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Regular expression patterns provide a natural, declarative way to express constraints on semi-
structured data and to extract relevant information from it. Indeed, it is a core feature of the
programming language Perl, surfaces in various UNIX tools such as sed and awk, and has recently
been proposed in the context of the XML programming language XDuce. Since regular expressions
can be ambiguous in general, different disambiguation policies have been proposed to get a unique
matching strategy. We formally define the matching semantics under both (1) the POSIX, and
(2) the first and longest match disambiguation strategies. We show that the generally accepted

method of defining the longest match in terms of the first match and recursion does not conform
to the natural notion of longest match. We continue by solving the type inference problem for
both disambiguation strategies, which consists of calculating the set of all subparts of input values
a subexpression can match under the given policy.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—patterns; F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—program analysis; F.4.3 [Mathematical Logic and Formal Languages]:
Formal Languages—classes defined by grammars or automata (e.g., context-free languages, regu-

lar sets, recursive sets); operations on languages; H.2.3 [Database Management]: Languages—
query languages; XML

General Terms: Design, languages, theory, verification

Additional Key Words and Phrases: pattern matching, disambiguation policies, programming
languages, XML

1. INTRODUCTION

The Extensible Markup Language (XML) [Yergeau et al. 2004] provides a stan-
dard syntax for describing tree-structured and semi-structured data. In the past
few years it has become the standard format for the representation and exchange
of data on the web. Although XML can describe arbitrary trees, most applica-
tions restrict themselves to a set of valid trees, described by a schema. The stan-
dard schema language promoted by the World Wide Web Consortium (W3C) is
XML Schema [Thompson et al. 2001], although various other schema languages
exist [Davidson et al. 1999; Clark and Makoto 2001; Møller 2003].

Recently, there has been growing interest to make XML transformations type
safe: given a schema for the input trees, does the transformed output tree always
adhere to some output schema [Suciu 2002]? One of the most influential treatments
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of this typechecking problem was done by Hosoya et al., in the context of the XML
programming language XDuce [Hosoya 2000; Hosoya and Pierce 2003; Hosoya et al.
2005]. They introduced a type system of regular expression types based on regular
tree languages capable of expressing XML Schema, and gave an efficient subtyping
algorithm. XDuce’s type system has strongly influenced that of XQuery [Boag et al.
2005], the standard XML query language of the W3C.

In addition, XDuce proposed an extension of ML-style patterns, called regular
(hedge) expression patterns to support data extraction on hedges (sequences of
trees) [Hosoya 2000; Hosoya and Pierce 2002]. In order to support such patterns
in a statically typed programming language, Hosoya and Pierce argued that the
compiler has to infer the types of the variable bindings occurring in a pattern,
otherwise the type annotations become too heavy.

The idea of regular expression pattern matching stems from traditional string ma-
nipulation languages such as Perl, and UNIX tools such as sed and awk [Dougherty
and Robbins 1996]. These languages remain in frequent use today, as a lot of legacy
semi-structured data is not tree-structured, but consists of ordinary string content.
None of the above languages can guarantee the type safety of a transformation how-
ever. A study of regular expression pattern matching for strings and its associated
type inference problem is hence an important first step towards type safe string
transformations in those languages.

Syntactically, regular (hedge) expression patterns are regular (hedge) expressions
annotated with variable binders. In general, regular expressions can be ambiguous,
meaning that there are various ways of matching the input, resulting in multiple
possible bindings of the variables. In order to obtain a unique matching semantics,
one therefore needs to disallow ambiguous patterns [Book et al. 1971; Hosoya 2003],
or define a disambiguation policy. Various disambiguation policies exist, and it is
currently unclear which one is to be preferred:

—the XDuce policy, also employed by Perl;

—the first and longest match; and

—the POSIX policy, employed by all IEEE POSIX compliant tools, including sed

and awk.

Especially the XDuce policy and its related type inference problem has been exten-
sively studied. It was introduced by Hosoya and Pierce [Hosoya 2000; Hosoya and
Pierce 2002], who also developed its first type inference algorithm. This algorithm is
imprecise however, since it only computes precise types for tail variables. A precise
algorithm was later developed in the context of the XML-centric general-purpose
programming language CDuce [Frisch et al. 2002; 2003]. Both approaches consider
the policy in a hedge-based setting. A type inference algorithm for the string-based
setting was developed at the same time by Tabuchi et al. [2002].

The first and longest match policy was also (indirectly) introduced by Hosoya
and Pierce [2000; 2002], as a means to intuitively explain the XDuce policy. We will
show, however, that this generally accepted intuition is false. As a consequence,
the first and longest match policy has not been studied before. To our knowledge,
the POSIX policy [Institute of Electrical and Electronic Engineers 1992] has not
been studied before either.
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In this paper we will formalize the POSIX and first and longest match disam-
biguation policies for both strings and hedges, and develop precise type inference
algorithms for them. Our aim here is to treat strings and hedges in a uniform man-
ner, and to develop declarative type inference algorithms which specify the formal
languages that need to be calculated, but do not rely on a concrete implementa-
tion strategy. This approach has two benefits: we get a better understanding of
the the fundamental difficulties involved, and our solutions can be integrated in
existing regular language frameworks (such as that of MONA [Elgaard et al. 1998;
Klarlund and Møller 2001], XDuce, or CDuce).

We note that we are the first to demonstrate soundness and completeness of
a type inference algorithm for regular expression pattern matching. Indeed, the
XDuce and λre algorithms are imprecise [Hosoya and Pierce 2002; Hosoya 2000;
Sumii 2003], while the correctness proof of CDuce is unpublished.

The rest of this paper is organized as follows. Section 2 introduces regular ex-
pression pattern matching, the importance of a disambiguation strategy to get a
unique match, and the type inference problem. We formally define regular expres-
sion string patterns in Section 3. We then define the matching relation on strings
according to the POSIX policy in Section 4, and solve its associated type inference
problem in Section 5. The insights gained will help us formalize the matching rela-
tion on strings according to the first and longest match policy in Section 6 where
we also discuss its difference with the XDuce policy. We then develop a precise type
inference algorithm in Section 7. Section 8 introduces regular hedge expression pat-
terns. Finally, we show how the matching process under the first and longest match
policy and its associated type inference problem can be lifted to the hedge-based
setting in Sections 9 and 10. The last section provides discussion and some pointers
to future work.

2. BASIC CONCEPTS

2.1 Pattern Matching

Pattern matching in declarative programming languages such as Prolog [Sterling
and Shapiro 1994] or ML [Ullman 1998] provides a means to describe constraints
on values, at the same time allowing useful information to be extracted. Regular
(hedge) expression patterns provide a similar feature if the values to be operated
upon are strings or hedges (sequence of trees).

As an example of regular hedge expression patterns, consider the following ML-
like match construct:

match $v with

book[ title[$t], $a as (author[ ])+, ∗ ] => result[$t, $a]

book[ title[$t], $e as (ε|editor[ ]), ∗ ] => result[$t, $e]

Here we have two rules. Each rule consists of a regular hedge expression pattern
and an action to undertake when the pattern matches the value. Each rule is tried
in turn, starting from the top, until a pattern is found for which the input hedge
(in variable $v) matches. Matching a value against a pattern consists of two parts:
(1) ensuring that the input belongs to the formal language defined by the pattern;
and (2) associating with every subpattern the matching part of the input. The
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obtained associations can then be used to undertake the associated action, which
constructs the output.

In our example, the formal language of the first pattern consists of all (ordered)
trees for which:

—the root node is labeled by book;

—the first child is labeled by title;

—this first child has one or more author nodes as right siblings; and

—those sibling nodes are followed by zero or more other nodes (the underscore
denotes any tree).

If an input hedge belongs to this formal language, then variable $t should be
bound to the children of the title node and variable $a should be bound to the
author nodes matched by the (author[ ])+ subpattern. The result of this rule is
constructed by creating a new node labeled result, with children $t and $a.

Likewise, the formal language of the second pattern consists of all trees for which:

—the root node is labeled by book;

—the first child is labeled by title;

—this first child is followed by an optional editor node (ε stands for the empty
hedge pattern);

—which is followed by zero or more other nodes.

If an input hedge belongs to this formal language, then variable $t should be
bound to the children of the title node and variable $e should be bound to the
hedge matched by the (ε|editor[ ]) subpattern. The result of the second rule is
constructed by creating a new node labeled result, with children $t and $e.

In general, patterns can be ambiguous, meaning that there are various ways
of matching the input, resulting in multiple possible associations, and hence in
multiple possible outputs.

Example 2.1. Indeed, consider the following input tree, which is depicted in
Figure 1(a):

book[

title["Data On The Web"],
author["Abiteboul"], author["Buneman"], author["Suciu"],
price[50]

]

It is clear that this tree belongs to the formal language defined by the first pattern.
Note, however, that there are multiple ways of “parsing” the value by the pattern.
For instance, we could parse the first author node by the (author[ ])+ subpattern,
and we could parse its right siblings by the ∗ subpattern. Alternatively, we could
parse the first two author nodes by the (author[ ])+ pattern and their right
siblings by the ∗ subpattern. Finally, we could parse all author nodes by the
(author[ ])+ subpattern, and only the price node by the ∗ subpattern. The
following table summarizes the various associations for $t and $a corresponding to
these possibilities.
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book

title

DOTW

author

Abiteboul

author

Buneman

author

Suciu

price

50

(a)

book

title

HOFL

editor

Rozenberg

editor

Salomaa

price

60

(b)

Fig. 1. (a) The input tree from Example 2.1. (b) The input tree from Example 2.2.

$t $a

"DOTW" author["Abiteboul"]

"DOTW" author["Abiteboul"], author["Buneman"]
"DOTW" author["Abiteboul"], author["Buneman"], author["Suciu"]

Note that we get a different output for each possible association.

Example 2.2. Pattern two is also ambiguous. Consider the following input tree,
which is depicted in Figure 1(b):

book[

title["Handbook of Formal Languages"],
editor["Rozenberg"], editor["Salomaa"],
price[60]

]

It is clear that this tree belongs to the formal language defined by the second
pattern. Here we could parse the empty hedge by the (ε|editor[ ]) subpattern
and the editor and price nodes by the ∗ pattern; or we could parse the first
editor node by the (ε|editor[ ]) subpattern and its right siblings by ∗. Note
again that we get a different output for each possible association.

When patterns are used in database query languages, it is common and desirable
for a pattern to have many matches in the data, and to be able to retrieve all
of them [Abiteboul et al. 1997; Neumann and Seidl 1998; Buneman et al. 2000;
Neven and Schwentick 2001; Murata 2001; Boag et al. 2005]. However, in general-
purpose programming using pattern matching as in ML [Ullman 1998] or Prolog
[Sterling and Shapiro 1994] we normally want unique matching and a deterministic
semantics.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



6 · Stijn Vansummeren

One approach to the latter problem would be to simply disallow ambiguity by
requiring the regular expressions to be unambiguous [Book et al. 1971; Hosoya
2003]. Another, more programmer-friendly approach is to allow arbitrary regular
expression patterns, but to give a disambiguation policy, which ensures a unique
matching semantics. It is this approach that is taken in Perl, awk, sed, and XDuce.
Amongst these applications, various disambiguation policies exist:

— The first, followed by all IEEE POSIX compliant tools, including awk and
sed, consists of a single rule which states that each subpattern should match as
much of the input as possible while still allowing the rest of the pattern to match
[Institute of Electrical and Electronic Engineers 1992]. Subpatterns starting earlier
are given priority over those starting later. We will refer to this policy as the POSIX
policy.

— The second, which was informally introduced in [Hosoya 2000; Hosoya and
Pierce 2002], consists of two disambiguation rules: first match and longest match.
The first match rule disambiguates a disjunction pattern P1 + P2 by giving higher
priority to the first alternative P1. Moreover, disjunction distributes over concate-
nation. That is, when matching w against (P1 + P2) · P3, w should be first matched
against P1 · P3 and it should only be matched against P2 · P3 when this fails. The
longest match rule disambiguates the Kleene closure in patterns of the form P∗1 · P2

by requiring that P∗1 matches as much of the input as possible, still allowing the
rest of the pattern to match. We will refer to this policy as the first and longest
match policy.

— The third, followed by Perl, XDuce, CDuce, and λre also consists of two rules:
first match and greedy match [Hosoya 2000; Hosoya and Pierce 2002; Frisch et al.
2002]. The first match is the same as for the first and longest match policy. The
greedy match rule disambiguates the Kleene closure in a pattern P∗1 ·P2 by recursively
rewriting it into (P1 · P∗1 + ε) · P2. We will refer to this policy as the XDuce policy.

Example 2.3. Consider again the matching of the input tree in Figure 1(a)
against the first pattern. Because the (author[ ])+ subpattern occurs before the ∗

subpattern, the POSIX policy requires us to match as many nodes by (author[ ])+

as possible. Hence, all author nodes are matched by this subpattern. As such, $t
is associated with "DOTW" and $a is associated with

author["Abiteboul"], author["Buneman"], author["Suciu"].

Since the (author[ ])+ subpattern is a Kleene closure, the first and longest match
policy and the XDuce policy also require to match as many nodes by (author[ ])+

as possible, resulting in the same associations.

The associations obtained under the various polices differ when the input tree of
Figure 1(b) is matched against the second pattern.

