
POSIX Lexing with Bitcoded Derivatives
Chengsong Tan !

King’s College London

Christian Urban !

King’s College London

Abstract

Sulzmann and Lu described a lexing algorithm that calculates Brzozowski derivatives using bitcodes annotated
to regular expressions. Their algorithm generates POSIX values which encode the information of how a regular
expression matches a string—that is, which part of the string is matched by which part of the regular expression.
The purpose of the bitcodes is to generate POSIX values incrementally while derivatives are calculated. They
also help with designing an “aggressive” simplification function that keeps the size of derivatives small. Without
simplification the size derivatives can grow exponentially resulting in an extremely slow lexing algorithm. In this
paper we describe a variant of Sulzmann and Lu’s algorithm: Our algorithm is a recursive functional program,
whereas Sulzmann and Lu’s version involves a fixpoint construction. We (i) prove in Isabelle/HOL that our
program is correct and generates unique POSIX values; we also (ii) establish a polynomial bound for the size of
the derivatives. The size can be seen as a proxy measure for the efficiency of the lexing algorithm: because of
the polynomial bound our algorithm does not suffer from the exponential blowup in earlier works.

2012 ACM Subject Classification Design and analysis of algorithms; Formal languages and automata
theory

Keywords and phrases POSIX matching, Derivatives of Regular Expressions, Isabelle/HOL

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

In the last fifteen or so years, Brzozowski’s derivatives of regular expressions have sparked quite
a bit of interest in the functional programming and theorem prover communities. The beauty of
Brzozowski’s derivatives [3] is that they are neatly expressible in any functional language, and easily
definable and reasoned about in theorem provers—the definitions just consist of inductive datatypes
and simple recursive functions. A mechanised correctness proof of Brzozowski’s matcher in for
example HOL4 has been mentioned by Owens and Slind [9]. Another one in Isabelle/HOL is part of
the work by Krauss and Nipkow [6]. And another one in Coq is given by Coquand and Siles [4].

The notion of derivatives [3], written r\c, of a regular expression give a simple solution to the
problem of matching a string s with a regular expression r: if the derivative of r w.r.t. (in succession)
all the characters of the string matches the empty string, then r matches s (and vice versa). The
derivative has the property (which may almost be regarded as its specification) that, for every string s
and regular expression r and character c, one has cs ∈ L r if and only if s ∈ L (r\c).

If a regular expression matches a string, then in general there is more than one way of how the
string is matched. There are two commonly used disambiguation strategies to generate a unique
answer: one is called GREEDY matching [5] and the other is POSIX matching [1, 7, 8, 10, 11]. For
example consider the string xy and the regular expression (x + y + xy)?. Either the string can be
matched in two ‘iterations’ by the single letter-regular expressions x and y, or directly in one iteration
by xy. The first case corresponds to GREEDY matching, which first matches with the left-most
symbol and only matches the next symbol in case of a mismatch (this is greedy in the sense of
preferring instant gratification to delayed repletion). The second case is POSIX matching, which
prefers the longest match.

© ;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chengsong.tan@kcl.ac.uk
mailto:christian.urban@kcl.ac.uk
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 POSIX Lexing with Bitcoded Derivatives

r1 r2
_\a

r3
_\b

r4
_\c

nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

Figure 1 The two phases of the algorithm by Sulzmann & Lu [10], matching the string [a, b, c]. The first
phase (the arrows from left to right) is Brzozowski’s matcher building successive derivatives. If the last regular
expression is nullable, then the functions of the second phase are called (the top-down and right-to-left arrows):
first mkeps calculates a value v4 witnessing how the empty string has been recognised by r4. After that the
function inj “injects back” the characters of the string into the values.

([], 1)→ Empty
P1

([c], c)→ Char c
Pc

(s, r1)→ v

(s, r1 + r2)→ Left v
P+L

(s, r2)→ v s /∈ L r1

(s, r1 + r2)→ Right v
P+R

(s1, r1)→ v1 (s2, r2)→ v2

@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r1 ∧ s4 ∈ L r2

(s1 @ s2, r1 · r2)→ Seq v1 v2
PS

([], r?)→ Stars []
P[]

(s1, r)→ v (s2, r?)→ Stars vs |v| 6= []
@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r ∧ s4 ∈ L (r?)

(s1 @ s2, r?)→ Stars (v :: vs)
P?

