulzmann and Lu’s algorithm: Our algorithm is a recursive functional program,
whereas Sulzmann and Lu’s version involves a fixpoint construction. We (i) prove in Isabelle/HOL that our
program is correct and generates unique POSIX values; we also (ii) establish a polynomial bound for the size of
the derivatives. The size can be seen as a proxy measure for the efficiency of the lexing algorithm: because of
the polynomial bound our algorithm does not suffer from the exponential blowup in earlier works.

2012 ACM Subiject Classification Design and analysis of algorithms; Formal languages and automata
theory

Keywords and phrases POSIX matching, Derivatives of Regular Expressions, Isabelle/HOL

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

In the last fifteen or so years, Brzozowski’s derivatives of regular expressions have sparked quite
a bit of interest in the functional programming and theorem prover communities. The beauty of
Brzozowski’s derivatives [3] is that they are neatly expressible in any functional language, and easily
definable and reasoned about in theorem provers—the definitions just consist of inductive datatypes
and simple recursive functions. A mechanised correctness proof of Brzozowski’s matcher in for
example HOL4 has been mentioned by Owens and Slind [9]. Another one in Isabelle/HOL is part of
the work by Krauss and Nipkow [6]. And another one in Coq is given by Coquand and Siles [4].

The notion of derivatives [3], written r\c, of a regular expression give a simple solution to the
problem of matching a string s with a regular expression r: if the derivative of » w.r.t. (in succession)
all the characters of the string matches the empty string, then r matches s (and vice versa). The
derivative has the property (which may almost be regarded as its specification) that, for every string s
and regular expression r and character ¢, one has ¢s € L rif and only if s € L (r\c).

If a regular expression matches a string, then in general there is more than one way of how the
string is matched. There are two commonly used disambiguation strategies to generate a unique
answer: one is called GREEDY matching [5] and the other is POSIX matching [1, 7, 8, 10, 11]. For
example consider the string xy and the regular expression (x + y + xy)*. Either the string can be
matched in two ‘iterations’ by the single letter-regular expressions x and y, or directly in one iteration
by xy. The first case corresponds to GREEDY matching, which first matches with the left-most
symbol and only matches the next symbol in case of a mismatch (this is greedy in the sense of
preferring instant gratification to delayed repletion). The second case is POSIX matching, which
prefers the longest match.

@O ©
@ Bv licensed under Creative Commons License CC-BY 4.0

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:chengsong.tan@kcl.ac.uk
mailto:christian.urban@kcl.ac.uk
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 POSIX Lexing with Bitcoded Derivatives

\a \b \c
r \ > 2 \ » s \ > s nullable

mkeps

V1 < Vo (V3 (Va

mjria injrag b njrsc

Figure 1 The two phases of the algorithm by Sulzmann & Lu [10], matching the string [a, b, c|. The first
phase (the arrows from left to right) is Brzozowski’s matcher building successive derivatives. If the last regular
expression is nullable, then the functions of the second phase are called (the top-down and right-to-left arrows):
first mkeps calculates a value v4 witnessing how the empty string has been recognised by r4. After that the
function inj “injects back” the characters of the string into the values.

——F1 - Pc
([, 1) — Empty ([e], ¢) = Char c

(s,r1) = v (s,r2) = v s¢Lr
P P+R
(s, r1 +r2) — Leftv (s, r1 + r2) — Rightv
(Sl, }’1) — Vi (52, I”z) —r V2

ﬂs;;m.s;;;éﬂ/\s;; Qsg=50A51Qs3 €ELri ANsa € Lo

PS
(s1 @s2, 71 - 1r2) — Seq v1 v2

Pl
([, r*) = Stars ||

(s1,7) > v (s2,) — Stars vs [v| #]
ES3S4.S3;£[]/\S3@S4:S2 As1@s3 € LrAsq € L(r")