Example 2.4. Indeed, since the (ε|editor[ ]) subpattern occurs before the ∗

subpattern, and since matching a single tree is considered longer than matching
the empty hedge, the POSIX policy will require us to match the first editor

node by (ε|editor[ ]), and its right siblings by ∗. Hence, under the POSIX
disambiguation policy, $t is associated with "HOFL" and $a is associated with
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editor["Salomaa"]. The first and longest policy and the XDuce policy, how-
ever, will first try to match against the ε subpattern (which succeeds) before trying
to match against the editor[ ] subpattern. Hence, under these policies, $t is
associated with "HOFL" and $a is associated with the empty hedge. We will show
the difference between the first and longest match policy and the XDuce policy in
Section 6.

In the following sections we will formally describe the matching process under
all three disambiguation policies by means of the matching relation v ∈ P V ,
signifying that (string or hedge) input value v is matched by (string or hedge)
pattern P yielding associations V . We will view patterns as abstract syntax trees,
and identify subpatterns by their corresponding nodes in the abstract syntax tree.
This has the advantage that we do not have to mention variables explicitly in a
pattern. We just have to reason about the node a variable is associated with.
Hence, we can formally describe the associations V as a function from nodes n in P

to subvalues of v or to the special symbol ⊥. The matching relation will be defined
such that V (n) = v′ if and only if the pattern rooted at node n is responsible
for matching the subpart v′ of v. It is ⊥ if the subpattern is not responsible for
recognizing any subpart of v.

We will not concern ourselves with the efficient implementation of the match-
ing process under the various disambiguation policies, for which we refer to the
literature [Laurikari 2000; 2001; Frisch and Cardelli 2004; Frisch 2004; Levin 2003].

2.2 Type Inference

XDuce [Hosoya 2000; Hosoya and Pierce 2003; 2002; Hosoya et al. 2005], CDuce
[Frisch et al. 2003; 2002], and λre [Tabuchi et al. 2002] are programming languages
that can statically verify whether a transformation is type-safe. They all use reg-
ular expressions types capable of representing regular (hedge) languages to achieve
this goal. Regular (hedge) languages serve as a unifying model for many schema
languages [Murata et al. 2001; Neven 2002]. In order to support regular expression
pattern matching XDuce, CDuce, and λre employ a type inference algorithm that
calculates, for each subpattern, the set of values it can be associated with given a
type for the input. The idea is to use these sets to compute the type of all con-
structed output values, and to check that this type is a subtype of the given output
type.

In the following sections we will introduce type inference algorithms for the P

and first and longest match disambiguation policies on strings and on hedges. We
abstract away from a particular syntax of regular expression types, and use regular
word and hedge languages instead. We will use T D(n, P, C) to denote the set of all
values the subpattern rooted at node n in P can be bound to under disambiguation
policy D when the input values all belong to the set C:

T D(n, P, C) := {v′ | ∃v ∈ C, v ∈ P V, V (n) = v′}.

For the superscript D we will use P to denote the POSIX disambiguation policy,
FL to denote the first and longest match disambiguation policy, and XD to denote
the XDuce disambiguation policy.
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3. REGULAR STRING EXPRESSION PATTERNS

In this section we define regular string expression patterns, and provide some general
notation that will be used throughout the paper.

We assume given a fixed, finite alphabet Σ which does not contain the special
symbols ⊥ and 2. Elements of Σ will be denoted by σ and words over Σ will be
denoted by w throughout the rest of this paper. The empty word is denoted by
λ. A regular string expression pattern P is a regular expression over Σ. That is,
P is either of the form ε (with ε recognizing the empty word), σ (with σ ∈ Σ),
P1 +P2, P1 ·P2, or P∗1, where P1 and P2 are already regular expression patterns. The
language L(P) of a pattern P is defined as usual. That is, L(ε) = {λ}, L(σ) = {σ},
L(P1 +P2) = L(P1)∪L(P2), L(P1 ·P2) is the concatenation of L(P1) and L(P2), and
L(P∗1) is the Kleene closure of L(P1). Because we want to identify the subexpressions
of a pattern, we abuse notation slightly and identify P with the partial function
P : {1, 2}∗ → {∗, ·, +, ε} ∪ Σ such that

—if P = ε then dom(P) = {λ} and P(λ) = ε;

—if P = σ with σ ∈ Σ then dom(P) = {λ} and P(λ) = σ;

—if P = P1 + P2 then dom(P) = {λ} ∪ {1n | n ∈ dom(P1)} ∪ {2n | n ∈ dom(P2)}
with P(λ) = +, P(1n) = P1(n), and P(2n) = P2(n);

—if P = P1 ·P2 then dom(P) = {λ}∪{1n | n ∈ dom(P1)}∪{2n | n ∈ dom(P2)} with
P(λ) = ·, P(1n) = P1(n), and P(2n) = P2(n); and

—if P = P∗1 then dom(P) = {λ}∪{1n | n ∈ dom(P1)}, P(λ) = ∗, and P(1n) = P1(n).

Intuitively, the function view of a pattern describes the abstract syntax tree of
its regular expression, as shown in Figure 2. In general, an expression can have
multiple parse trees. We therefore assume the usual precedence of operators in
the previous definition: ∗ binds tighter than ·, which has a higher precedence than
+. Furthermore, · and + are assumed to be right-associative. Elements of {1, 2}∗

are called nodes and will be denoted by n, m, and their subscripted versions. We
write |P| for the number of nodes of P. Intuitively, nodes are used to identify
subexpressions.

Since subpatterns inside a Kleene closure can match multiple subwords of an
input word, we will not compute associations for such subpatterns. Therefore, a
node n ∈ dom(P) is a bindable node of P if it does not have an ancestor labeled
with ∗. The set of bindable nodes of P is denoted by bn(P).

As was already noted in Section 2, the matching process for a given disambigua-
tion strategy is formally described by the matching relation w ∈ P V , signifying
that w is matched by P yielding associations V . Here, V is a function from bn(P)
to subwords of w or to the special symbol ⊥. The matching relation will be defined
such that V (n) = w′ if and only if the pattern rooted at node n is responsible for
matching the subword w′ under the considered disambiguation policy. It is ⊥ if the
subpattern is not responsible for recognizing any subword of w.

Example 3.1. As we will further illustrate in Example 4.1, matching the word ab
against the pattern (a+a·b)·(b+ε) of Figure 2(a) under the POSIX disambiguation
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·

λ

+

1

a

11

·

12

a

121

b

121

·

2

b

21

ε

22

(a)

·

λ

∗

1

+

a ·

a b

·

2

b

21

ε

22

(b)

Fig. 2. The abstract syntax tree representation of (a + a · b) · (b + ε) (left) and (a + a · b)∗ · (b + ε)
(right). The bindable nodes have their addresses annotated.

strategy yields the associations V where

V (λ) = ab V (1) = ab V (11) = ⊥

V (12) = ab V (121) = a V (122) = b

V (2) = λ V (21) = ⊥ V (22) = λ.

On the other hand, matching ab against this pattern under the first and longest
match disambiguation policy yields the associations V ′ where

V ′(λ) = ab V ′(1) = a V ′(11) = a

V ′(12) = ⊥ V ′(121) = ⊥ V ′(122) = ⊥

V ′(2) = b V ′(21) = b V ′(22) = ⊥,

as we will further illustrate in Example 6.1.

To simplify the definition of matching relations we introduce the following no-
tation. Let V1 and V2 be associations, and let P1 and P2 be patterns. We write
[λ → w] to denote the function with domain {λ} for which

[λ → w](λ) = w.

We write V1 + P2 to denote the function for which

(V1 + P2)(n) =











V1(1) if n = λ;

V1(m) if n = 1m, m ∈ dom(V1);

⊥ if n = 2m, m ∈ dom(P2).

We define P1 + V2 similarly:

(P1 + V2)(n) =











V2(1) if n = λ;

V2(m) if n = 2m, m ∈ dom(V2);

⊥ if n = 1m, m ∈ dom(P1).
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Finally, we denote by V1 · V2 the function such that

(V1 · V2)(n) =



















V1(λ) · V2(λ) if n = λ, V1(λ) 6= ⊥, V2(λ) 6= ⊥;

⊥ if n = λ and (V1(λ) = ⊥ or V2(λ) = ⊥);

V1(m) n = 1m, m ∈ dom(V1)

V2(m) n = 2m, m ∈ dom(V2).

Example 3.2. If V1 is the association function with domain {λ, 1, 2} such that

V1(λ) = ab V1(1) = a V1(2) = b,

then a + V1 is the association function W with domain {λ, 1, 2, 21, 22} such that

W (λ) = ab W (1) = ⊥ W (2) = ab

W (21) = a W (22) = b.

Furthermore, if V2 is the association function with domain {λ, 1, 2} such that

V2(λ) = λ V2(1) = ⊥ V2(2) = λ,

then (a + V1) · V2 is the association function V from Example 3.1. I.e., it is the
association obtained by matching the word ab against pattern P from Figure 2(a)
under the POSIX disambiguation policy.

4. MATCHING UNDER THE POSIX POLICY

As shown in Section 2, patterns can be ambiguous, meaning that there are various
ways of matching an input word. In this section we formally introduce the POSIX
disambiguation policy, employed by all IEEE POSIX standard compliant regular
expression tools like awk, sed, . . . It is easy to formalize and the techniques for its
associated type inference algorithm, as developed in the next section, serve as a
warmup for that of the first and longest match policy treated in the second half of
this paper.

The POSIX disambiguation policy can be expressed as follows [Institute of Elec-
trical and Electronic Engineers 1992; Laurikari 2001]:

Subpatterns should match the longest possible substrings, where sub-
patterns that start earlier in the regular expression take priority over
ones starting later. Hence, higher-level subpatterns take priority over
their lower-level component subpatterns. Matching an empty string is
considered longer than no match at all.

Let us clarify this rule with an example.

Example 4.1. Consider the matching of ab against the pattern (a + a · b) · (b + ε)
of Figure 2(a). Then the whole pattern matches ab. Because subpattern (a + a · b)
starts earlier than (b + ε), it should match as much of the input string as possible,
still allowing the whole pattern to match. Hence, (a + a · b) matches ab and (b + ε)
matches λ.

The matching relation w ∈ P V under the POSIX policy is formally defined in
Figure 3. Rules Empty and Lab are axioms allowing to match the empty sequence
and a single symbol respectively. Rule Kleene allows matching a word against a

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Type Inference for Unique Pattern Matching · 11

Empty

λ ∈ ε [λ → λ]

Lab

σ ∈ σ [λ → σ]

Kleene
w ∈ L(P∗)

w ∈ P∗ [λ → w]

Or1
w ∈ P1 V

w ∈ P1 + P2 V + P2

Or2
w ∈ P2 V w 6∈ L(P1)

w ∈ P1 + P2 P1 + V

Concat
w1 ∈ P1 V1 w2 ∈ P2 V2

¬(∃w3 6= λ,w4 : w3w4 = w2 ∧ w1w3 ∈ L(P1) ∧ w4 ∈ L(P2))

w1w2 ∈ P1 · P2 V1 · V2

Fig. 3. The matching relation w ∈ P V under the POSIX disambiguation policy.

Kleene closure pattern. Note that the resulting association function only provides
an association for λ, which is the only bindable node of P∗. For a disjunction
P1 + P2, the POSIX disambiguation policy specifies that the whole pattern should
match the longest possible substring. In order for the match to succeed, this would
have to be the whole input word. Furthermore, since P1 starts earlier than P2, P1 is
to be given precedence. Consequently, when matching w against P1 +P2, we should
always try to match w to P1 first. This is expressed in rules Or1 and Or2, where
Or2 can only be used if Or1 fails. Rule Concat specifies that in a concatenation
P1 · P2, pattern P1 should match as much as possible (since it occurs earlier), still
allowing the entire pattern to match.

Theorem 4.2. The matching relation of Figure 3 is well defined:

(1 ) The matching relation is semantically correct: w ∈ P V iff w ∈ L(P), and,

(2 ) The matching relation is unique: if w ∈ P V and w ∈ P W then V = W .

Proof. (1). The “if” direction can be proved by a straightforward induction
on P. The “only if” direction can be proved by a straightforward induction on the
matching derivation.

(2). By a straightforward induction on the matching derivation of w ∈ P V ,
with a case analysis on the last rule used.

Example 4.3. The following is the matching derivation of ab against (a + a · b) ·
(b + ε):

Lab

a ∈ a V1 := [λ → a]

Lab

b ∈ b V2 := [λ → b]

ab ∈ a · b V1 · V2

Concat

ab ∈ (a + a · b) a + (V1 · V2)
COr2

Empty

λ ∈ ε V3 := [λ → λ]

λ ∈ (b + ε) b + V3

COr2

ab ∈ (a + a · b) · (b + ε) (a + (V1 · V2)) · (b + V3)
Concat
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It is easily seen that the obtained association function (a + (V1 · V2)) · (b + V3)
equals the association function V from Example 3.1. For example,

((a + (V1 · V2)) · (b + V3))(1) = (a + (V1 · V2))(λ) = V1(λ) · V2(λ) = ab = V (1).

Likewise:

((a + (V1 · V2)) · (b + V3))(21) = (b + V3)(1) = ⊥ = V (21).

We note that we cannot match a by (a + a · b) and b by (b + ε). Indeed, although
it is possible to derive a ∈ (a + a · b) W1 and b ∈ b + ε W2 for some associations
W1 and W2, the third premise of rule Concat will disable us to conclude ab ∈
(a + a · b) · (b + ε) W1 · W2. Indeed, since ab ∈ L(a + a · b) and λ ∈ L(b + ε) there
exists a longer match.

5. TYPE INFERENCE UNDER THE POSIX POLICY

The matching process described in the previous section is used in UNIX tools like sed
and awk [Dougherty and Robbins 1996]. Solving its regular type inference problem
can be seen as a first step towards making transformations in these languages type
safe. The main result of this section can be stated as follows:

Theorem 5.1. If C is a regular language then T P(m, P, C) is also regular, and
can be effectively computed.

