We already proved that

If nullable(r) then POSIX (mkeps r) r

holds. This is essentially the “base case” for the correctness proof of the
algorithm. For the “induction case” we need the following main theorem,
which we are currently after:

If (*y POSIX v (dercr)andtv:dercr
then POSIX (injrcw)r

That means a POSIX value v is still POSIX after injection. I am not
sure whether this theorem is actually true in this full generality. Maybe it
requires some restrictions.
If we unfold the POSIX definition in the then-part, we arrive at
Vo' if Fo' i rand |ing r cv| = |Vf] then |inj r cv| =, v
which is what we need to prove assuming the if-part (*) in the theorem
above. Since this is a universally quantified formula, we just need to fix a
v’. We can then prove the implication by assuming
(a) Fo':r and (b) injrcov= V|

and our goal is

(goal) injrcv =, v
There are already two lemmas proved that can transform the assumptions
(a) and (b) into
(a*) Foprojrcv :dercr and (b*) c# |v| = V|

Another lemma shows that

|| = c# |proj r cv|

Using (b*) we can therefore infer

(b**) [o] = |proj r c v|

The main idea of the proof is now a simple instantiation of the assumption
POSIX v (der cr). If we unfold the POSIX definition, we get

Vo' if o' i der crand |v] = [v/] then v =gep ¢ V'
We can instantiate this v" with proj r ¢ v’ and can use (a*) and (b**) in
order to infer
U dercr projrcv’
The point of the side-lemma below is that we can “add” an inj to both sides
to obtain
injrcvs=, injrec(projrcv)
Finally there is already a lemma proved that shows that an injection and
projection is the identity, meaning
injrc(projrcv) =1

With this we have shown our goal (pending a proof of the side-lemma next).

Side-Lemma

A side-lemma needed for the theorem above which might be true, but can
also be false, is as follows:

If (1) V1 >der cr V2,
(2) Fwy:dercr,and
(3) F wy:der cr holds,
then inj rcuvy = inj r c vy also holds.

It essentially states that if one value v; is bigger than vy then this ordering
is preserved under injections. This is proved by induction (on the definition
of der. . .this is very similar to an induction on r).

The case that is still unproved is the sequence case where we assume r =
r1 - r2 and also r; being nullable. The derivative der c r is then

der ¢cr = ((der cry) -ro) + (der ¢ ra)
or without the parentheses
der cr = (der cry) -ro + der cry

In this case the assumptions are

&
~—

U1 >_(der cri)rotder cro V2

F oy (der cry)-ro+dercry
Fuwg:(der cry) 1o+ der cry
nullable(ry)

NN N N
IR

(oW
~—

The induction hypotheses are

(IH1) Yviva. v1 =derer, V2 A Fopidercry A Fog:dercr
—>iNjry cuU > 1r1ing rLc U

(TH2) Yuiv2. U1 >dercry V2 A vy ider cre A F g :der cry
—iNj ro C V1 > T2 INJ T2 C V2

The goal is

(goal) ing (11 -72) € V1 =0y inJ (11 -72) € U2

If we analyse how (a) could have arisen (that is make a case distinction),
then we will find four cases:

LL v = Left(wl), Vo = Left(wg)
LR v = Left(wy), vo = Right(ws)
RL vy = Right(wy), va = Left(ws)
RR v = Right(w), va = Right(ws)

We have to establish our goal in all four cases.

Case LR

The corresponding rule (instantiated) is:

len Jwy| > len |ws|
Left(wl) 7 (der ¢ r1)-ro+der ¢ ro RZght(’U)g)

This means we can also assume in this case

(e) len|wi| > len|wsq|
which is the premise of the rule above. Instantiating v; and v9 in the as-

sumptions (b) and (c¢) gives us

(b*) F Left(wy) : (der ¢ ry) - ro + der cro
(c*) F Right(ws) : (der cry)-ry+der cry

Since these are assumptions, we can further analyse how they could have
arisen according to the rules of - _: _. This gives us two new assumptions

(b**) Fwy: (dercry)-ro
(c**) Fwy:dercry

Looking at (b**) we can further analyse how this judgement could have
arisen. This tells us that w; must have been a sequence, say u - uo, with

(b***) kg :dercry
Faug:ry

Instantiating the goal means we need to prove

inj (r1-r2) ¢ (Left(uy - ug)) =y .ry ing (11 - 1r2) ¢ (Right(ws))
We can simplify this according to the rules of inj:

(ing r1 cuy) - u2 >py 0y (Mkeps i) - (ing ro ¢ we)

This is what we need to prove. There are only two rules that can be used
to prove this judgement:

— / /

v = ’Ul (%) >‘7-2 U2 U1 >‘7ﬂ1 Ul
/ / / /
V1 - V9 >_/r1./r2 Ul ° ’U2 V1 * V9 >‘r1-r2 ’Ul : 02

Using the left rule would mean we need to show that

inj r1 cuy = mkeps ry

but this can never be the case.! Lets assume it would be true, then also if
we flat each side, it must hold that

ling r1 c ui| = |mkeps 71|

But this leads to a contradiction, because the right-hand side will be equal to
the empty list, or empty string. This is because we assumed nullable(r;) and
there is a lemma called mkeps_flat which shows this. On the other side we
know by assumption (b***) and lemma v4 that the other side needs to be a
string starting with ¢ (since we inject ¢ into u;). The empty string can never
be equal to something starting with c...therefore there is a contradiction.

! Actually Isabelle found this out after analysing its argument. ;0)

That means we can only use the rule on the right-hand side to prove our
goal. This implies we need to prove

mgry cuy >, mkeps ri
Case RL
The corresponding rule (instantiated) is:

len |wy| > len |wa|
Right(wl) >(der cry)retder cro Left(U)Q)

Test Proof

We want to prove that

nullable(r) implies POSIX (mkeps r) r

We prove this by induction on r. There are 5 subcases, and only the 71 + ro-
case is interesting. In this case we know the induction hypotheses are

(IMP1) nullable(ry) implies POSIX (mkeps 1) 1
(IMP2) nullable(rz) implies POSIX (mkeps r2) 72

and know that nullable(r; 4+ r2) holds. From this we know that either
nullable(ry) holds or nullable(re). Let us consider the first case where we
know nullable(ry).

Problems in the paper proof

I cannot verify. ..

Isabelle Cheat-Sheet

e The main notion in Isabelle is a theorem. Definitions, inductive pred-
icates and recursive functions all have underlying theorems. If a def-
inition is called foo, then the theorem will be called foo_def. Take
a recursive function, say bar, it will have a theorem that is called
bar.simps and will be added to the simplifier. That means the sim-
plifier will automatically Inductive predicates called baz will be called
baz.intros. For inductive predicates, there are also theorems baz.induct
and baz.cases.

e A goal-state consists of one or more subgoals. If there are No more
subgoals! then the theorem is proved. Each subgoal is of the form

[...premises...] = conclusion

where premises and conclusion are formulas of type bool.

e There are three low-level methods for applying one or more theorem to
a subgoal, called rule, drule and erule. The first applies a theorem
to a conclusion of a goal. For example

apply(rule thm)

If the conclusion is of the form _A_, - — _and Vz._ the thm is called

A = conjl
— = aimpl
V. = alll

Many of such rule are called intro-rules and end with an “I”, or in
case of inductive predicates _.intros.

