
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

POSIX Lexing with
Derivatives of Regular Expressions

(Proof Pearl)

Fahad Ausaf, Roy Dyckhoff and Christian Urban

King’s College London, University of St Andrews

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Brzozowski’s Derivatives of Regular Expressions

Idea: If r matches the string c ::s, what is a regular expression that
matches just s?

chars: 0\c def
= 0

1\c def
= 0

d\c def
= if d = c then 1 else 0

r1 + r2\c
def
= r1\c + r2\c

r1 · r2\c
def
= if nullable r1

then r1\c · r2 + r2\c else r1\c · r2
r∗\c def

= r\c · r∗

strings: r\[] def
= r

r\c ::s def
= (r\c)\s

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Brzozowski’s Matcher

Does r1 match string abc?

r1 r2
\a

r3
\b

r4
\c

nullable?

It leads to an elegant functional program:

matches (r , s)
def
= nullable (r\s)

It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches (r , s) if and only if s ∈ L(r)

But Brzozowski’s matcher gives only a yes/no-answer.

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Brzozowski’s Matcher

Does r1 match string abc?

r1 r2
\a

r3
\b

r4
\c

nullable?

It leads to an elegant functional program:

matches (r , s)
def
= nullable (r\s)

It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches (r , s) if and only if s ∈ L(r)

But Brzozowski’s matcher gives only a yes/no-answer.

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Brzozowski’s Matcher

Does r1 match string abc?

r1 r2
\a

r3
\b

r4
\c

nullable?

It leads to an elegant functional program:

matches (r , s)
def
= nullable (r\s)

It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches (r , s) if and only if s ∈ L(r)

But Brzozowski’s matcher gives only a yes/no-answer.

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Brzozowski’s Matcher

Does r1 match string abc?

r1 r2
\a

r3
\b

r4
\c

nullable?

It leads to an elegant functional program:

matches (r , s)
def
= nullable (r\s)

It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches (r , s) if and only if s ∈ L(r)

But Brzozowski’s matcher gives only a yes/no-answer.

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sulzmann and Lu’s Matcher

Sulzmann and Lu added a second phase in order to answer how
the regular expression matched the string.

r1 r2
\a

r3
\b

r4
\c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

first phase

second phase

There are several possible answers for how: POSIX, GREEDY, . . .

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Regular Expressions and Values

Regular expressions and their corresponding values (for how a
regular expression matched a string):

r ::= 0
| 1
| c
| r1 · r2
| r1 + r2

| r∗

v ::=
| Empty
| Char(c)
| Seq(v1 · v2)
| Left(v)
| Right(v)
| [v1, ..., vn]

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

POSIX Matching (needed for Lexing)

Longest Match Rule: The longest initial substring matched
by any regular expression is taken as the next token.

Rule Priority: For a particular longest initial substring, the
first regular expression that can match determines the token.

For example: rkeywords + ridentifiers :

i f f o o b l a

i f b l a

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Problems with POSIX

Grathwohl, Henglein and Rasmussen wrote:

“The POSIX strategy is more complicated than the greedy
because of the dependence on information about the length of
matched strings in the various subexpressions.”

Also Kuklewicz maintains a unit-test repository for POSIX
matching, which indicates that most POSIX mathcers are buggy.

http://www.haskell.org/haskellwiki/Regex_Posix

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

http://www.haskell.org/haskellwiki/Regex_Posix

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

“Correctness” by Sulzmann and Lu

Sulzmann & Lu’s idea is to order all possible answer such that
they can prove the correct answer is the maximum
The idea is taken from a GREEDY algorithm (and it works
there)

But we made no progress in formalising Sulzmann & Lu’s
idea, because

transitivity, existence of maxima etc all fail to turn into real
proofs
the reason: the ordering works only if
though we did find mistakes:

“How could I miss this? Well, I was rather careless when
stating this Lemma :)

Great example how formal machine checked proofs (and proof
assistants) can help to spot flawed reasoning steps.”

“Well, I don’t think there’s any flaw. The issue is how to come
up with a mechanical proof. In my world mathematical proof

= mechanical proof doesn’t necessarily hold.”

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

“Correctness” by Sulzmann and Lu

Sulzmann & Lu’s idea is to order all possible answer such that
they can prove the correct answer is the maximum
The idea is taken from a GREEDY algorithm (and it works
there)

But we made no progress in formalising Sulzmann & Lu’s
idea, because

transitivity, existence of maxima etc all fail to turn into real
proofs
the reason: the ordering works only if
though we did find mistakes:

“How could I miss this? Well, I was rather careless when
stating this Lemma :)

Great example how formal machine checked proofs (and proof
assistants) can help to spot flawed reasoning steps.”

“Well, I don’t think there’s any flaw. The issue is how to come
up with a mechanical proof. In my world mathematical proof

= mechanical proof doesn’t necessarily hold.”