5.1 The Algorithm

Let us first introduce the algorithm by informal reasoning. We will formally prove
its correctness later.

We observe that the type of the root node λ is exactly the set of words in C that
can be matched by P. Indeed, if w is successfully matched by P then λ is associated
to w itself. If m 6= λ, then P is of the form P1 +P2 or P1 ·P2, since all other patterns
contain only one bindable node: λ.

If P = P1 + P2 then we observe that words can only be associated to subpatterns
of P1 if they are subwords of some word in C matched by P1. Hence, if m = 1n then
we can calculate T P(1n, P, C) simply by calculating T P(n, P1, C). Similarly, words
can only be associated to subpatterns of P2 if they are subwords of some word in C
matched by P2. We must take care however, since this word must not be matched
against P1 because of the precedence of P1 over P2 in P. Hence, we can calculate
T P(2n, P, C) by calculating T P(n, P2, C − L(P1)).

If P = P1 ·P2 then we observe that words can only be associated to subpatterns of
P1 if they are subwords of a word w1 matched by P1, for which there exists some w2

matched by P2 such that w1w2 ∈ C and such that w1 really is the longest possible
prefix of w1w2 that can be matched by P1, still allowing the corresponding suffix
to be matched by P2. Formally this means that we cannot break w2 in w3 6= λ
and w4 with w1w3 ∈ L(P1) and w4 ∈ L(P2). Let us define the left breaking of C
by languages L1 and L2, denoted by lbreak(C, L1, L2), to be exactly the set of such
words w1:

lbreak(C, L1, L2) := {w1 ∈ L1 | ∃w2 ∈ L2 : w1w2 ∈ C

∧ ¬(∃w3 6= λ, w4 : w3w4 = w2 ∧ w1w3 ∈ L1 ∧ w4 ∈ L2)}.
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Algorithm 1: Calculate T P(m, P, C).

Input: A pattern P; a node m ∈ bn(P); and a regular context C.

Output: The type of m in P relative to C under the POSIX disambiguation
policy.

if m = λ then

return L(P) ∩ C
else

switch P do

case P1 + P2

switch m do

case 1n return T P(n, P1, C)
case 2n return T P(n, P2, C − L(P1))

end

case P1 · P2

switch m do

case 1n return T P(n, P1, lbreak(C, L(P1), L(P2)))
case 2n return T P(n, P2, rbreak(C, L(P1), L(P2)))

end
end

end

Then T P(1n, P, C) equals T P(n, P1, lbreak(C, L(P1), L(P2))). Similarly, words can
only be associated to subpatterns of P2 in P1 · P2 if they are subwords of a word w2

matched by P2 for which there exists some w1 matched by P1 such that w1w2 ∈ C
and such that w1 really is the longest possible prefix of w1w2 matched by P1, still
allowing the corresponding suffix to be matched by P2. The formal requirement is
the same as before. Let us define the right breaking of C by languages L1 and L2,
denoted as rbreak(C, L1, L2) to be exactly the set of such words w2:

rbreak(C, L1, L2) := {w2 ∈ L2 | ∃w1 ∈ L1 : w1w2 ∈ C

∧ ¬(∃w3 6= λ, w4 : w3w4 = w2 ∧ w1w3 ∈ L1 ∧ w4 ∈ L2)}.

Then T P(2n, P, C) equals T P(n, P2, rbreak(C, L(P1), L(P2))).
As we will show below, the sets lbreak(C, L1, L2) and rbreak(C, L1, L2) are regular

and can effectively be computed if C, L1, and L2 are regular. The type inference
algorithm for the POSIX matching policy is then shown in Algorithm 1. It is well-
defined if we start with a regular set C, since all used operations can effectively be
computed for regular languages. Moreover, the algorithm is terminating since the
depth of the nodes to be calculated get smaller upon each recursive call.

5.2 Computing the breaking of C

In order for Algorithm 1 to make any sense, we need a way to calculate the sets
lbreak(C, L(P1), L(P2)) and rbreak(C, L(P1), L(P2)). We first need some auxiliary
notions in order to develop a computation strategy.

The left quotient of language L by language K, denoted by K\L, is defined as
{s | ∃p ∈ K : ps ∈ L}. The right quotient of L by K, denoted by L/K, is defined
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as {p | ∃s ∈ K : ps ∈ L}. It is well-known that regular languages are closed under
both quotients [Hopcroft and Ullman 1979].

Let 2 be a special symbol not in Σ. Let us write π(w) for the word w1w2 . . . wn

if w = w12w22 · · ·2wn. It is easy to see that if L is a regular language, then so
is π−1(L) = {w12w22 · · ·2wn | w1w2 . . . wn ∈ L} (modify a DFA for L to allow
reading the letter 2, which is then ignored).

The breaking of C by L1 and L2, denoted by break(C, L1, L2), is defined as:

break(C, L1, L2) := {w12w2 | w1w2 ∈ C ∧ w1 ∈ L1 ∧ w2 ∈ L2

∧ ¬(∃w3 6= λ, w4 : w3w4 = w2 ∧ w1w3 ∈ L1 ∧ w4 ∈ L2)}.

Lemma 5.2. If C, L1, and L2 are regular, then so are the breaking, left breaking
and right breaking of C by L1 and L2. More specifically, with A abbreviating the
language π−1(L1) − (L1 · {2}), we have:

—break(C, L1, L2) = π−1(C) ∩ ((L1 · {2} · L2) − A · L2),

—lbreak(C, L1, L2) = break(C, L1, L2)/({2} · L2), and

—rbreak(C, L1, L2) = (L1 · {2})\break(C, L1, L2).

Proof. By definition, (L1 · {2} · L2) − A · L2 equals

{w12w2 | w1 ∈ L1 ∧w2 ∈ L2 ∧¬(∃v1, v2 : v1v2 = w12w2 ∧ v1 ∈ A∧ v2 ∈ L2)}.

Or, more elaborately,

{w12w2 | w1 ∈ L1 ∧ w2 ∈ L2

∧ ¬(∃v1, v2 : v1v2 = w12w2 ∧ π(v1) ∈ L1 ∧ (∀p ∈ L1 : v1 6= p2) ∧ v2 ∈ L2)}.

We show that this equals

{w12w2 | w1 ∈ L1 ∧ w2 ∈ L2

∧ ¬(∃w3 6= λ, w4 : w2 = w3w4 ∧ w1w3 ∈ L1 ∧ w4 ∈ L2)}.

We can see this as follows. Suppose that w12w2 is in the upper set and suppose
that there do exist w3 and w4 such that w2 = w3w4, w3 6= λ, w1w3 ∈ L1 and
w4 ∈ L2. Then take v1 = w12w3 and v2 = w4 to see that w12w2 cannot be in the
upper set, a contradiction. On the other hand, suppose w12w2 is in the lower set
and suppose that there do exist v1 and v2 such that v1v2 = w12w2, π(v1) ∈ L1,
∀p ∈ L1 : v1 6= p2 and v2 ∈ L2. Since v2 ∈ L2 and since L2 is a language over Σ,
v2 cannot contain the symbol 2. Since v1v2 = w12w2, v2 must be a suffix of w2.
Hence, we can divide w2 in w3 and w4 such that v1 = w12w3 and v2 = w4. Since
v1 6= p2 for any p, w3 must be different from λ. Moreover, we immediately have
w1w3 = π(v1) ∈ L1 and w4 = v2 ∈ L2, which gives us a contradiction.

As a consequence, π−1(C) ∩ ((L1 · {2} · L2) − A · L2) must equal

{w12w2 | w1w2 ∈ C ∧ w1 ∈ L1 ∧ w2 ∈ L2

∧ ¬(∃w3, w4 : w3 6= λ ∧ w3w4 = w2 ∧ w1w3 ∈ L1 ∧ w4 ∈ L2)}.

Hence, π−1(C) ∩ ((L1 · {2} · L2) − A · L2) = break(C, L1, L2), as desired. With φ
abbreviating ¬(∃w3 6= λ, w4 : w3w4 = w2 ∧ w1w3 ∈ L1 ∧ w4 ∈ L2) we obtain the
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other two desired equalities:

break(C, L1, L2)/({2} · L2) = {w1 | ∃w2 ∈ L2 : w12w2 ∈ break(C, L1, L2)}

= {w1 | ∃w2 ∈ L2 : w1w2 ∈ C ∧ w1 ∈ L1 ∧ φ}

= lbreak(C, L1, L2)

(L1 · {2})\break(C, L1, L2) = {w2 | ∃w1 ∈ L1 : w12w2 ∈ break(C, L1, L2)}

= {w2 | ∃w1 ∈ L1 : w1w2 ∈ C ∧ w2 ∈ L2 ∧ φ}

= rbreak(C, L1, L2)

5.3 Proof of Correctness

In this section we formally prove the correctness of Algorithm 1, thereby also prov-
ing Theorem 5.1.

Lemma 5.3. If w ∈ P V then V (λ) = w.

Proof. By a straightforward induction on the matching derivation.

Proposition 5.4. T P(λ, P, C) = L(P) ∩ C for any pattern P.

Proof. By Lemma 5.3 and Theorem 4.2 it readily follows:

w ∈ T P(λ, P, C) ⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (λ) = w

⇔ w ∈ C ∧ w ∈ P V

⇔ w ∈ C ∧ w ∈ L(P)

Proposition 5.5. For P = P1 + P2, the following equalities hold:

(1 ) T P(1n, P, C) = T P(n, P1, C)

(2 ) T P(2n, P, C) = T P(n, P2, C − L(P1))

Proof. We first note that the top of a derivation for w′ ∈ P V has two possible
forms:

. . .

w
′

∈ P1 V1

w
′

∈ P1 + P2 V1 + P2

Or1

. . .

w
′

∈ P2 V2 w
′

6∈ L(P1)

w
′

∈ P1 + P2 P1 + V2

Or2

Note that, if w′ ∈ P V and V (1) 6= ⊥, then the derivation of w′ ∈ P V must be
of the left form. Indeed, V (1) = ⊥ for derivations of the right form. It is then easy
to see that (1) holds:

w ∈ T P(1n, P, C) ⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (1n) = w

⇔ ∃w′ ∈ C : w′ ∈ P (V1 + P2) ∧ V1(n) = w

⇔ ∃w′ ∈ C : w′ ∈ P1 V1 ∧ V1(n) = w

⇔ w ∈ T P(n, P1, C)
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Likewise, if w′ ∈ P V and V (2) 6= ⊥, then the derivation of w′ ∈ P V must be of
the right form. Indeed, V (2) = ⊥ for derivations of the left form. It is then easy
to see that (2) also holds:

w ∈ T P(2n, P, C) ⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (2n) = w

⇔ ∃w′ ∈ C : w′ ∈ P (P1 + V2) ∧ V2(n) = w

⇔ ∃w′ ∈ C : w′ 6∈ L(P1) ∧ w′ ∈ P2 V2 ∧ V2(n) = w

⇔ w ∈ T P(n, P2, C − L(P1))

Proposition 5.6. When P = P1 · P2 the following equalities hold:

(1 ) T P(1n, P, C) = T P(n, P1, lbreak(C, L(P1), L(P2)))

(2 ) T P(2n, P, C) = T P(n, P2, rbreak(C, L(P1), L(P2)))

Proof. Note that for any derivation of w′ ∈ P V , the top must look like:

. . .

w1 ∈ P1 V1

. . .

w2 ∈ P2 V2

¬(∃w3 6= λ, w4 : w2 = w3w4 ∧ w1w3 ∈ L(P1) ∧ w4 ∈ L(P2))

w
′ = w1w2 ∈ P V = V1 · V2

Concat

Using Theorem 4.2, equality (1) then readily follows:

w ∈ T P(1n, P, C)

⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (1n) = w

⇔ ∃w1, w2 : w1w2 ∈ C ∧ w1 ∈ P1 V1 ∧ w2 ∈ P2 V2 ∧ V1(n) = w

∧ ¬(∃w3 6= λ, w4 : w3w4 = w2 ∧ w1w3 ∈ L(P1) ∧ w4 ∈ L(P2))

⇔ ∃w1 ∈ L(P1), w2 ∈ L(P2) : w1w2 ∈ C ∧ w1 ∈ P1 V1 ∧ V1(n) = w

∧ ¬(∃w3 6= λ, w4 : w3w4 = w2 ∧ w1w3 ∈ L(P1) ∧ w4 ∈ L(P2))

⇔ ∃w1 ∈ lbreak(C, L(P1), L(P2)) : w1 ∈ P1 V1 ∧ V1(n) = w

⇔ w ∈ T P(n, P1, lbreak(C, L(P1), L(P2)))

Equality (2) can be obtained in a similar way.

6. MATCHING UNDER THE FIRST AND LONGEST MATCH POLICY

In this section, we formally define the matching process on strings under the first
and longest match disambiguation policy, and show that it guarantees a unique
matching strategy. We also discuss the difference between the first and longest
match policy and the XDuce policy.

Recall from Section 2.1 that the first and longest match policy consists of two
disambiguation rules. The first match rule disambiguates a disjunction P1 + P2 by
giving higher priority to the first alternative P1. Moreover, disjunction distributes
over concatenation. That is, when matching w against (P1 + P2) · P3, w should be
first matched against P1 · P3 and it should only be matched against P2 · P3 when
this fails. The longest match rule disambiguates the Kleene closure in patterns of
the form P∗1 · P2 by requiring that P∗1 matches as much of the input as possible, still
allowing the rest of the pattern to match.
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Example 6.1. Consider the matching of ab against the pattern (a + a · b) · (b + ε)
of Figure 2(a). Then the whole pattern matches ab. Since disjunction distributes
over concatenation, the first match rule requires us to first try to match ab against
a · (b + ε). This obviously succeeds. Since a is matched by a and b by (b + ε) in
a · (b + ε), we associate (a +a · b) with a and (b + ε) with b in (a +a · b) · (b + ε).