Figure 2 Our inductive definition of POSIX values.

0\c def= 0

1\c def= 0

d\c def= if c = d then 1 else 0

(r1 + r2)\c def= (r1\c) + (r2\c)
(r1 · r2)\c def= if nullable r1

then (r1\c) · r2 + (r2\c)
else (r1\c) · r2

(r?)\c def= (r\c) · r?

nullable (0) def= False

nullable (1) def= True

nullable (c) def= False

nullable (r1 + r2) def= nullable r1 ∨ nullable r2

nullable (r1 · r2) def= nullable r1 ∧ nullable r2

nullable (r?) def= True

2 Background

Sulzmann-Lu algorithm with inj. State that POSIX rules. metion slg is correct.

mkeps 1 def= Empty

mkeps (r1 · r2) def= Seq (mkeps r1) (mkeps r2)
mkeps (r1 + r2) def= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)
mkeps (r?) def= Stars []

C. Tan and C. Urban XX:3

(1) inj d c (Empty) def= Char d

(2) inj (r1 + r2) c (Left v1) def= Left (inj r1 c v1)
(3) inj (r1 + r2) c (Right v2) def= Right (inj r2 c v2)
(4) inj (r1 · r2) c (Seq v1 v2) def= Seq (inj r1 c v1) v2

(5) inj (r1 · r2) c (Left (Seq v1 v2)) def= Seq (inj r1 c v1) v2

(6) inj (r1 · r2) c (Right v2) def= Seq (mkeps r1) (inj r2 c v2)
(7) inj (r?) c (Seq v (Stars vs)) def= Stars (inj r c v :: vs)

3 Bitcoded Regular Expressions and Derivatives

In the second part of their paper [10], Sulzmann and Lu describe another algorithm that generates
POSIX values but dispences with the second phase where characters are injected “back” into values.
For this they annotate bitcodes to regular expressions, which we define in Isabelle/HOL as the datatype

breg ::= ZERO | ONE bs
| CHAR bs c
| ALTs bs rs
| SEQ bs r1 r2

| STAR bs r

where bs stands for a bitsequences; r, r1 and r2 for bitcoded regular expressions; and rs for lists of
bitcoded regular expressions. The binary alternative ALT bs r1 r2 is just an abbreviation for ALTs bs
[r1, r2]. For bitsequences we just use lists made up of the constants Z and S. The idea with bitcoded
regular expressions is to incrementally generate the value information (for example Left and Right) as
bitsequences as part of the regular expression constructors. Sulzmann and Lu then define a coding
function for how values can be coded into bitsequences.

code (Empty) def= []
code (Char c) def= []
code (Left v) def= Z :: code v

code (Right v) def= S :: code v

code (Seq v1 v2) def= code v1 @ code v2

code (Stars []) def= [S]
code (Stars (v :: vs)) def= Z :: code v @ code (Stars vs)

As can be seen, this coding is “lossy” in the sense that we do not record explicitly character values
and also not sequence values (for them we just append two bitsequences). We do, however, record the
different alternatives for Left, respectively Right, as Z and S followed by some bitsequence. Similarly,
we use Z to indicate if there is still a value coming in the list of Stars, whereas S indicates the end of
the list. The lossiness makes the process of decoding a bit more involved, but the point is that if we
have a regular expression and a bitsequence of a corresponding value, then we can always decode the
value accurately. The decoding can be defined by using two functions called decode′ and decode:

XX:4 POSIX Lexing with Bitcoded Derivatives

decode′ bs (1) def= (Empty, bs)
decode′ bs (c) def= (Char c, bs)
decode′ (Z ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r1 in (Left v, bs1)
decode′ (S ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r2 in (Right v, bs1)
decode′ bs (r1 · r2) def= let (v1, bs1) = decode′ bs r1 in

let (v2, bs2) = decode′ bs1 r2 in (Seq v1 v2, bs2)
decode′ (Z ::bs) (r∗) def= (Stars [], bs)
decode′ (S ::bs) (r∗) def= let (v, bs1) = decode′ bs r in

let (Stars vs, bs2) = decode′ bs1 r∗ in (Stars v ::vs, bs2)

decode bs r
def= let (v, bs′) = decode′ bs r in

if bs′ = [] then Some v else None

The function decode checks whether all of the bitsequence is consumed and returns the corresponding
value as Some v; otherwise it fails with None. We can establish that for a value v inhabited by a
regular expression r, the decoding of its bitsequence never fails.