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

“Correctness” by Sulzmann and Lu

Sulzmann & Lu’s idea is to order all possible answer such that
they can prove the correct answer is the maximum
The idea is taken from a GREEDY algorithm (and it works
there)

But we made no progress in formalising Sulzmann & Lu’s
idea, because

transitivity, existence of maxima etc all fail to turn into real
proofs
the reason: the ordering works only if
though we did find mistakes:

“How could I miss this? Well, I was rather careless when
stating this Lemma :)

Great example how formal machine checked proofs (and proof
assistants) can help to spot flawed reasoning steps.”

“Well, I don’t think there’s any flaw. The issue is how to come
up with a mechanical proof. In my world mathematical proof

= mechanical proof doesn’t necessarily hold.”
Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

“Correctness” by Sulzmann and Lu

Sulzmann & Lu’s idea is to order all possible answer such that
they can prove the correct answer is the maximum
The idea is taken from a GREEDY algorithm (and it works
there)

But we made no progress in formalising Sulzmann & Lu’s
idea, because

transitivity, existence of maxima etc all fail to turn into real
proofs
the reason: the ordering works only if
though we did find mistakes:

“How could I miss this? Well, I was rather careless when
stating this Lemma :)

Great example how formal machine checked proofs (and proof
assistants) can help to spot flawed reasoning steps.”

“Well, I don’t think there’s any flaw. The issue is how to come
up with a mechanical proof. In my world mathematical proof

= mechanical proof doesn’t necessarily hold.”
Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4

v3
inj c

v2
inj b

v1
inj a

mkeps

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Problems

Sulzmann: . . . Let’s assume v is not a POSIX value, then
there must be another one . . . contradiction.

Exists ?

L(r) ̸= ∅ ⇒ ∃v . POSIX (v , r)

In the sequence case Seq(v1, v2) ≻r1·r2 Seq(v
′
1, v

′
2), the

induction hypotheses require |v1| = |v ′1| and |v2| = |v ′2|, but
you only know

|v1|@|v2| = |v ′1|@|v ′2|

Although one begins with the assumption that the two values
have the same flattening, this cannot be maintained as one
descends into the induction (alternative, sequence)

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Problems

Sulzmann: . . . Let’s assume v is not a POSIX value, then
there must be another one . . . contradiction.

Exists ?

L(r) ̸= ∅ ⇒ ∃v . POSIX (v , r)

In the sequence case Seq(v1, v2) ≻r1·r2 Seq(v
′
1, v

′
2), the

induction hypotheses require |v1| = |v ′1| and |v2| = |v ′2|, but
you only know

|v1|@|v2| = |v ′1|@|v ′2|

Although one begins with the assumption that the two values
have the same flattening, this cannot be maintained as one
descends into the induction (alternative, sequence)

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Problems

Sulzmann: . . . Let’s assume v is not a POSIX value, then
there must be another one . . . contradiction.

Exists ?

L(r) ̸= ∅ ⇒ ∃v . POSIX (v , r)

In the sequence case Seq(v1, v2) ≻r1·r2 Seq(v
′
1, v

′
2), the

induction hypotheses require |v1| = |v ′1| and |v2| = |v ′2|, but
you only know

|v1|@|v2| = |v ′1|@|v ′2|

Although one begins with the assumption that the two values
have the same flattening, this cannot be maintained as one
descends into the induction (alternative, sequence)

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Problems

Sulzmann: . . . Let’s assume v is not a POSIX value, then
there must be another one . . . contradiction.

Exists ?

L(r) ̸= ∅ ⇒ ∃v . POSIX (v , r)

In the sequence case Seq(v1, v2) ≻r1·r2 Seq(v
′
1, v

′
2), the

induction hypotheses require |v1| = |v ′1| and |v2| = |v ′2|, but
you only know

|v1|@|v2| = |v ′1|@|v ′2|

Although one begins with the assumption that the two values
have the same flattening, this cannot be maintained as one
descends into the induction (alternative, sequence)

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Our Solution

A direct definition of what a POSIX value is, using the
relation s ∈ r → v (our specification)

[] ∈ ϵ → Empty [c] ∈ c → Char(c)

s ∈ r1 → v

s ∈ r1 + r2 → Left(v)

s ∈ r2 → v s ̸∈ L(r1)

s ∈ r1 + r2 → Right(v)

s1 ∈ r1 → v1
s2 ∈ r2 → v2
¬(∃s3 s4. s3 ̸= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L(r1) ∧ s4 ∈ L(r2))

s1@s2 ∈ r1 · r2 → Seq(v1, v2)
. . .

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Properties

It is almost trival to prove:

Uniqueness

If s ∈ r → v1 and s ∈ r → v2 then v1 = v2

Correctness

lexer(r , s) = v if and only if s ∈ r → v

You can now start to implement optimisations and derive
correctness proofs for them. But we still do not know whether

s ∈ r → v

is a POSIX value according to Sulzmann & Lu’s definition (biggest
value for s and r)

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Properties

It is almost trival to prove:

Uniqueness

If s ∈ r → v1 and s ∈ r → v2 then v1 = v2

Correctness

lexer(r , s) = v if and only if s ∈ r → v

You can now start to implement optimisations and derive
correctness proofs for them. But we still do not know whether

s ∈ r → v

is a POSIX value according to Sulzmann & Lu’s definition (biggest
value for s and r)

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regexes