In contrast, (a · a + b) is associated with ab and (b + ε) with ε under the POSIX
disambiguation policy, as we have shown in Example 4.1. Thus, under the first and
longest match policy we no longer require that P1 matches as much as possible in
a concatenation P1 · P2, unless P1 is a Kleene closure.

The matching relation w ∈ P V under the first and longest match policy is
formally defined in Figure 4. Rules Empty, Lab, Kleene, Or1, and Or2 are the
same as in Figure 3. The difference with the POSIX policy lies in the treatment
of concatenation patterns P1 · P2, for which we use the auxiliary relation (w1, w2) ∈
P1 · P2 (V1, V2). The intuitive meaning of this relation is that when matching
w1w2 by P1 · P2 under the first and longest match policy, P1 will be responsible
for matching prefix w1 (with associations V1), while P2 is responsible for matching
suffix w2 (with associations V2). If P1 = ε or P1 = σ, there is only one way
to split the input word and no disambiguation is necessary, as expressed in rules
CEmpty and CLab. Rules COr1 and COr2 express distribution of disjunction
over concatenation, according to the first match rule. The longest match rule is
expressed in CKleene. Note the resemblance of this rule with Concat of Figure 3.
When matching w against patterns of the form (P1 · P2) · P3, we first determine the
prefix w1 that is matched by P1 by matching w against P1 · (P2 · P3). Then we
determine which parts of the corresponding suffix are matched by P2 and P3 by
matching this suffix against P2 · P3. The subword matched by P1 · P2 is then the
concatenation of the subword matched by P1 and the subword matched by P2, as
shown in rule CCon. Finally, rule Concat is used to convert from the auxiliary
relation to the matching relation.

Example 6.2. As an example of the first match rule, consider the following
matching derivation of ab against pattern (a + a · b) · (b + ε):

Lab
a ∈ a V1 := [λ → a]

b ∈ b V2 := [λ → b]
Lab

b ∈ b + ε V2 + ε
Or1

(a, b) ∈ a · (b + ε) (V1, V2 + ε)
CLab

(a, b) ∈ (a + a · b) · (b + ε) (V1 + (a · b), V2 + ε)
COr1

ab ∈ (a + a · b) · (b + ε) (V1 + (a · b)) · (V2 + ε)
Concat

It is easily seen that the obtained association function (V1 + (a · b)) · (V1 + ε)
equals the association function V ′ from Example 3.1. For example,

((V1 + (a · b)) · (V2 + ε))(1) = (V1 + (a · b))(λ) = V1(λ) = a = V ′(1).

Likewise,

((V1 + (a · b)) · (V2 + ε))(12) = (V1 + (a · b))(2) = ⊥ = V ′(12).
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Empty

λ ∈ ε [λ → λ]

Lab

σ ∈ σ [λ → σ]

Kleene
w ∈ L(P∗)

w ∈ P∗ [λ → w]

Or1
w ∈ P1 V

w ∈ P1 + P2 V + P2

Or2
w ∈ P2 V w 6∈ L(P1)

w ∈ P1 + P2 P1 + V

Concat
(w1, w2) ∈ P1 · P2 (V1, V2)

w1w2 ∈ P1 · P2 V1 · V2

CEmpty
w ∈ P V2

(λ, w) ∈ ε · P ([λ → λ], V2)

CLab
σ ∈ σ V1 w ∈ P V2

(σ, w) ∈ σ · P (V1, V2)

COr1
(w1, w2) ∈ P1 · P3 (V1, V2)

(w1, w2) ∈ (P1 + P2) · P3 (V1 + P2, V2)

COr2
(w1, w2) ∈ P2 · P3 (V1, V2)

w1w2 6∈ L(P1 · P3)

(w1, w2) ∈ (P1 + P2) · P3 (P1 + V1, V2)

CCon
(w1, w2w3) ∈ P1 · (P2 · P3) (V1,W ) (w2, w3) ∈ P2 · P3 (V2, V3)

(w1w2, w3) ∈ (P1 · P2) · P3 (V1 · V2, V3)

CKleene
w1 ∈ P∗1 V1 w2 ∈ P2 V2

¬(∃w3 6= λ, w4 : w3w4 = w2 ∧ w1w3 ∈ L(P∗1) ∧ w4 ∈ L(P2))

(w1, w2) ∈ P∗1 · P2 (V1 , V2)

Fig. 4. The matching relation w ∈ P V under the first and longest match disambiguation policy.

Example 6.3. As an example of the longest match rule, consider the following
matching derivation of ab against the pattern (a + a · b)∗ · (b + ε) of Figure 2(b):

Kleene
ab ∈ L((a + a · b)∗)

ab ∈ (a + a · b)∗ V1 := [λ → ab]

Empty

λ ∈ ε V2 := [λ → λ] λ 6∈ L(b)

λ ∈ (b + ε) ε + V2

Or2

(ab, λ) ∈ (a + a · b)∗ · (b + ε) (V1, ε + V2)
CKleene

ab ∈ (a + a · b)∗ · (b + ε) V1 · (ε + V2)
Concat

Here, ab itself is matched by (a + a · b)∗, while (b + ε) matches λ:

(V1 · (ε + V2))(1) = V1(λ) = ab,

(V1 · (ε + V2))(2) = V2(λ) = λ.

Matching a by (a + a · b)∗ and b by (b + ε) will not work. Indeed, although
it is possible to derive a ∈ (a + a · b)∗ W1 and b ∈ (b + ε) W2 for some as-
sociations W1 and W2, the third premise of CKleene will disable us to derive
(a, b) ∈ (a + a · b)∗ · (b + ε) (W1, W2).

As an analogy to Theorem 4.2 we have:

Theorem 6.4. The matching relation of Figure 4 is well defined:
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(1 ) The matching relation is semantically correct: w ∈ P V iff w ∈ L(P), and,

(2 ) The matching relation is unique: if w ∈ P V and w ∈ P W then V = W .

Proof. (1). The “only if” direction can be obtained by a straightforward in-
duction on the matching derivation of w ∈ P V , with a case analysis on the
last rule used. We highlight the case where this last rule is Concat. In that
case P = P1 · P2 and we can split up w into w1 and w2 such that (w1, w2) ∈
P1 · P2 (V1, V2) with V = V1 · V2. A straightforward induction on the derivation
of (w1, w2) ∈ P1 · P2 (V1, V2) shows that w1 ∈ L(P1) and w2 ∈ L(P2). Hence,
w1w2 ∈ L(P), as desired.

The “if” direction can be obtained by well-founded induction [Baader and Nipkow
1998] on P according to the well-founded relation �. Here, � relates a pattern P

with immediate subpatterns if P 6= (P1 · P2) · P3 and P 6= (P1 + P2) · P3. It relates
(P1 ·P2) ·P3 with P2 ·P3 and with P1 · (P2 ·P3) and it relates (P1 +P2) ·P3 with P1 ·P3

and with P2 ·P3. The monotone embedding φ into the lexicographically ordered set
N × N where φ(P) = (|P|, 0) if P 6= P1 · P2 and φ(P1 · P2) = (|P1 · P2|, |P1|) otherwise,
shows that � is well-founded [Baader and Nipkow 1998].

(2). By a straightforward induction on the matching derivation of w ∈ P V ,
with a case analysis on the last rule used. We highlight the case where this last
rule is Concat. In that case, P = P1 · P2 and we can split up w into w1 and w2

such that (w1, w2) ∈ P1 · P2 (V1, V2) with V = V1 · V2. Furthermore, since we
also have w ∈ P W , we can also split up w into w3 and w4 such that (w3, w4) ∈
P1 · P2 (W1, W2) with W = W1 ·W2. A straightforward induction on the derivation
of (w1, w2) ∈ P1 · P2 (V1, V2) then shows that w1 = w3, w2 = w4, V1 = W1, and
V2 = W2. Hence, ∈ L(P1) and w2 ∈ L(P2). Hence, V = V1 · V2 = W1 · W2 = W , as
desired.

6.1 Relation with the XDuce policy

The disambiguation policy employed in XDuce [Hosoya 2000; Hosoya and Pierce
2002], CDuce [Frisch et al. 2003], λre [Tabuchi et al. 2002], and Perl [Wall et al.
2000] consists of two rules: first match and greedy match. The first match rule
is the same as in the first and longest match policy. The greedy match rule dis-
ambiguates a Kleene closure and is defined in terms of the first match policy and
recursion. Formally, the matching relation under the XDuce policy is obtained
from the matching relation of the first and longest match policy by replacing rule
CKleene as follows [Tabuchi et al. 2002]:

CKleene
′

(w1, w2) ∈ ((P1 · P
∗

1) + ε) · P2 (V1, V2)

(w1, w2) ∈ P
∗

1 · P2 ([λ → V1(λ)], V2)

Here, it is assumed without loss of generality that λ 6∈ L(P1).
The behavior of the greedy match rule was informally explained in [Hosoya 2000;

Hosoya and Pierce 2002] as being the longest match rule. The intuition behind this
was that, when trying to derive w ∈ P∗1 · P2 V , we will be forced by the first match
rule to consider (P1 ·P

∗

1)·P2 before ε·P2 at every expansion of P∗1 ·P2. Since λ 6∈ L(P1),
this should require us to split w into w1 ∈ L(P∗1) and w2 ∈ L(P2) such that w2 is the
smallest suffix of w still matched by P2. This is, however, a false intuition. Indeed,
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because the first match strategy continues to be used in P1, it is possible that P2 is
allowed to start matching before a longer matching alternative in P1 is considered.
For example, consider the matching of ab against P = (a+a · b)∗ · (b+ε). Under the
first and longest match policy, the subpattern (a + a · b)∗ is associated with ab, as
we have shown in Example 6.3. Under the first and greedy match policy, however,
this subpattern is associated with a, while the subpattern (b+ ε) is associated with
b, as we show next. Let us abbreviate (a + a · b) · (a + a · b)∗ by (a + a · b)+. We
first derive:

b ∈ b V3 := [λ → b]
Lab

b ∈ (b + ε) V3

Or1

(λ, b) ∈ ε · (b + ε) ([λ → λ], V3)
CEmpty

b 6∈ L((a + a · b)+ · (b + ε))

(λ, b) ∈ ((a + a · b)+ + ε) · (b + ε) (V2, V3)
COr2

(λ, b) ∈ (a + a · b)∗ · (b + ε) (V2 , V3)
CKleene′

Here, V2 = ((a + a · b) · (a + a · b)∗) + [λ → λ]. Using this derivation of (λ, b) ∈
P (V2, V3), we derive:

a ∈ a [λ → a]
Lab

. . .

(λ, b) ∈ P (V2, V3)
CKleene

′

b ∈ P V2 · V3

Concat

(a, b) ∈ a · P ([λ → a], V2 · V3)
CLab

(a, b) ∈ (a + a · b) · P (V1 := [λ → a] + (a · b), V2 · V3)
COr1

Finally, we obtain:

. . .

(a, b) ∈ (a + a · b) · P (V1 , V2 · V3)
COr1

. . .

(λ, b) ∈ P (V2, V3)
CKleene

′

(a, b) ∈ (a + a · b)+ · (b + ε) (V1 · V2, V3)
CCon

(a, b) ∈ ((a + a · b)+ + ε) · (b + ε) ((V1 · V2) + ε, V3)
COr1

(a, b) ∈ (a + a · b)∗ · (b + ε) (V ′

1 := [λ → ((V1 · V2) + ε)(λ)], V3)
CKleene

′

ab ∈ P V ′

1 · V3

Concat

Note that the subpattern (a+a · b)∗ is associated with a and the subpattern (b+ ε)
is associated with b, as we wanted to show:

(V ′

1 · V3)(1) = ((V1 · V2) + ε)(λ) = V1(λ) · V2(λ) = a,

(V ′

1 · V3)(2) = V3(λ) = b.

The type inference problem for the XDuce policy has already been extensively
studied [Hosoya and Pierce 2002; Hosoya 2000; Frisch et al. 2002; Tabuchi et al.
2002], and will not further be considered in this paper.

7. TYPE INFERENCE UNDER THE FIRST AND LONGEST MATCH POLICY

In this section we solve the type inference problem for the first and longest match
policy, employing some of the techniques introduced in Section 5. We note that
type inference algorithms developed for the XDuce policy cannot be used directly
to do type inference for the first and longest match policy. Indeed, using the same
counterexample pattern P = (a + a · b)∗ · (b + ε) and word ab from Section 6.1,
these algorithms must calculate T XD(1, P, {ab}) = {a} and T XD(2, P, {ab}) = {b}.
In contrast, as shown in Example 6.3, the first and longest match policy requires
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the actual types to be {ab} and {λ} respectively. The main result of this paper can
be stated as follows (to be proven later):

Theorem 7.1. If C is a regular language then T FL(m, P, C) is also regular, and
can be effectively computed.

7.1 The algorithm

Algorithm 2 describes the type inference algorithm. As in Section 5.1, we will first
explain the algorithm by informal reasoning, and prove its correctness later.

We observe that the type of the root node λ is exactly the set of words in C that
can be matched by P. Indeed, if w is successfully matched by P then λ is associated
to w itself. If we need to calculate the type for a node other than λ, then P must
be of the form P1 + P2 or P1 · P2, since λ is the only bindable node for the other
patterns.