I Lemma 1. If ` v : r then decode (code v) r = Some v.

Proof. This follows from the property that decode′ ((code v) @ bs) r = (v, bs) holds for any bit-
sequence bs and ` v : r. This property can be easily proved by induction on ` v : r. J

Sulzmann and Lu define the function internalise in order to transform standard regular expressions
into annotated regular expressions. We write this operation as r↑. This internalisation uses the
following fuse function.

fuse bs (ZERO) def= ZERO

fuse bs (ONE bs′) def= ONE (bs @ bs′)
fuse bs (CHAR bs′ c) def= CHAR (bs @ bs′) c

fuse bs (ALTs bs′ rs) def= ALTs (bs @ bs′) rs

fuse bs (SEQ bs′ r1 r2) def= SEQ (bs @ bs′) r1 r2

fuse bs (STAR bs′ r) def= STAR (bs @ bs′) r

A regular expression can then be internalised into a bitcoded regular expression as follows.

(0)↑ def= ZERO

(1)↑ def= ONE []
(c)↑ def= CHAR [] c

(r1 + r2)↑ def= ALT [] (fuse [Z] r↑1) (fuse [S] r↑2)
(r1 · r2)↑ def= SEQ [] r↑1 r↑2

(r∗)↑ def= STAR [] r↑

There is also an erase-function, written a↓, which transforms a bitcoded regular expression into a
(standard) regular expression by just erasing the annotated bitsequences. We omit the straightforward
definition. For defining the algorithm, we also need the functions bnullable and bmkeps, which are
the “lifted” versions of nullable and mkeps acting on bitcoded regular expressions, instead of regular
expressions.

C. Tan and C. Urban XX:5

bnullable (ZERO) def= false fix

bnullable (ONE bs) def= true

bnullable (CHAR bs c) def= false

bnullable (ALT bs a1 a2) def= bnullable a1 ∨ bnullable a2

bnullable (SEQ bs a1 a2) def= bnullable a1 ∧ bnullable a2

bnullable (STAR bs a) def= true

bmkeps (ONE bs) def= bs fix

bmkeps (ALT bs a1 a2) def= if bnullable a1

then bs @ bmkeps a1

else bs @ bmkeps a2

bmkeps (SEQ bs a1 a2) def= bs @ bmkeps a1 @ bmkeps a2

bmkeps (STAR bs a) def= bs @ [S]

The key function in the bitcoded algorithm is the derivative of an annotated regular expression. This
derivative calculates the derivative but at the same time also the incremental part that contributes to
constructing a value.

(ZERO)\c def= ZERO fix

(ONE bs)\c def= ZERO

(CHAR bs d)\c def= if c = d then ONE bs else ZERO

(ALT bs a1 a2)\c def= ALT bs (a1\c) (a2\c)
(SEQ bs a1 a2)\c def= if bnullable a1

then ALT bs (SEQ [] (a1\c) a2)
(fuse (bmkeps a1) (a2\c))

else SEQ bs (a1\c) a2

(STAR bs a)\c def= SEQ bs (fuse [Z](r\c)) (STAR [] r)

This function can also be extended to strings, written a\s, just like the standard derivative. We omit
the details. Finally we can define Sulzmann and Lu’s bitcoded lexer, which we call blexer:
This bitcoded lexer first internalises the regular expression r and then builds the annotated derivative
according to s. If the derivative is nullable, then it extracts the bitcoded value using the bmkeps
function. Finally it decodes the bitcoded value. If the derivative is not nullable, then None is returned.
The task is to show that this way of calculating a value generates the same result as with lexer.

Before we can proceed we need to define a function, called retrieve, which Sulzmann and Lu
introduced for the proof.

fix
The idea behind this function is to retrieve a possibly partial bitcode from an annotated regular
expression, where the retrieval is guided by a value. For example if the value is Left then we descend
into the left-hand side of an alternative (annotated) regular expression in order to assemble the bitcode.
Similarly for Right. The property we can show is that for a given v and r with ` v : r, the retrieved
bitsequence from the internalised regular expression is equal to the bitcoded version of v.

I Lemma 2. If ` v : r then code v = retrieve (r↑) v.

There is also a corresponding decoding function that takes a bitsequence and generates back
a value. However, since the bitsequences are a “lossy” coding (Seqs are not coded) the decoding
function depends also on a regular expression in order to decode values.