Px
(s1 @Qs2, r*) — Stars (v::vs)
Figure 2 Our inductive definition of POSIX values.
0\c o def
1 def) nullable (0) = False
c =
df ., nullable (1) ' True
d\¢c = ifc=dthenlelse0 def
def nullable (c) = False
(ri+r2)\e = (ri\c) + (r2\c) def
def . nullable (r1 + r2) = nullable r1 V nullable rs
(r1-r2)\¢ = if nullable r, def
then (r1\c) - r2 + (r2\c) nullable (r1 - r2) = nullable r1 A nullable ro
else (ri\c) - ra nullable (1) 1 True

(N = ()

2 Background

Sulzmann-Lu algorithm with inj. State that POSIX rules. metion slg is correct.

def

mkeps 1 Empty
mkeps (r1 - r2) &ef Seq (mkeps r1) (mkeps r2)
mkeps (r1 + r2) & if nullable r1 then Left (mkeps r1) else Right (mkeps r2)

def

mkeps (r*) Stars ||

C. Tan and C. Urban

(1) injdc (Empty)

(2) inj (r1 4 r2) ¢ (Left v1)

(3) inj (r1 + r2) ¢ (Right v2)

(4) inj (r1-r2) c (Seqvi v2)

(5) inj (r1 - r2) c (Left (Seq vi v2))
(6) inj (r1-r2)c (Right v2)

(7) inj (r*) ¢ (Seq v (Stars vs))

XX:3

= Chard

= Left (injricv)

= Right (injra c v2)

= Seq (injricvi)ve

= Seq (injricvi)ve

= Seq (mkeps r1) (inj ra c va)

= Stars (injrcv::vs)

3 Bitcoded Regular Expressions and Derivatives

Sulzmann and Lu describe another algorithm that generates POSIX values but dispences with the
second phase where characters are injected “back” into values. For this they annotate bitcodes to
regular expressions, which we define in Isabelle/HOL as the datatype

breg

ZERO

ONE bs
CHAR bs ¢
ALTs bs rs
SEQ bs r1 ra
STAR bs r

where bs stands for a bitsequences; r, r; and ry for annotated regular expressions; and rs for a list of
annotated regular expressions. In contrast to Sulzmann and Lu we generalise the alternative regular
expressions to lists, instead of just having binary regular expressions. The idea with annotated regular
expressions is to incrementally generate the value information by recording bitsequences. Sulzmann
and Lu then define a coding function for how values can be coded into bitsequences.

code (Empty)
code (Char ¢)
code (Left v)
code (Right v)
code (Seq vi v2)
code (Stars [])

(

code (Stars (v::vs))

def

def

(0
(0

Z::codev
S::code v

code vi Q code vo
(]

Z::code v @ code (Stars vs)

There is also a corresponding decoding function that takes a bitsequence and generates back
a value. However, since the bitsequences are a “lossy” coding (Segs are not coded) the decoding
function depends also on a regular expression in order to decode values.

XX:4

POSIX Lexing with Bitcoded Derivatives

decode’ bs (1) def
decode’ bs (d) def
decode’ || (r1.0 + r2.0) def
decode’ (Z:: bs) (r1.0 + r2.0) def
decode’ (S :: bs) (r1.0 + r2.0) def
decode’ bs (r1.0 - r2.0) def
decode’ [] (r*) def
decode’ (S :: bs) (r*) def
decode’ (Z:: bs) (r*) def

(Empty, bs)

(Char d, bs)

(Empry,)

let (v, y) = decode’ bs r1.0 in (Left v, y)

let (v, y) = decode’ bs r2.0 in (Right v, y)

let (v1, bs") = decode’ bs r1.0; (v2,y) = decode’ bs' r2.0 in (Seq vl v2, y)
(Empry,)

(Stars [], bs)

let (v, bs’) = decode’ bs r; (vs,y) = decode’ bs' (r*) in (Stars__add v vs, y)

The idea of the bitcodes is to annotate them to regular expressions and generate values incrementally.