If P = P1 + P2 then we can make the same observations as in Section 5.1.
Hence, T FL(1n, P1 + P2, C) equals T FL(n, P1, C) and T FL(2n, P1 + P2, C) equals
T FL(n, P2, C − L(P1)).

If P = P1 · P2 then we need to make a further case analysis:

— If P1 = ε or P1 = σ, then P1 can only be associated with those words w1

matched by P1 for which there exists some word w2 matched by P2 such that
w1w2 ∈ C. Hence, w1 ∈ C/L(P2) and T FL(1, P, C) equals T FL(λ, P1, C/L(P2)).
Likewise, subpatterns of P2 can only be associated to those subwords of a word w2

matched by P2 for which there exists a w1 matched by P1 such that w1w2 ∈ C.
Hence, we can calculate T FL(2n, P, C) by calculating T FL(n, P2, L(P1)\C).

— For P = P∗1 · P2, we again note the similarity between the POSIX and the
first and longest match disambiguation policies. That is, P∗1 can only be associated
to words w1 matched by P∗1 for which there exists some w2 matched by P2 such
that w1w2 ∈ C and such that w1 really is the longest possible prefix of w1w2 that
can be matched by P∗1, still allowing the corresponding suffix to be matched by P2.
Hence, T FL(1, P, C) equals lbreak(C, L(P∗1), L(P2)). Similarly, T FL(2n, P, C) equals
T FL(n, P2, rbreak(C, L(P∗1), L(P2))).

— If P = (P1+P2)·P3, then a word can only be associated to a subpattern of P1 if it
can be associated with P1 in P1 ·P3. Hence, T FL(11n, P, C) equals T FL(1n, P1 ·P3, C).
Likewise, a word can only be associated with P2 in P if it can be associated with P2

in P2 · P3 under context C − L(P1 · P3). Hence, T FL(21n, P, C) equals

T FL(1n, P2 · P3, C − L(P1 · P3)).

Finding the words that can be bound to (P1 + P2) resolves to calculating the union
of words that can be bound to P1 or P2. Words can be bound to subpatterns of
P3 if they are subwords of a word w3 matched by P3 for which there either exits
a word w1 matched by P1 such that w1w3 ∈ C, or a word w2 matched by P2 such
that w2w3 ∈ C but w2w3 6∈ L(P1 · P3). Hence, T FL(2n, P, C) equals

T FL(2n, P1 · P3, C) ∪ T FL(2n, P2 · P3, C − L(P1 · P3)).

— Calculating the types of subpatterns of P1, P2, or P3 in P = (P1 · P2) · P3

is simply a matter of calculating the type of the corresponding subpatterns in
P′ = P1 · (P2 · P3). The type of (P1 · P2) is a bit more difficult to find. By definition
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Algorithm 2: Calculate T FL(m, P, C).

Input: A pattern P; a node m ∈ bn(P); and a regular context C.

Output: The type of m in P relative to C under the first and longest match
disambiguation policy.

if m = λ then

return L(P) ∩ C
else

switch P do

case P1 + P2

switch m do

case 1n return T FL(n, P1, C)
case 2n return T FL(n, P2, C − L(P1))

end

case P1 · P2 with P1 = ε or P1 = σ
switch m do

case 1 return T FL(λ, P1, C/L(P2))
case 2n return T FL(n, P2, L(P1)\C)

end

case P
∗

1 · P2

switch m do

case 1 return lbreak(C, L(P∗1), L(P2))
case 2n return T FL(n, P2, rbreak(C, L(P∗1), L(P2)))

end

case (P1 + P2) · P3

let C ′ = C − L(P1 · P3)
switch m do

case 1 return T FL(1, P1 · P3, C) ∪ T FL(1, P2 · P3, C
′)

case 11n return T FL(1n, P1 · P3, C)
case 12n return T FL(1n, P2 · P3, C

′)
case 2n return T FL(2n, P1 · P3, C) ∪ T FL(2n, P2 · P3, C

′)
end

case (P1 · P2) · P3

let P
′ = P1 · (P2 · P3)

switch m do

case 1 return M(λ, P, C)/({2} · Σ∗)
case 11n return T FL(1n, P′, C)
case 12n return T FL(21n, P′, C)
case 2n return T FL(22n, P′, C)

end
end

end
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of the matching relation, (P1 · P2) can only be associated to those words w1w2 for
which there exists a w3 such that w1w2w3 ∈ C, (w1, w2w3) ∈ P′ (V1, W ) and
(w2, w3) ∈ P2 · P3 (V2, V3). It is tempting to say that this means that the type of
(P1 ·P2) is exactly the right quotient of L(P)∩C by L(P3). This is incorrect however.
Indeed, consider the pattern (a · (a · b + a)) · (b + ε) and context C = {aab, aabb}.
Then {aab, aabb}/{b, λ} = {aa, aab, aabb}, which is too big since aa will never be
associated with (a · (a · b + a)) under context C. Indeed, because of the first match
policy, every word in C will first be matched against a · (a · b) · (b+ ε), which always
succeeds. Hence, the type of (a · (a · b + a)) is {aab, aabb}. In order to correctly
calculate the type of (P1 · P2) in (P1 · P2) · P3 we will use marked languages, which
are defined as follows.

A marked language is a set of words of the form w12w2. The breaking of a
context by two languages, as defined in Section 5.2, is an example of a marked
language. Here, we will use the 2 marker to record that matching w1w2 against a
concatenation P1 · P2 results in w1 being matched by P1 and w2 being matched by
P2. We therefore define, for every pattern P, the marked language M(m, P, C) of a
node m ∈ bn(P) with P(m) = · under context C as follows:

M(m, P, C) = {w12w2 | ∃w′ ∈ C, w′ ∈ P V, V (m1) = w1, V (m2) = w2}.

It is clear that, for P = (P1 ·P2) ·P3, T FL(1, P, C) = M(λ, P, C)/({2} ·Σ∗). So, doing
type inference for node 1 in P is simply a matter of calculating M(λ, P, C). We use
Algorithm 3 for this purpose.

Algorithm 3 uses the following reasoning to compute M(m, (P1 · P2) · P3, C).
Matching rule CCon states that if we want to know which part of word w is
matched by (P1 · P2) when matching w by P, then we first determine how it is
broken up against P′ = P1 · (P2 · P3). Suppose that w = w1v, that P1 is responsible
for matching w1, and that (P2 · P3) is responsible for matching v when matching w
by P′. Next, we determine how v is broken up by the matching against (P2 · P3).
Suppose that v = w2w3, that P2 is responsible for matching w2, and that P3 is
responsible for matching w3. Then CCon states that w1w2 is matched by (P1 · P2)
in P and w3 by P3 in P. Note that by definition, w12w2w3 ∈ M(λ, P′, C) and
w22w3 ∈ M(2, P′, C). Hence, if we already have M(λ, P′, C) and M(2, P′, C), it
suffices to “link” these two sets correctly together in order to calculate M(λ, P, C).
We therefore define the redistribution of two marked languages M1 and M2, denoted
by redistrib(M1, M2), to be the marked language

redistrib(M1, M2) := {w1w22w3 | w12w2w3 ∈ M1, w22w3 ∈ M2}.

By the reasoning made above, it is intuitively clear that

M(λ, P, C) = redistrib(M(λ, P′, C), M(2, P′, C)).

We will prove this claim formally in the following section. Of course, we need a
way to actually calculate the redistribution:

Lemma 7.2. If M1 and M2 are regular, then so is redistrib(M1, M2), which can
effectively be computed.
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Algorithm 3: Calculate M(m, P, C).

Input: A pattern P = P1 · P2; a node m ∈ bn(P) such that m = 2k for some
k ≥ 0 and P(m) = ·; and a regular context C.

Output: The marked language of node m in P.

switch P do

case P1 · P2 with P1 = ε or P1 = σ
switch m do

case λ return T FL(1, P, C) · {2} · T FL(2, P, C)
case 2n return M(n, P2, L(P1)\C)

end

case P
∗

1 · P2

switch m do

case λ return break(C, L(P∗1), L(P2))
case 2n return M(n, P2, rbreak(C, L(P∗1), L(P2)))

end

case (P1 + P2) · P3

return M(m, P1 · P3, C) ∪ M(m, P2 · P3, C − L(P1 · P3))

case (P1 · P2) · P3

let P′ = P1 · (P2 · P3)
switch m do

case λ return redistrib(M(λ, P′, C), M(2, P′, C))
case 2n return M(22n, P′, C)

end
end

Proof. We introduce two operations on regular languages:

ι(L) = {w12w22w3 | w12w2w3 ∈ L},

π1(L) = {w1w22w3 | w12w22w3 ∈ L}.

It is clear that regular languages are closed under these two operations. For ex-
ample, we can obtain an automaton for ι(L) by modifying an automaton for L to
allow the reading of a second 2 after the first, which is then ignored. The lemma
then follows since redistrib(M1, M2) = π1(ι(M1) ∩ (Σ∗ · {2} · M2)).

Now we have a way to calculate the marked language M(λ, (P1 · P2) · P3, C) if we
can calculate M(λ, P1 ·(P2 ·P3), C) and M(2, P1 ·(P2 ·P3), C). Algorithm 3 calculates
these marked languages by case analysis on P1 · (P2 · P3), recursively calling itself
when necessary. To do so, we only have to be able to calculate M(m, P′′, C) for
patterns P′′ of the form P′′1 · P′′2 and nodes m = 2k ∈ bn(P′′) with P′′(m) = ·. That
is, Algorithm 3 only needs to recursively call itself on such arguments.

Getting an understanding of this algorithm largely involves the same reasoning
as for T FL(n, P′′, C). For instance, suppose P′′ = P′′1 · P′′2 with P′′1 = ε or P′′1 = σ.
If w ∈ C is matched by P′′, then w must be able to be split in words w1 matched
by P′′1 and w2 matched by P′′2 . Since L(P′′1) contains only one word, there can be
no ambiguity in determining w1 and w2. Hence, M(λ, P′′, C) equals T FL(1, P′′, C) ·
{2}·T FL(2, P′′, C). Likewise, M(2n, P′′, C) equals M(n, P′′2 , L(P′′1)\C). For the other
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cases, similar reasonings can be done and we will therefore not elaborate further
on the working of Algorithm 3 here. Its correctness will be formally demonstrated
in the next section.

7.2 Proof of Correctness

It is not immediately clear that Algorithms 2 and 3 terminate on every input. We
will first prove they do:

Proposition 7.3. Algorithms 2 and 3 terminate on every input.

Proof. A relation � on a set A well-founded (or terminating) if there is no
infinite decreasing sequence a1 � a2 � a3 � . . . [Baader and Nipkow 1998]. We
will define a well-founded binary relationA on the set of all patterns. Termination of
both algorithms then follows as they only recursively call themselves with “smaller”
inputs (according to A).

We define A to relate a pattern P with its immediate subpatterns if P 6= (P1 ·P2)·P3

and P 6= (P1 + P2) · P3. It relates (P1 · P2) · P3 with P2 · P3 and with P1 · (P2 · P3).
It relates (P1 + P2) · P3 with P1 · P3 and with P2 · P3. The monotone embedding φ
into the lexicographically ordered N × N where φ(P) = (|P|, 0) if P 6= P1 · P2 and
φ(P1 · P2) = (|P1 · P2|), |P1|) otherwise, shows that A is well-founded [Baader and
Nipkow 1998].

Let (m, P, C) be a valid input of Algorithm 3. It is clear that Algorithm 3 di-
rectly calls itself only on inputs (m′, P′, C ′) with P A P′. If P = P1 · P2 and m = λ
with P1 = ε or P1 = σ then Algorithm 3 calls Algorithm 2 with arguments (1, P, C)
and (2, P, C). On these arguments, Algorithm 2 will call itself with arguments
(λ, P1, C/L(P2)) and (λ, P2, L(P1)\C). On these recursive calls, Algorithm 2 termi-
nates in one step. Hence, Algorithm 3 terminates on every input.

Let (m, P, C) be the input of Algorithm 2. It is clear that Algorithm 2 directly
calls itself only on inputs (m′, P′, C ′) where P A P′. If P = (P1 · P2) · P3 and m = 1,
Algorithm 3 is called, which always terminates. Hence, Algorithm 2 terminates on
every input.

We will now formally prove the correctness of Algorithms 2 and 3, thereby also
proving Theorem 7.1.

Lemma 7.4. If w ∈ P V then V (λ) = w, and if (w1, w2) ∈ P1 · P2 (V1, V2)
then V1(λ) = w1 and V2(λ) = w2.

Proof. By a straightforward induction on the matching derivation.

Proposition 7.5. T FL(λ, P, C) = L(P) ∩ C for any pattern P.

Proof. Similar to the proof of Proposition 5.4.

Proposition 7.6. For P = P1 + P2, the following equalities hold:

(1 ) T FL(1n, P, C) = T FL(n, P1, C)

(2 ) T FL(2n, P, C) = T FL(n, P2, C − L(P1))

Proof. Similar to the proof of Proposition 5.5.