XX:6 POSIX Lexing with Bitcoded Derivatives

(SEQ bs ZERO r2) (ZERO) (SEQ bs r1 ZERO) (ZERO) (SEQ bs1 (ONE bs2) r) fuse (bs1 @ bs2) r
r1 r2

(SEQ bs r1 r3) (SEQ bs r2 r3)
r3 r4

(SEQ bs r1 r3) (SEQ bs r1 r4)

(ALTs bs []) (ZERO) (ALTs bs [r]) fuse bs r
rs1

s
 rs2

(ALTs bs rs1) (ALTs bs rs2)
rs1

s
 rs2

r :: rs1
s
 r :: rs2

r1 r2

r1 :: rs
s
 r2 :: rs

ZERO :: rs
s
 rs ALTs bs rs1 :: rs2

s
 (map (fuse bs) rs1 @ rs2)

L (r1
↓) ⊆ L (r2

↓)
(rs1 @ [r2] @ rs2 @ [r1] @ rs3) s

 (rs1 @ [r2] @ rs2 @ rs3)

Figure 3 ???

The idea of the bitcodes is to annotate them to regular expressions and generate values incrementally.
The bitcodes can be read off from the breg and then decoded into a value.

breg ::= ZERO
| ONE bs
| CHAR bs c
| ALTs bs rs
| SEQ bs r1 r2

| STAR bs r

retrieve (ONE bs) (Empty) def= bs

retrieve (CHAR bs c) (Char d) def= bs

retrieve (ALTs bs [r]) v
def= bs @ retrieve r v

retrieve (ALTs bs (r :: rs)) (Left v) def= bs @ retrieve r v

retrieve (ALTs bs (r :: rs)) (Right v) def= bs @ retrieve (ALTs [] rs) v

retrieve (SEQ bs r1 r2) (Seq v1 v2) def= bs @ retrieve r1 v1 @ retrieve r2 v2

retrieve (STAR bs r) (Stars []) def= bs @ [S]
retrieve (STAR bs r) (Stars (v :: vs)) def= bs @ [Z] @ retrieve r v @ retrieve (STAR [] r) (Stars vs)

I Theorem 3. blexer r s = lexer r s

bitcoded regexes / decoding / bmkeps gets rid of the second phase (only single phase) correctness

4 Simplification

Sulzmann & Lu apply simplification via a fixpoint operation; also does not use erase to filter out
duplicates.

not direct correspondence with PDERs, because of example problem with retrieve
correctness

C. Tan and C. Urban XX:7

5 Bound - NO

6 Bounded Regex / Not

7 Conclusion

[2]

References

1 The Open Group Base Specification Issue 6 IEEE Std 1003.1 2004 Edition, 2004. http://pubs.opengroup.
org/onlinepubs/009695399/basedefs/xbd_chap09.html.

2 F. Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives of Regular Expressions (Proof
Pearl). In Proc. of the 7th International Conference on Interactive Theorem Proving (ITP), volume 9807
of LNCS, pages 69–86, 2016.

3 J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481–494, 1964.
4 T. Coquand and V. Siles. A Decision Procedure for Regular Expression Equivalence in Type Theory. In

Proc. of the 1st International Conference on Certified Programs and Proofs (CPP), volume 7086 of LNCS,
pages 119–134, 2011.

5 A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In Proc. of the 31st International
Conference on Automata, Languages and Programming (ICALP), volume 3142 of LNCS, pages 618–629,
2004.

6 A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence and Relation Algebra. Journal of
Automated Reasoning, 49:95–106, 2012.

7 C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex_Posix.
8 S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching via Position Automata with

Augmented Transitions. In Proc. of the 15th International Conference on Implementation and Application
of Automata (CIAA), volume 6482 of LNCS, pages 231–240, 2010.

9 S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order and
Symbolic Computation, 21(4):377–409, 2008.

10 M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of the 12th
International Conference on Functional and Logic Programming (FLOPS), volume 8475 of LNCS, pages
203–220, 2014.

11 S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on Programming
Languages and Systems, 28(3):389–428, 2006.

http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
https://wiki.haskell.org/Regex_Posix

	1 Introduction
	2 Background
	3 Bitcoded Regular Expressions and Derivatives
	4 Simplification
	5 Bound - NO
	6 Bounded Regex / Not
	7 Conclusion

