POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Fahad Ausaf, Roy Dyckhoff and Christian Urban

King's College London, University of St Andrews

Brzozowski's Derivatives of Regular Expressions

Idea: If r matches the string c::s, what is a regular expression that matches just s?

chars:	0 ∖ <i>c</i>	$\stackrel{def}{=}$	0
	$1 \setminus c$	def =	0
	$d \setminus c$	def =	if $d = c$ then 1 else 0
	$r_1 + r_2 \backslash c$	def	$r_1 \setminus c + r_2 \setminus c$
	$r_1 \cdot r_2 \backslash c$	def	<i>if nullable r</i> 1
			then $r_1 \setminus c \cdot r_2 + r_2 \setminus c$ else $r_1 \setminus c \cdot r_2$
	$r^* ackslash c$	def =	$r \setminus c \cdot r^*$
strings:	<i>r</i> \[]	def	r
Ū	r\c::s	$\stackrel{def}{=}$	$(r \setminus c) \setminus s$

$$r_1 \longrightarrow r_2 \longrightarrow r_3 \longrightarrow r_4$$
 nullable?

$$r_1 \longrightarrow r_2 \longrightarrow r_3 \longrightarrow r_4$$
 nullable?

It leads to an elegant functional program:

$$matches(r, s) \stackrel{\text{def}}{=} nullable(r \setminus s)$$

$$r_1 \longrightarrow r_2 \longrightarrow r_3 \longrightarrow r_4$$
 nullable?

It leads to an elegant functional program:

$$matches(r, s) \stackrel{\text{def}}{=} nullable(r \setminus s)$$

It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches(r, s) if and only if $s \in L(r)$

$$r_1 \longrightarrow r_2 \longrightarrow r_3 \longrightarrow r_4$$
 nullable?

It leads to an elegant functional program:

$$matches(r, s) \stackrel{\text{def}}{=} nullable(r \setminus s)$$

It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches(r, s) if and only if $s \in L(r)$

But Brzozowski's matcher gives only a yes/no-answer.

Sulzmann and Lu's Matcher

Sulzmann and Lu added a second phase in order to answer **how** the regular expression matched the string.

There are several possible answers for how: POSIX, GREEDY, ...

Regular expressions and their corresponding values (for how a regular expression matched a string):

Longest Match Rule: The longest initial substring matched by any regular expression is taken as the next token.

Rule Priority: For a particular longest initial substring, the first regular expression that can match determines the token.

For example: $r_{keywords} + r_{identifiers}$:

Grathwohl, Henglein and Rasmussen wrote:

"The POSIX strategy is more complicated than the greedy because of the dependence on information about the length of matched strings in the various subexpressions."

Also Kuklewicz maintains a unit-test repository for POSIX matching, which indicates that most POSIX mathcers are buggy.

http://www.haskell.org/haskellwiki/Regex_Posix

- Sulzmann & Lu's idea is to order all possible answer such that they can prove the correct answer is the maximum
- The idea is taken from a GREEDY algorithm (and it works there)

- Sulzmann & Lu's idea is to order all possible answer such that they can prove the correct answer is the maximum
- The idea is taken from a GREEDY algorithm (and it works there)
- But we made no progress in formalising Sulzmann & Lu's idea, because
 - transitivity, existence of maxima etc all fail to turn into real proofs
 - the reason: the ordering works only if
 - though we did find mistakes:

"How could I miss this? Well, I was rather careless when stating this Lemma :)

Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

- Sulzmann & Lu's idea is to order all possible answer such that they can prove the correct answer is the maximum
- The idea is taken from a GREEDY algorithm (and it works there)
- But we made no progress in formalising Sulzmann & Lu's idea, because
 - transitivity, existence of maxima etc all fail to turn into real proofs
 - the reason: the ordering works only if
 - though we did find mistakes:

"How could I miss this? Well, I was rather careless when stating this Lemma :)

Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

"Well, I don't think there's any flaw. The issue is how to come up with a mechanical proof. In my world mathematical proof = mechanical proof doesn't necessarily hold."

- Sulzmann & Lu's idea is to order all possible answer such that they can prove the correct answer is the maximum
- The idea is taken from a GREEDY algorithm (and it works there)
- But we made no progress in formalising Sulzmann & Lu's idea, because
 - transitivity, existence of maxima etc all fail to turn into real proofs
 - the reason: the ordering works only if
 - though we did find mistakes:

"How could I miss this? Well, I was rather careless when stating this Lemma :)

Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

"Well, I don't think there's any flaw. The issue is how to come up with a mechanical proof. In my world mathematical proof = mechanical proof doesn't necessarily hold."

$$r_1 \xrightarrow{der a} r_2$$

$$r_1 \xrightarrow{der a} r_2 \xrightarrow{der b} r_3$$

$$r_1 \xrightarrow{der a} r_2 \xrightarrow{der b} r_3 \xrightarrow{der c} r_4$$

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

$$r_1 \xrightarrow{der a} r_2 \xrightarrow{der b} r_3 \xrightarrow{der c} r_4$$
 nullable?

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

 Sulzmann: ... Let's assume v is not a POSIX value, then there must be another one ... contradiction.

- ₹ 🖬 🕨

- Sulzmann: ... Let's assume v is not a POSIX value, then there must be another one ... contradiction.
- Exists ?

$$L(r) \neq \varnothing \Rightarrow \exists v. POSIX(v, r)$$

э

- Sulzmann: ... Let's assume v is not a POSIX value, then there must be another one ... contradiction.
- Exists ?

$$L(r) \neq \varnothing \Rightarrow \exists v. POSIX(v, r)$$

• In the sequence case $Seq(v_1, v_2) \succ_{r_1 \cdot r_2} Seq(v'_1, v'_2)$, the induction hypotheses require $|v_1| = |v'_1|$ and $|v_2| = |v'_2|$, but you only know

$$|v_1|@|v_2| = |v_1'|@|v_2'|$$

- Sulzmann: ... Let's assume v is not a POSIX value, then there must be another one ... contradiction.
- Exists ?

$$L(r) \neq \emptyset \Rightarrow \exists v. POSIX(v, r)$$

• In the sequence case $Seq(v_1, v_2) \succ_{r_1 \cdot r_2} Seq(v'_1, v'_2)$, the induction hypotheses require $|v_1| = |v'_1|$ and $|v_2| = |v'_2|$, but you only know

$$|v_1|@|v_2| = |v_1'|@|v_2'|$$

 Although one begins with the assumption that the two values have the same flattening, this cannot be maintained as one descends into the induction (alternative, sequence) • A direct definition of what a POSIX value is, using the relation $s \in r \rightarrow v$ (our specification)

. . .

伺 ト く ヨ ト く ヨ ト

э

Properties

It is almost trival to prove:

Uniqueness

If
$$s \in r \rightarrow v_1$$
 and $s \in r \rightarrow v_2$ then $v_1 = v_2$

Correctness

$$lexer(r,s) = v$$
 if and only if $s \in r \rightarrow v$

э

Properties

It is almost trival to prove:

Uniqueness

If
$$s \in r \rightarrow v_1$$
 and $s \in r \rightarrow v_2$ then $v_1 = v_2$

Correctness

$$lexer(r,s) = v$$
 if and only if $s \in r \rightarrow v$

You can now start to implement optimisations and derive correctness proofs for them. But we still do not know whether

$$s \in r \rightarrow v$$

is a POSIX value according to Sulzmann & Lu's definition (biggest value for s and r)