Proposition 7.7. If P = P1 · P2 with P1 = ε or P1 = σ, then the following
equalities hold:
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(1 ) T FL(1, P, C) = T FL(λ, P1, C/L(P2))

(2 ) T FL(2n, P, C) = T FL(n, P2, (L(P1)\C))

(3 ) M(λ, P, C) = T FL(1, P, C) · {2} · T FL(2, P, C)

(4 ) M(2n, P, C) = M(n, P2, L(P1)\C)

Proof. We prove the case where P1 = σ, the case where P1 = ε is similar. Note
that if P1 = σ the top of any matching derivation of w′ ∈ P V has the following
form:

. . .

w1 ∈ σ V1

. . .

w2 ∈ P2 V2

(w1, w2) ∈ P (V1, V2)
CLab

w
′ = w1w2 ∈ P V = V1 · V2

Concat

Equality (1) then readily follows by Theorem 6.4:

w ∈ T FL(1, P, C) ⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (1) = w

⇔ ∃w1, w2 : w1w2 ∈ C ∧ w1 ∈ σ V1 ∧ w2 ∈ P2 V2 ∧ V1(λ) = w

⇔ ∃w1, w2 : w1w2 ∈ C ∧ w1 ∈ σ V1 ∧ w2 ∈ L(P2) ∧ V1(λ) = w

⇔ ∃w1 ∈ C/L(P2) : w1 ∈ σ V1 ∧ V1(λ) = w

⇔ w ∈ T FL(λ, σ, C/L(P2))

Equalities (2) and (4) can be proven similarly. Equality (3) readily follows by
Theorem 6.4 and equalities (1) and (2):

v12v2 ∈ M(λ, P, C) ⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (1) = v1 ∧ V (2) = w2

⇔ ∃w1, w2 : w1w2 ∈ C ∧ w1 ∈ σ V1 ∧ w2 ∈ P2 V2

∧ V1(λ) = v1 ∧ V2(λ) = v2

⇔ ∃w1, w2 : w1w2 ∈ C ∧ w1 ∈ L(σ) ∧ w1 ∈ σ V1

∧ w2 ∈ L(P2) ∧ w2 ∈ P2 V2 ∧ V1(λ) = v1 ∧ V2(λ) = v2

⇔ ∃w1 ∈ C/L(P2), w2 ∈ L(σ)\C : w1 ∈ σ V1 ∧ w2 ∈ P2 V2

∧ V1(λ) = v1 ∧ V2(λ) = v2

⇔ v12v2 ∈ T FL(λ, σ, C/L(P2)) · {2} · T FL(λ, P2, L(σ)\C)

⇔ v12v2 ∈ T FL(1, P, C) · {2} · T FL(2, P, C)

Proposition 7.8. If P = P
∗

1 · P2, then the following equalities hold:

(1 ) T FL(1, P, C) = lbreak(C, L(P∗1), L(P2))

(2 ) T FL(2n, P, C) = T FL(n, P2, rbreak(C, L(P∗1), L(P2)))

(3 ) M(λ, P, C) = break(C, L(P∗1), L(P2))

(4 ) M(2n, P, C) = M(n, P2, rbreak(C, L(P∗1), L(P2)))
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Proof. Note that for any derivation of w′ ∈ P V , the top must look like:

. . .

w1 ∈ P
∗

1 V1

. . .

w2 ∈ P2 V2

¬(∃w3 6= λ, w4 : w3w4 = w2 ∧ w1w3 ∈ L(P∗1) ∧ w4 ∈ L(P2))

(w1, w2) ∈ P (V1, V2)
CKLeene

w
′ = w1w2 ∈ P V = V1 · V2

Concat

Also note that V1(λ) = w1 and V2(λ) = w2 by Lemma 7.4. From these observa-
tions and Theorem 6.4 equality (1) readily follows:

w ∈ T FL(1, P, C)

⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (1) = w

⇔ ∃w1, w2 : w1w2 ∈ C ∧ w1 ∈ P∗1 V1 ∧ w2 ∈ P2 V2 ∧ V1(λ) = w

∧ ¬(∃w3 6= λ, w4 : w3w4 = w2 ∧ w1w3 ∈ L(P∗1) ∧ w4 ∈ L(P2))

⇔ ∃w2 : ww2 ∈ C ∧ w ∈ P∗1 V1 ∧ w2 ∈ P2 V2

∧ ¬(∃w3 6= λ, w4 : w3w4 = w2 ∧ ww3 ∈ L(P∗1) ∧ w4 ∈ L(P2))

⇔ ∃w2 : ww2 ∈ C ∧ w ∈ L(P∗1) ∧ w2 ∈ L(P2)

∧ ¬(∃w3 6= λ, w4 : w3w4 = w2 ∧ ww3 ∈ L(P∗1) ∧ w4 ∈ L(P2))

⇔ w ∈ lbreak(C, L(P∗1), L(P2))

Equality (3) can be obtained by a similar reasoning:

v12v2 ∈ M(λ, P, C)

⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (1) = v1 ∧ V (2) = v2

⇔ ∃w1, w2 : w1w2 ∈ C ∧ w1 ∈ P∗1 V1 ∧ w2 ∈ P2 V2

∧ V1(λ) = v1 ∧ V2(λ) = v2

∧ ¬(∃w3 6= λ, w4 : w3w4 = w2 ∧ w1w3 ∈ L(P∗1) ∧ w4 ∈ L(P2))

⇔ v1v2 ∈ C ∧ v1 ∈ P∗1 V1 ∧ v2 ∈ P2 V2

∧ ¬(∃w3 6= λ, w4 : w3w4 = v2 ∧ v1w3 ∈ L(P∗1) ∧ w4 ∈ L(P2))

⇔ v1v2 ∈ C ∧ v1 ∈ L(P∗1) ∧ v2 ∈ L(P∗2)

∧ ¬(∃w3 6= λ, w4 : w3w4 = v2 ∧ v1w3 ∈ L(P∗1) ∧ w4 ∈ L(P2))

⇔ v12v2 ∈ break(C, L(P∗1), L(P2))

Equalities (2) and (4) can be proven similarly.

Proposition 7.9. If P = (P1 + P2) · P3, P
′

1 = P1 · P3, and P
′

2 = P2 · P3, then the
following equalities hold:

(1 ) T FL(1, P, C) = T FL(1, P′1, C) ∪ T FL(1, P′2, C − L(P′1))

(2 ) T FL(11n, P, C) = T FL(1n, P′1, C)

(3 ) T FL(12n, P, C) = T FL(1n, P′2, C − L(P′1))

(4 ) T FL(2n, P, C) = T FL(2n, P′1, C) ∪ T FL(2n, P′2, C − L(P′1))

(5 ) M(n, P, C) = M(n, P′1, C) ∪ M(n, P′2, C − L(P′1)) if n = 2k for some k ≥ 0
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Proof. Note that for any derivation of w′ ∈ P V , the top is either of the form

. . .

(w1, w2) ∈ P1 · P3 (V1, V3)

(w1, w2) ∈ (P1 + P2) · P3 (V1 + P2, V3)
COr1

w
′ = w1 · w2 ∈ P V = (V1 + P2) · V3

Concat

or of the form

. . .

(w1, w2) ∈ P2 · P3 (V2, V3) w1 · w2 6∈ L(P1 · P3)

(w1, w2) ∈ (P1 + P2) · P3 (P1 + V2, V3)
COr2

w
′ = w1 · w2 ∈ P V = (P1 + V2) · V3

Concat

It is easily seen that hence w′ ∈ P (V1 + P2) · V3 iff w′ ∈ P′1 V1 · V3 and that
w′ ∈ P (P1 + V2) · V3 iff w′ ∈ P′2 V2 · V3 and w′ 6∈ L(P′1). From these observations,
equality (1) readily follows:

w ∈ T FL(1, P, C) ⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (1) = w

⇔ ∃w′ ∈ C : w′ ∈ P (V1 + P2) · V3 ∧ V1(λ) = w

or w′ ∈ P (P1 + V2) · V3 ∧ V2(λ) = w

⇔ ∃w′ ∈ C : w′ ∈ P′1 V1 · V3 ∧ V1(λ) = w

or w′ ∈ P′2 V2 · V3 ∧ V2(λ) = w ∧ w′ 6∈ L(P′1)

⇔ w ∈ T FL(1, P′1, C) or w ∈ T FL(2, P′, C − L(P′1))

Equalities (4) and (5) can be proven similarly. Note that, if w′ ∈ P V and
V (11n) 6= ⊥, then the matching derivation must be of the first form. Hence:

w ∈ T FL(1, P, C) ⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (11n) = w

⇔ ∃w′ ∈ C : w′ ∈ P (V1 + P2) · V3 ∧ V1(n) = w

⇔ ∃w′ ∈ C : w′ ∈ P′1 V1 · V3 ∧ V1(λ) = w

⇔ w ∈ T FL(1, P′1, C)

Equality (3) can be proven similarly.

Lemma 7.10. If (w1, w2) ∈ P1 · P2 (V1, V2) then w2 ∈ P2 V2

Proof. The proof goes by induction on the matching derivation (w1, w2) ∈
P1 · P2 (V1, V2) with a case analysis on the last rule used. In all the cases, the
result either follows immediately from the premise of the last rule used, or follows
immediately from the induction hypothesis.

Proposition 7.11. If P = (P1 · P2) · P3 and P
′ = P1 · (P2 · P3), then the following

equalities hold:

(1 ) T FL(1, P, C) = M(λ, P, C)\({2} · Σ∗)

(2 ) T FL(11n, P, C) = T FL(1n, P′, C)

(3 ) T FL(12n, P, C) = T FL(21n, P′, C)

(4 ) T FL(2n, P, C) = T FL(22n, P′, C)

(5 ) M(λ, P, C) = redistrib(M(λ, P′, C), M(2, P′, C))
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(6 ) M(2n, P, C) = M(22n, P′, C)

Proof. We start by stating the following properties of the matching derivations
of P and P′:

(A) If w′ ∈ P V then V = (V1 · V2) · V3 and V3(λ) 6= ⊥.

(B) If w′ ∈ P′ V ′ then V ′ = V1 · (V2 · V3).

(C) w′ ∈ P (V1 · V2) · V3 iff w′ ∈ P′ V1 · (V2 · V3).

Property (A) holds because the top of every matching derivation of w′ ∈ P V
must look like:

. . .

(w1, w2w3) ∈ P1 · (P2 · P3) (V1, W )

. . .

(w2, w3) ∈ P2 · P3 (V2, V3)

(w1w2, w3) ∈ (P1 · P2) · P3 (V1 · V2, V3)
CCon

w
′ = w1w2w3 ∈ (P1 · P2) · P3 V = (V1 · V2) · V3

Concat

By application of Lemma 7.10 on (w2, w3) ∈ P2 · P3 (V2, V3) we have w3 ∈ P3 V3.
Then V3(λ) = w3 6= ⊥ by Lemma 7.4.

Property (B) holds because the top of every matching derivation of w′ ∈ P′ V ′

must look like:

(w1, w2w3) ∈ P1 · (P2 · P3) (V1, W )

w
′ = w1w2w3 ∈ P1 · (P2 · P3) V

′ = V1 · W
Concat

By application of Lemma 7.10 on (w1, w2w3) ∈ P1 · (P2 · P3) (V1, W ) we have
w2 · w3 ∈ P2 · P3 W . This derivation must end with an application of rule Con-

cat, so there must be a derivation of (w2, w3) ∈ P2 · P3 (V2, V3) for some V2, V3

with W = V2 · V3. Hence, V ′ is of the form V1 · (V2 · V3).

To prove property (C), suppose that w′ ∈ P V . We then have (w1, w2w3) ∈
P1 · (P2 · P3) (V1, W ) and (w2, w3) ∈ P2 · P3 (V2, V3). Hence w2w3 ∈ P2 · P3 W
by application of Lemma 7.10. Furthermore, w2w3 ∈ P2 · P3 V2 · V3 by appli-
cation of rule Concat on (w2, w3) ∈ P2 · P3 (V2, V3). Hence, W = V2 · V3 by
Theorem 6.4. Finally, w′ ∈ P′ V1 · (V2 · V3) by application of rule Concat on
(w1, w2w3) ∈ P1 · (P2 · P3) (V1, V2 · V3). Conversely, suppose that w′ ∈ P′ V ′.
By a reasoning similar to the one used to prove property (B) we obtain that
(w1, w2w3) ∈ P1 · (P2 · P3) (V1, V2 · V3) and w2w3 ∈ P2 · P3 V2 · V3. By applica-
tion of rule CCon on these subderivations we obtain (w1w2, w3) ∈ P (V1 · V2, V3).
Finally, w′ ∈ P (V1 · V2) · V3 by application of rule Concat.

From property (A) equality (1) readily follows:

w ∈ T FL(1, P, C) ⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (1) = w

⇔ ∃v∃w′ ∈ C : w′ ∈ P V ∧ V (1) = w ∧ V (2) = v

⇔ ∃v : w2v ∈ M(λ, P, C)

⇔ w ∈ M(λ, P, C)/({2} · Σ∗)
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From all three properties equality (2) readily follows:

w ∈ T FL(11n, P, C) ⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (11n) = w

⇔ ∃w′ ∈ C : w′ ∈ P (V1 · V2) · V3 ∧ V1(n) = w

⇔ ∃w′ ∈ C : w′ ∈ P′ V1 · (V2 · V3) ∧ V1(n) = w

⇔ w ∈ T FL(1n, P′, C)

Equalities (3), (4), and (6) can be proven similarly. Let us abbreviate M(λ, P′, C)
by M1 and M(2, P′, C) by M2. To prove equality (5) we observe:

v2w3 ∈ M(λ, P, C)

⇔ ∃w′ ∈ C : w′ ∈ P V ∧ V (1) = v ∧ V (2) = w3

⇔ ∃w′ ∈ C : w′ ∈ P (V1 · V2) · V3 ∧ (V1 · V2)(λ) = v ∧ V3(λ) = w3

⇔ ∃w1, w2∃w′ ∈ C : w′ ∈ P (V1 · V2) · V3 ∧ w1w2 = v

∧ V1(λ) = w1 ∧ V2(λ) = w2 ∧ V3(λ) = w3

⇔ ∃w1, w2∃w′ ∈ C : w′ ∈ P′ V1 · (V2 · V3) ∧ w1w2 = v

∧ V1(λ) = w1 ∧ V2(λ) = w2 ∧ V3(λ) = w3

We claim that the latter holds iff

∃w1, w2 : w1w2 = v ∧ w12w2w3 ∈ M1 ∧ w22w3 ∈ M2,

i.e., iff v2w3 ∈ redistrib(M1, M2). The “only if” direction is obvious. To prove the
“if” direction, let us assume w12w2w3 ∈ M1 and w22w3 ∈ M2. By definition of
M1 and by property (B) there exists some w′ ∈ C with w′ ∈ P′ V1 · (V2 · V3) such
that V1(λ) = w1 and (V2 · V3)(λ) = w2w3. Then, by Lemma 7.4:

w′ = (V1 · (V2 · V3))(λ) = V1(λ) · (V2 · V3)(λ) = w1w2w3.