The bitcodes can be read off from the

breg and then decoded into a value.

breg = ZERO

| ONEbs

| CHAR bs ¢

| ALTsbsrs

| SEQ bs r1 r2

| STAR bs r
retrieve (ONE bs) (Empty) L s
retrieve (CHAR bs ¢) (Char d) L s
retrieve (ALTs bs [r]) v L' ps @ retrieve rv
retrieve (ALTs bs (r::rs)) (Left v) L b5 @ retrieve rv
retrieve (ALTs bs (r:: rs)) (Right v) L' ps @ retrieve (ALTs] rs) v
retrieve (SEQ bs r1 r2) (Seq vi v2) def bs Q retrieve r1 vi Q retrieve ro vo
retrieve (STAR bs r) (Stars []) L psa [S]
retrieve (STAR bs r) (Stars (v::vs)) L psa [Z] Q retrieve r v Q retrieve (STAR || r) (Stars vs)

» Theorem 1. blexer r s = lexer r s

bitcoded regexes / decoding / bmkeps gets rid of the second phase (only single phase) correctness

4 Simplification

Sulzmann & Lu apply simplification
duplicates.

via a fixpoint operation; also does not use erase to filter out

not direct correspondence with PDERs, because of example problem with retrieve

correctness

5 Bound-NO
6 Bounded Regex / Not

7 Conclusion

(2]

fix

C. Tan and C. Urban

XX:5

(SEQ bs ZERO r2) ~ (ZERO) (SEQ bs r1 ZERO) ~~ (ZERO) (SEQ bs1 (ONE bsz) r) ~> fuse (bs1 Q bsa) r

—— References

1

(2]

~

10

11

ry ~>r2 r3 ~>ryg

(SEQ bsrirs)~ (SEQbsrars3) (SEQ bsrir3) ~ (SEQ bsri ra)

(ALTs bs []) ~~ (ZERO) (ALTs bs [r]) ~ fuse bs r
rsi1 ~i> rso
(ALTs bs rs1) ~~ (ALTs bs rs3)

S
rs1 ~> 1s2 r1 ~>rg

S S
FiiFS] ~> TiiTS2 F1iiFS~>Fro i rs

ZERO ::rs~ rs ALTs bs rsq :: rso ~ (map (fuse bs) rs1 @ rsy)

N

(rs1 Q [r1] @ rs2 @ [r2] @ rs3) S (rs1 Q [r1] @ rso @ rs3)

Figure 3 7??

The Open Group Base Specification Issue 6 IEEE Std 1003.1 2004 Edition, 2004. http://pubs.opengroup.
org/onlinepubs/009695399/basedefs/xbd_chap09.html.

F. Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives of Regular Expressions (Proof
Pearl). In Proc. of the 7th International Conference on Interactive Theorem Proving (ITP), volume 9807
of LNCS, pages 69-86, 2016.

J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481-494, 1964.

T. Coquand and V. Siles. A Decision Procedure for Regular Expression Equivalence in Type Theory. In
Proc. of the 1st International Conference on Certified Programs and Proofs (CPP), volume 7086 of LNCS,
pages 119-134, 2011.

A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In Proc. of the 31st International
Conference on Automata, Languages and Programming (ICALP), volume 3142 of LNCS, pages 618-629,
2004.

A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence and Relation Algebra. Journal of
Automated Reasoning, 49:95-106, 2012.

C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex_Posix.

S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching via Position Automata with
Augmented Transitions. In Proc. of the 15th International Conference on Implementation and Application
of Automata (CIAA), volume 6482 of LNCS, pages 231-240, 2010.

S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order and
Symbolic Computation, 21(4):377-409, 2008.

M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of the 12th
International Conference on Functional and Logic Programming (FLOPS), volume 8475 of LNCS, pages
203-220, 2014.

S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on Programming
Languages and Systems, 28(3):389—-428, 2006.

http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
https://wiki.haskell.org/Regex_Posix

	1 Introduction
	2 Background
	3 Bitcoded Regular Expressions and Derivatives
	4 Simplification
	5 Bound - NO
	6 Bounded Regex / Not
	7 Conclusion

