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POSIX Lexing with
Derivatives of Regular Expressions

(Proof Pearl)

Fahad Ausaf, Roy Dyckhoff and Christian Urban

King’s College London, University of St Andrews
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Brzozowski’s Derivatives of Regular Expressions

Idea: If r matches the string c ::s, what is a regular expression that
matches just s?

chars: 0\c def
= 0

1\c def
= 0

d\c def
= if d = c then 1 else 0

r1 + r2\c
def
= r1\c + r2\c

r1 · r2\c
def
= if nullable r1

then r1\c · r2 + r2\c else r1\c · r2
r∗\c def

= r\c · r∗

strings: r\[] def
= r

r\c ::s def
= (r\c)\s

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes
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Brzozowski’s Matcher

Does r1 match string abc?

r1 r2
\a

r3
\b

r4
\c

nullable?

It leads to an elegant functional program:

matches (r , s)
def
= nullable (r\s)

It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches (r , s) if and only if s ∈ L(r)

But Brzozowski’s matcher gives only a yes/no-answer.

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes
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Sulzmann and Lu’s Matcher

Sulzmann and Lu added a second phase in order to answer how
the regular expression matched the string.

r1 r2
\a

r3
\b

r4
\c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

first phase

second phase

There are several possible answers for how: POSIX, GREEDY, . . .
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Regular Expressions and Values

Regular expressions and their corresponding values (for how a
regular expression matched a string):

r ::= 0
| 1
| c
| r1 · r2
| r1 + r2

| r∗

v ::=
| Empty
| Char(c)
| Seq(v1 · v2)
| Left(v)
| Right(v)
| [v1, ..., vn]

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes
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POSIX Matching (needed for Lexing)

Longest Match Rule: The longest initial substring matched
by any regular expression is taken as the next token.

Rule Priority: For a particular longest initial substring, the
first regular expression that can match determines the token.

For example: rkeywords + ridentifiers :

i f f o o b l a

i f b l a

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes
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Problems with POSIX

Grathwohl, Henglein and Rasmussen wrote:

“The POSIX strategy is more complicated than the greedy
because of the dependence on information about the length of
matched strings in the various subexpressions.”

Also Kuklewicz maintains a unit-test repository for POSIX
matching, which indicates that most POSIX mathcers are buggy.

http://www.haskell.org/haskellwiki/Regex_Posix

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes
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“Correctness” by Sulzmann and Lu

Sulzmann & Lu’s idea is to order all possible answer such that
they can prove the correct answer is the maximum
The idea is taken from a GREEDY algorithm (and it works
there)

But we made no progress in formalising Sulzmann & Lu’s
idea, because

transitivity, existence of maxima etc all fail to turn into real
proofs
the reason: the ordering works only if ....
though we did find mistakes:

“How could I miss this? Well, I was rather careless when
stating this Lemma :)

Great example how formal machine checked proofs (and proof
assistants) can help to spot flawed reasoning steps.”

“Well, I don’t think there’s any flaw. The issue is how to come
up with a mechanical proof. In my world mathematical proof

= mechanical proof doesn’t necessarily hold.”

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes
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Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps
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Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4

v3
inj c

v2
inj b

v1
inj a

mkeps
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Problems

Sulzmann: . . . Let’s assume v is not a POSIX value, then
there must be another one . . . contradiction.

Exists ?

L(r) ̸= ∅ ⇒ ∃v . POSIX (v , r)

In the sequence case Seq(v1, v2) ≻r1·r2 Seq(v
′
1, v

′
2), the

induction hypotheses require |v1| = |v ′1| and |v2| = |v ′2|, but
you only know

|v1|@|v2| = |v ′1|@|v ′2|

Although one begins with the assumption that the two values
have the same flattening, this cannot be maintained as one
descends into the induction (alternative, sequence)
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Our Solution

A direct definition of what a POSIX value is, using the
relation s ∈ r → v (our specification)

[] ∈ ϵ → Empty [c] ∈ c → Char(c)

s ∈ r1 → v

s ∈ r1 + r2 → Left(v)

s ∈ r2 → v s ̸∈ L(r1)

s ∈ r1 + r2 → Right(v)

s1 ∈ r1 → v1
s2 ∈ r2 → v2
¬(∃s3 s4. s3 ̸= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L(r1) ∧ s4 ∈ L(r2))

s1@s2 ∈ r1 · r2 → Seq(v1, v2)
. . .
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Properties

It is almost trival to prove:

Uniqueness

If s ∈ r → v1 and s ∈ r → v2 then v1 = v2

Correctness

lexer(r , s) = v if and only if s ∈ r → v

You can now start to implement optimisations and derive
correctness proofs for them. But we still do not know whether

s ∈ r → v

is a POSIX value according to Sulzmann & Lu’s definition (biggest
value for s and r)
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