Furthermore, since the derivation of w′ ∈ P′ V1 · (V2 · V3) must end with an ap-
plication of rule Concat, we have (w1, w2w3) ∈ P′ (V1, V2 · V3). Hence, w2w3 ∈
P2 · P3 V2 · V3 by Lemma 7.10. Since w22w3 ∈ M2 we have by definition of M2

and property (B) that there must exist some w′′ ∈ C with w′′ ∈ P′ V ′

1 · (V ′

2 · V ′

3),
V ′

2(λ) = w2, and V ′

3 (λ) = w3. Since the derivation of w′′ ∈ P′ V ′

1 · (V ′

2 · V ′

3) must
end with an application of rule Concat, we have (w′′

1 , w′′

2w′′

3 ) ∈ P′ (V ′

1 , V ′

2 · V ′

3 )
for w′′

1w′′

2w′′

3 = w′′. Hence w′′

2w′′

3 ∈ P2 · P3 V ′

2 · V ′

3 by Lemma 7.10. Furthermore,
by Lemma 7.4:

w′′

2w′′

3 = (V ′

2 · V ′

3)(λ) = V ′

2 (λ) · V ′

3(λ) = w2w3.

Since we now have w2w3 ∈ P2 · P3 V2 · V3 and w2w3 ∈ P2 · P3 V ′

2 · V ′

3 , we obtain
V2 · V3 = V ′

2 · V ′

3 by Theorem 6.4. Hence we have w′ ∈ P′ V1 · (V2 · V3) with
V1(λ) = w1, V2(λ) = w2, and V3(λ) = w3.

8. REGULAR HEDGE EXPRESSION PATTERNS

The true power of regular expression pattern matching comes into play when we
introduce regular hedge expression patterns matching hedges. A hedge is a sequence
of trees; hedges form the basic data model of XML [Murata 1999; Vianu 2001]. In
this section we formally define hedges, regular hedge languages, and regular hedge
expression patterns.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Type Inference for Unique Pattern Matching · 31

A hedge over Σ is a sequence σ1[h1] . . . σn[hn] where n ≥ 0, σ1, . . . , σn are symbols
in Σ, and h1, . . . , hn are already hedges. The hedge with n = 0 is called the empty
hedge and will be denoted by λ. Hedges with n = 1 are called trees. Hedges over
Σ will be denoted by h, g, and their subscripted versions. Note that if h and g are
hedges, then so is hg, the concatenation of h and g. Hedges of the form σ[λ] will
sometimes be abbreviated by σ.

Note that we cannot exactly model the trees in Figures 1(a) and 1(b) unless
we put the actual data values (“Data On The Web”, “Abiteboul”, etc.) in the
alphabet Σ. Putting all possible data values in our alphabet however, would result
in an infinite alphabet. We will therefore abstract away from actual data values in
pattern matching and assume Σ to contain a special element data, for which we
will replace all data values. The tree of Figure 1(a) then corresponds to

book[

title[data],
author[data], author[data], author[data],
price[data]

]

An actual programming language would provide features to retrieve the content of
data nodes.

Just as regular word languages are defined as those languages that can be rec-
ognized by a finite word automaton, regular hedge languages are those languages
that can be recognized by a finite hedge automaton [Brüggemann-Klein et al. 2001;
Neven 2002]. A finite hedge automaton H over Σ is a tuple (Q, δ, F ) where Q is a
finite set of states ; F is a regular language over Q; and δ is the transition relation:
a possibly infinite set of triples (q, σ, w) with q ∈ Q and w a word over Q, such for
any q and σ the set {w | (q, σ, w) ∈ δ} is regular. We will denote this latter set by
δ(q, σ). Since regular word languages are finitely representable by finite automata
or regular expressions, the transition relation is also finitely representable. We as-
sociate a function δ∗ with δ as follows: δ∗(λ) = {λ} and if h = σ1[h1] · · ·σn[hn]
then

δ∗(h) = {q1 · · · qn | δ(q1, σ1) ∩ δ∗(h1) 6= ∅, . . . , δ(qn, σn) ∩ δ∗(hn) 6= ∅}.

A hedge h is accepted by a hedge automaton H if δ∗(h) ∩ F 6= ∅. The language
L(H) recognized by a hedge automaton H is the set of all hedges it accepts. A
hedge language is regular if there exists some hedge automaton recognizing it. If
F ⊆ Q then H can only accept trees, and H is called a finite tree automaton. Its
language is called a regular tree language. A hedge automaton is called total if
δ∗(h) 6= ∅ for all hedges h. Intuitively, a hedge automaton is total if it never gets
“stuck” on any input. We can always make a hedge automaton total by adding a
“garbage” state.

We will introduce regular hedge expression patterns next. While XDuce uses
recursive patterns that allow the binding of nodes to subhedges which are arbi-
trarily deep in the input hedge, we will follow CDuce in the sense that we only
allow to bind subhedges up to a certain depth. This will make the formalization
considerably simpler. We still want our patterns to be able to recognize all regular
hedge languages however, which can contain arbitrarily deep hedges. We therefore
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assume to be given a fixed set N of names, together with an environment ∆. The
set of names is assumed to be disjoint from Σ and does not contain the special
symbols ⊥ and 2. The environment is a total function which relates every name
N ∈ N with a regular tree language ∆(N). We will denote members of N by N ,
M and their subscripted versions.

A regular expression hedge pattern P is an expression of the form ε, N , σ[P1],
P1 + P2, P1 · P2, or P∗1 where P1 and P2 are already hedge patterns. The hedge
language L(P) of a hedge pattern P is defined as follows:

L(ε) = {λ}
L(σ[P]) = {σ[h] | h ∈ L(P)}
L(N) = ∆(N)
L(P1 + P2) = L(P1) ∪ L(P2)
L(P1 · P2) = L(P1) · L(P2)
L(P∗) = L(P)∗

It is easy to see that L(P) is always regular. As in Section 3, we identify P with the
partial function P : {1, 2}∗ → {ε, +, ·, ∗} ∪ Σ ∪ N such that:

—if P = ε then dom(P) = {λ} and P(λ) = ε;

—if P = N with N ∈ N then dom(P) = {λ} and P(λ) = N ;

—if P = σ[P1] with σ ∈ Σ then dom(P) = {λ} ∪ {1n | n ∈ dom(P1)} with P(λ) = σ
and P(1n) = P1(n);

—if P = P∗1 then we make a similar definition, only P(λ) = ∗;

—if P = P1 + P2 then dom(P) = {λ} ∪ {1n | n ∈ dom(P1)} ∪ {2n | n ∈ dom(P2)}
with P(λ) = +, P(1n) = P1(n), and P(2n) = P2(n); and

—if P = P1 · P2 we make a similar definition, only P(λ) = ·.

Precedence of operators is the same as in Section 3. As before, the set of bindable
nodes bn(P) of a hedge pattern P are those nodes in its domain which do not have
an ancestor node labeled with ∗.

We will use σ[V ] to denote the association function with domain {λ}∪ {1n | n ∈
dom(V )} such that (σ[V ])(λ) = σ[V (λ)] and (σ[V ])(1n) = V (1n).

In XDuce two kinds of patterns were introduced: external patterns which largely
correspond to the hedge patterns introduced above and internal patterns to which
the external patterns are translated. The internal patterns are used to define the
matching relation and to do type inference. These patterns can only recognize
ranked trees, which are trees in which each label has a fixed number of children. It
is therefore necessary to encode the unranked input trees (where a label can have an
arbitrary number of children) into ranked trees before matching. We have chosen to
work directly with the external, unranked, representation of patterns in this paper
because our insights gained for regular string expression patterns can be directly
extended to regular hedge expression patterns without using such internal patterns
(as we will show in the following sections). This hugely simplifies the correctness
proof of our type inference algorithm for hedges, as it largely follows from that of
the algorithms given earlier.
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Empty

λ ∈ ε [λ → λ]

Lab
h ∈ P V

σ[h] ∈ σ[P] σ[V ]

Name
σ[h] ∈ ∆(N)

σ[h] ∈ N [λ → σ[h]]

Kleene
h ∈ L(P∗)

h ∈ P∗ [λ → h]

Or1
h ∈ P1 V

h ∈ P1 + P2 V + P2

Or2
h ∈ P2 V h 6∈ L(P1)

h ∈ P1 + P2 P1 + V

Concat
(h1, h2) ∈ P1 · P2 (V1, V2)

h1h2 ∈ P1 · P2 V1 · V2

CEmpty
h ∈ P V2

(λ, h) ∈ ε · P ([λ → λ], V2)

CLab
σ[h1] ∈ σ[P1] V1 h2 ∈ P2 V2

(σ[h1], h2) ∈ σ[P1] · P2 (V1, V2)

CName
σ[h1] ∈ N V1 h2 ∈ P2 V2

(σ[h1], h2) ∈ N · P2 (V1 , V2)

COr1
(h1, h2) ∈ P1 · P3 (V1, V2)

(h1, h2) ∈ (P1 + P2) · P3 (V1 + P2, V2)

COr2
(h1, h2) ∈ P2 · P3 (V1 , V2)

h1h2 6∈ L(P1 · P3)

(h1, h2) ∈ (P1 + P2) · P3 (P1 + V1, V2)

CCon
(h1, h2h3) ∈ P1 · (P2 · P3) (V1,W )

(h2, h3) ∈ P2 · P3 (V2, V3)

(h1h2, h3) ∈ (P1 · P2) · P3 (V1 · V2, V3)

CKleene
h1 ∈ P∗1 V1 h2 ∈ P2 V2

¬(∃h3 6= λ, h4 : h2 = h3h4 ∧ h1h3 ∈ L(P∗1) ∧ h4 ∈ L(P2))

(h1, h2) ∈ P∗1 · P2 (V1 , V2)

Fig. 5. The matching relation h ∈ P V for hedges under the first and longest match disambigua-
tion policy.

9. HEDGE MATCHING UNDER THE FIRST AND LONGEST MATCH POLICY

In this section we lift the matching process under the first and longest match policy
to hedges. Its associated type inference problem will be solved in the following
section. We can lift the matching process and type inference algorithm for the
POSIX policy in a similar way.

The matching relation for hedge regular expressions under the first and longest
match policy is defined in Figure 5. Most of the rules are simple extensions to hedges
of the rules in Figure 4. For example, rule Lab now allows us to match hedge σ[h]
against pattern σ[P] if h can be matched against P. Note that if we view a word
σ1 . . . σn as a hedge σ1[λ] . . . σn[λ], we get exactly the semantics of Figure 4. There
are only two rules not occurring in the word case: Name and CName. Rule Name

states that a tree is matched by a name N if the tree belongs to the associated tree
language ∆(N). Rule CName is similar, but is used in concatenations.

The following theorem is the equivalent of Theorem 6.4:

Theorem 9.1. The matching relation of Figure 5 is well defined:

(1 ) The matching relation is semantically correct: h ∈ P V iff h ∈ L(P), and,

(2 ) The matching relation is unique: if h ∈ P V and h ∈ P W then V = W .

Proof. Completely analogous to the proof of Theorem 6.4.
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10. TYPE INFERENCE FOR HEDGES UNDER THE FIRST AND LONGEST MATCH

POLICY

In this section we lift the type inference algorithm of Section 7 to the hedge setting.
Concretely, we will show:

Theorem 10.1. If P is a hedge pattern and C is a regular hedge language then
T FL(n, P, C) is also regular, and can be effectively computed.

10.1 The algorithm

We obtain the type inference for hedges by a modification of Algorithm 2. Al-
gorithm 2 uses quotient, breaking, and redistribution on word languages. The
corresponding operations on hedge languages are defined in the obvious way. For
example, the left quotient of hedge language L by hedge language K, denoted as
K\L, is the set {s | ∃p ∈ K : ps ∈ L}.

The main observations we made for the word setting can be transfered in a
straightforward manner to the hedge setting. For example, T FL(λ, P, C) = L(P)∩C
for any P. Likewise, if P = P1 + P2 then T FL(1n, P, C) = T FL(n, P1, C) and
T FL(2n, P, C) = T FL(n, P2, C−L(P1)). The case where P = P1 ·P2 with P1 = ε, P1 =
N or P1 = σ[P′] can also be deduced using a reasoning similar to the word setting:
T FL(1n, P, C) = T FL(n, P1, C/L(P2)) and T FL(2n, P, C) = T FL(n, P2, L(P1)\C).
The other cases can also be lifted to the hedge setting.

The only case when we cannot fall back on our insights of the word setting is
when we need to calculate the type of 1n in P = σ[P1]. Intuitively, a hedge can only
be associated to a subpattern of P1 in P = σ[P1], if it is a subhedge of a hedge h
matched by P1 such that σ[h] ∈ C. Hence, if we define the cut of a hedge language
L by a symbol σ, denoted by cut(L, σ), as {h | σ[h] ∈ L} then T FL(1n, P, C) equals
T FL(n, P1, cut(C, σ)). Of course, we need to be able to calculate cuts:

Lemma 10.2. If L is a regular hedge language, then so is cut(L, σ).

Proof. Since L is a regular hedge language, there exists a finite hedge automa-
ton H = (Q, δ, F ) such that L(H) = L. Let S = F ∩ Q. Intuitively, S contains
those states in F the automaton can be in after processing a tree. We then define
F ′ =

⋃

q∈S δ(q, σ) and H ′ = (Q, δ, F ′). It is easy to see that σ[h] ∈ L(H) iff h ∈ H ′.
Hence L(H ′) = cut(L, σ).

The type inference algorithm for hedges is then obtained from Algorithm 2 by
lifting all operations to the hedge setting, and adding the case for m = 1n and
P = σ[P1], as shown in Algorithm 4. The dots indicate the cases which are similar
to the word setting.

10.2 Proof of correctness

Before we talk about the correctness of Algorithm 4, we need to show that the
operations used are still computable for regular hedge languages.

It is well-known that hedge languages are closed under union, intersection and
negation [Brüggemann-Klein et al. 2001]. It is also well-known that finite hedge
languages are regular, as is the set of all hedges. Regular hedge languages are also
closed under left and right quotient. Although the proof is straightforward, it has
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Algorithm 4: Calculate T FL(m, P, C) for hedges.

Input: A hedge pattern P; a node m ∈ bn(P); and a regular hedge context C.

Output: The type of m in P relative to C under the first and longest match
disambiguation policy.

if m = λ then

return L(P) ∩ C
else

switch P do

. . .
case σ[P1]

let n be such that m = 1n
return T FL(n, P1, cut(C, σ))

case P1 · P2 with P1 = ε, P1 = σ[P′1], or P1 = N
switch m do

case 1n return T FL(n, P1, C/L(P2))
case 2n return T FL(n, P2, L(P1)\C)

end
end

end

not yet been explicitly given in the literature. For the sake of completeness we
therefore provide it in Appendix A.

If L is a regular hedge language, then so is the language

π−1(L) := {h12h22 · · ·2hn | h1h2 . . . hn ∈ L}.

Indeed, we can add the transition (q, 2, λ) to an automaton H = (Q, δ, F ) for L,
where q is a new state. It then suffices to allow the reading of q at arbitrary places
in F (modify a DFA for F to allow reading the letter q, which is then ignored). The
closure of regular hedge languages under breakings then follows from Lemma 5.2.

Closure under redistribution follows by the following lemma:

Lemma 10.3. If M1 and M2 are regular marked hedge languages, then so is
redistrib(M1, M2), which can effectively be computed.

Proof. We introduce two operations on hedge languages:

ι(L) = {h12h22h3 | h12h2h3 ∈ L},

π1(L) = {h1h22h3 | h12h22h3 ∈ L}.

We will show that if M is a marked hedge language then ι(M) is a regular hedge
language and if N is a regular hedge language containing only hedges of the form
h12h22h3 then π1(N) is a regular marked hedge language. The lemma then follows
since:

redistrib(M1, M2) = π1(ι(M1) ∩ (H(Σ) · {2} · M2).

Let M be a marked regular hedge language and H = (Q, δ, F ) a hedge automaton
recognizing M . Since M is a marked hedge language, every hedge in M is of the
form h12h2 where the symbol 2 does not occur in h1 or h2. Then every word in
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F must be of the form w1qw2 with δ(q, 2) = {λ} and δ(q, σ) = ∅ for all σ. If this
would be not the case, we can find a hedge h in M not containing 2. We may then
assume w.l.o.g. that there is exactly one such q (if there are more, we can group
them all together in one new state). Let us define the language

ιq(F ) := {w1qw2qw3 | w1qw2w3 ∈ F}.

This is clearly a regular language: modify an automaton for F such that an extra
q can be read after the first one. Define R = (Q, δ, ιq(F )). It is easy to see that
h12h2h3 ∈ L(H) iff h12h22h3 ∈ L(R). Hence L(R) = ι(M).

Let N be regular hedge language containing only hedges of the form h12h22h3

and let H = (Q, δ, F ) be a hedge automaton recognizing N . Then every word in
F must be of the form w1qw2q

′w3 with δ(q, 2) = δ(q′, 2) = {λ} and δ(q, σ) =
δ(q′, σ) = ∅ for all σ. If this would be not the case, we can find a hedge h in M not
containing 2 or containing only one 2. We may assume that there is only one such
q and q′ (if there are more we can group them all together in a new state). Then
define

πq
1(F ) := {w1w2qw3 | w1qw2q

′w3 ∈ F}.

This is clearly a regular language: modify an automaton for F to forget q′. Define
R = (Q, δ, πq

1(F )). It is easy to see that h12h22h3 ∈ L(H) iff h1h22h3 ∈ L(R).
Hence L(R) = π1(M).

The correctness of Algorithm 4 then follows from the fact that the propositions in
Section 10.2 remain valid for the hedge setting, and the following two propositions:

Proposition 10.4. If P = P1 · P2, then the following equalities hold:

(1 ) T FL(1n, P, C) = T FL(n, P1, C/L(P2))

(2 ) T FL(2n, P, C) = T FL(n, P2, (L(P1)\C))

(3 ) M(λ, P, C) = T FL(1, P, C) · {2} · T FL(2, P, C)

(4 ) M(2n, P, C) = M(n, P2, L(P1)\C)

Proof. Similar to that of Proposition 7.7.

Proposition 10.5. If P = σ[P1], then T FL(1n, P, C) = T FL(n, P1, cut(C, σ))

Proof. Every matching derivation h′ ∈ P V must be of the form

. . .

h1 ∈ P1 V1

h
′ = σ[h1] ∈ P V = σ[V1]

Lab

The proposition readily follows:

h ∈ T FL(1n, P, C) ⇔ ∃h′ ∈ C : h′ ∈ P V ∧ V (1n) = h

⇔ ∃h1 : σ[h1] ∈ C ∧ h1 ∈ P1 V1 ∧ V1(n) = h

⇔ ∃h1 ∈ cut(C, σ) : h1 ∈ P1 V1 ∧ V1(n) = h

⇔ h ∈ T FL(n, P1, cut(C, σ))

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Type Inference for Unique Pattern Matching · 37

11. DISCUSSION AND FUTURE WORK

In this paper we have focussed on the longest match semantics in the POSIX
and first and longest match disambiguation policies. One could also consider a
shortest match disambiguation rule and even a mixture of longest and shortest
match. Indeed, for the POSIX policy we could enrich the patterns with a shortest
match concatenation operator, denoted by ·? . The pattern P1 in P1 ·? P2 then
matches as little of the input as possible, still allowing the rest of the pattern to
match. Likewise, for the first and longest match policy we could enrich the patterns
with a shortest match Kleene star operator, denoted by ∗?. The matching relation
and type inference algorithm presented here can be extended in a straightforward
manner to include these operators.

We note that in languages such as sed and awk, regular expression patterns are
not required to match all of their input. They just have to start matching as early
as possible in the input string, and can stop as soon as a match is found. Using
the shortest-match concatenation operator introduced above, we can simulate this
behavior for the POSIX disambiguation policy by transforming P into Σ∗ ·? P · Σ∗.

Whereas we restrict the bindable nodes of a pattern to those nodes not occurring
in a Kleene closure, CDuce defines all nodes bindable, allowing patterns like:

match $v with

(($a as author[ ]) | )∗ => result[$a]

Here, every subhedge matched by author[ ] is concatenated to the value of $a.
The XDuce policy continues to be used inside the Kleene closure to disambiguate
if necessary. It is not immediately clear how our type inference techniques can
be adapted to this setting. POSIX also define all nodes bindable, where variables
inside the Kleene closure get bound to the last value matched. Again, it is not
immediately clear how to adapt our type inference algorithm to this setting.

In this paper, we have focused on gaining fundamental insights into the type
inference problem for unique pattern matching, and have not concerned ourselves
with the practical implementation of our algorithms. We have also not considered
the associated time and space requirements. To our knowledge, there has not yet
been a formal investigation of the inherent time complexity bounds of the regular
type inference problem. These bounds may depend on the way regular languages are
represented (i.e. as finite automata, as regular expressions, or yet other formalisms).
We note that any type inference algorithm using non-deterministic finite automata
to represent regular sets must have has at least an exponential worst case running
time. Indeed, T P(2, P+Σ∗, Σ∗) = T FL(2, P+ Σ∗, Σ∗) = Σ∗ −L(P), the complement
of L(P). It is well-known that complementation of regular languages using non-
deterministic automata can cause an exponential blow-up [Hopcroft and Ullman
1979].

As such, although in principle any finite (hedge) automaton library can be used
to implement the type inference algorithms of this paper, it would be worthwhile to
investigate which algorithms lend themselves to an acceptable performance in prac-
tice. A starting point here can be the work on MONA [Klarlund and Møller 2001;
Elgaard et al. 1998], XDuce [Hosoya 2000; Hosoya et al. 2005], and CDuce [Frisch
et al. 2002].
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A. CLOSURE OF REGULAR HEGDE LANGUAGES UNDER LEFT AND RIGHT

QUOTIENTS

To our knowledge, the closure of regular hedge languages under left and right
quotients has not yet been explicitly proven in the literature. We therefore prove
it here.

Lemma A.1. Regular hedge languages are closed under left and right quotient.

Proof. Assume that L and K are regular hedge languages. By definition, there
exist hedge automata H = (QH , δH , FH ) and G = (QG, δG, FG) such that L(H) = L
and L(G) = K. We assume without loss of generality that H and G are total.

We will now show how to construct a hedge automaton that recognizes L/K. Let
W1 be a regular word language over QH and let W2 be a regular word language over
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QG. We define the simultaneous product W1 × W2 of W1 and W2 as the language
over QH × QG such that

W1 × W2 = {(q1, s1) · · · (qn, sn) | q1 · · · qn ∈ W1, s1 · · · sn ∈ W2}.

To prove the regularity of W1 ×W2, let us define the following two word languages:

π−1
1 (W1) = {(q1, s1) · · · (qn, sn) | q1 · · · qn ∈ W1, sj ∈ QG},

π−1
2 (W2) = {(q1, s1) · · · (qn, sn) | s1 · · · sn ∈ W2, qi ∈ QH}.

It is clear that π−1
1 (W1) and π−1

2 (W2) are regular word languages over QH × QG

(we can modify an automaton for W1 or W2 to allow reading symbols in QH ×QG,
taking into account the original symbol to be read). Then W1 ×W2 is also regular
since W1 × W2 = π−1

1 (W1) ∩ π−1
2 (W2).

Let R = (Q, δ, F ) be the hedge automaton with

—Q = QH × QG,

—δ((q, s), σ) = δH(q, σ) × δF (q, σ),

—F = π−1
1 (FH )/(π−1

2 (FG) ∩ P ∗).

Here, P = {(q, s) | q ∈ δ∗H(t), s ∈ δ∗G(t), t a tree}, the set of reachable states of
the tree automaton (Q, δ, Q), which can be computed by a standard reachability
algorithm.

We will now show that L(R) = L/K. Suppose h1 ∈ L(R). Then δ∗(h1) ∩ F 6= ∅
and we can take (q1, s1) · · · (qk, sk) ∈ δ∗(h1) ∩ F . By definition of F there exists a
word (qk+1, sk+1) · · · (qn, sn) ∈ π−1

2 (FG) ∩ P ∗ such that

(q1, s1) · · · (qk, sk)(qk+1, sk+1) · · · (qn, sn) ∈ π−1
1 (FH ).

Hence, q1 · · · qn ∈ FH , sk+1 · · · sn ∈ FG, and (qk+1, sk+1) · · · (qn, sn) ∈ P ∗. By
definition of P , there hence exists a hedge h2 such that qk+1 · · · qn ∈ δ∗H(h2) and
sk+1 · · · sn ∈ δ∗G(h2). Then h2 ∈ L(G) = K. Moreover, h1h2 ∈ L(H) = L. Hence,
h1 ∈ L/K, and thus L/K ⊆ L(R). Conversely, let h1 = σ1[h

′

1] · · ·σk[h′

k] be a hedge
for which there exists some h2 = σk+1[h

′

k+1] · · ·σn[h′

n] ∈ K such that h1h2 ∈ L.
Then δ∗H(h1h2) ∩ FH 6= ∅ and δ∗G(h2) ∩ FG 6= ∅. Hence we can choose q1, · · · qn ∈
δ∗H(h1h2) ∩ FH and sk+1 · · · sn ∈ δ∗G(h2) ∩ FG. Since G is total there is at least
one string s1 · · · sk ∈ δ∗G(h1). Hence, s1 · · · sn ∈ δ∗G(h1h2) and (q1, s1) · · · (qn, sn) ∈
δ∗(h1h2). Since (qk+1, sk+1) · · · (qn, sn) ∈ π−1

2 (FG) and since (q1, s1) · · · (qn, sn) ∈
π−1

1 (FH ) we have (q1, s1) · · · (qk, sk) ∈ π−1
1 (FH )/(π−1

2 (FG) ∩ P ∗). Hence, h1 is
accepted by R, and thus L/K ⊆ L(R).

An automaton for K\L can be constructed in a similar way.
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