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Abstract
Sulzmann and Lu describe a lexing algorithm that calculates Brzozowski derivatives using bitcodes annotated to
regular expressions. Their algorithm generates POSIX values which encode the information of how a regular
expression matches a string—that is, which part of the string is matched by which part of the regular expression.
This information is needed in the context of lexing in order to extract and to classify tokens. The purpose of
the bitcodes is to generate POSIX values incrementally while derivatives are calculated. They also help with
designing an “aggressive” simplification function that keeps the size of derivatives finite. Without simplification
the size of some derivatives can grow arbitrarily big resulting in an extremely slow lexing algorithm. In this paper
we describe a variant of Sulzmann and Lu’s algorithm: Our variant is a recursive functional program, whereas
Sulzmann and Lu’s version involves a fixpoint construction. We (i) prove in Isabelle/HOL that our algorithm is
correct and generates unique POSIX values; we also (ii) establish a finite bound for the size of the derivatives.
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1 Introduction

In the last fifteen or so years, Brzozowski’s derivatives of regular expressions have sparked quite
a bit of interest in the functional programming and theorem prover communities. The beauty of
Brzozowski’s derivatives [4] is that they are neatly expressible in any functional language, and easily
definable and reasoned about in theorem provers—the definitions just consist of inductive datatypes
and simple recursive functions. Derivatives of a regular expression, written r\c, give a simple solution
to the problem of matching a string s with a regular expression r: if the derivative of r w.r.t. (in
succession) all the characters of the string matches the empty string, then r matches s (and vice versa).
We are aware of a mechanised correctness proof of Brzozowski’s derivative-based matcher in HOL4
by Owens and Slind [10]. Another one in Isabelle/HOL is part of the work by Krauss and Nipkow
[7]. And another one in Coq is given by Coquand and Siles [5]. Also Ribeiro and Du Bois give one in
Agda [11].

However, there are two difficulties with derivative-based matchers: First, Brzozowski’s original
matcher only generates a yes/no answer for whether a regular expression matches a string or not. This
is too little information in the context of lexing where separate tokens must be identified and also
classified (for example as keywords or identifiers). Sulzmann and Lu [12] overcome this difficulty by
cleverly extending Brzozowski’s matching algorithm. Their extended version generates additional
information on how a regular expression matches a string following the POSIX rules for regular
expression matching. They achieve this by adding a second “phase” to Brzozowski’s algorithm
involving an injection function. In our own earlier work we provided the formal specification of what
POSIX matching means and proved in Isabelle/HOL the correctness of Sulzmann and Lu’s extended
algorithm accordingly [3].

The second difficulty is that Brzozowski’s derivatives can grow to arbitrarily big sizes. For
example if we start with the regular expression (a + aa)∗ and take successive derivatives according
to the character a, we end up with a sequence of ever-growing derivatives like
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(a+ aa)∗ _\a−→ (1 + 1a) · (a+ aa)∗
_\a−→ (0 + 0a+ 1) · (a+ aa)∗ + (1 + 1a) · (a+ aa)∗
_\a−→ (0 + 0a+ 0) · (a+ aa)∗ + (1 + 1a) · (a+ aa)∗ +

(0 + 0a+ 1) · (a+ aa)∗ + (1 + 1a) · (a+ aa)∗
_\a−→ . . . (regular expressions of sizes 98, 169, 283, 468, 767, . . . )

where after around 35 steps we run out of memory on a typical computer (we shall define shortly the
precise details of our regular expressions and the derivative operation). Clearly, the notation involving
0s and 1s already suggests simplification rules that can be applied to regular regular expressions, for
example 0 r ⇒ 0, 1 r ⇒ r, 0 + r ⇒ r and r + r ⇒ r. While such simple-minded simplifications
have been proved in our earlier work to preserve the correctness of Sulzmann and Lu’s algorithm [3],
they unfortunately do not help with limiting the growth of the derivatives shown above: the growth is
slowed, but the derivatives can still grow rather quickly beyond any finite bound.

Sulzmann and Lu overcome this “growth problem” in a second algorithm [12] where they
introduce bitcoded regular expressions. In this version, POSIX values are represented as bitsequences
and such sequences are incrementally generated when derivatives are calculated. The compact
representation of bitsequences and regular expressions allows them to define a more “aggressive”
simplification method that keeps the size of the derivatives finite no matter what the length of the
string is. They make some informal claims about the correctness and linear behaviour of this version,
but do not provide any supporting proof arguments, not even “pencil-and-paper” arguments. They
write about their bitcoded incremental parsing method (that is the algorithm to be formalised in this
paper):

“Correctness Claim: We further claim that the incremental parsing method [..] in combination
with the simplification steps [..] yields POSIX parse trees. We have tested this claim extensively
[..] but yet have to work out all proof details.” [12, Page 14]

Contributions: We have implemented in Isabelle/HOL the derivative-based lexing algorithm of
Sulzmann and Lu [12] where regular expressions are annotated with bitsequences. We define the
crucial simplification function as a recursive function, without the need of a fix-point operation.
One objective of the simplification function is to remove duplicates of regular expressions. For this
Sulzmann and Lu use in their paper the standard nub function from Haskell’s list library, but this
function does not achieve the intended objective with bitcoded regular expressions. The reason is
that in the bitcoded setting, each copy generally has a different bitcode annotation—so nub would
never “fire”. Inspired by Scala’s library for lists, we shall instead use a distinctBy function that finds
duplicates under an erasing function which deletes bitcodes. We shall also introduce our own argument
and definitions for establishing the correctness of the bitcoded algorithm when simplifications are
included.

In this paper, we shall first briefly introduce the basic notions of regular expressions and describe the
basic definitions of POSIX lexing from our earlier work [3]. This serves as a reference point for what
correctness means in our Isabelle/HOL proofs. We shall then prove the correctness for the bitcoded
algorithm without simplification, and after that extend the proof to include simplification.

2 Background

In our Isabelle/HOL formalisation strings are lists of characters with the empty string being represented
by the empty list, written [], and list-cons being written as _ ::_ ; string concatenation is _ @ _ . We
often use the usual bracket notation for lists also for strings; for example a string consisting of just a
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single character c is written [c]. Our regular expressions are defined as usual as the elements of the
following inductive datatype:

r ::= 0 | 1 | c | r1 + r2 | r1 · r2 | r∗

where 0 stands for the regular expression that does not match any string, 1 for the regular expression
that matches only the empty string and c for matching a character literal. The constructors + and ·
represent alternatives and sequences, respectively. The language of a regular expression, written L, is
defined as usual and we omit giving the definition here (see for example [3]).

Central to Brzozowski’s regular expression matcher are two functions called nullable and
derivative. The latter is written r\c for the derivative of the regular expression r w.r.t. the character c.
Both functions are defined by recursion over regular expressions.

0\c def= 0

1\c def= 0

d\c def= if c = d then 1 else 0

(r1 + r2)\c def= (r1\c) + (r2\c)
(r1 · r2)\c def= if nullable r1

then (r1\c) · r2 + (r2\c)
else (r1\c) · r2

(r∗)\c def= (r\c) · r∗

nullable (0) def= False

nullable (1) def= True

nullable (c) def= False

nullable (r1 + r2) def= nullable r1 ∨ nullable r2

nullable (r1 · r2) def= nullable r1 ∧ nullable r2

nullable (r∗) def= True

We can extend this definition to give derivatives w.r.t. strings:

r\[] def= r r\(c :: s) def= (r\c)\s

Using nullable and the derivative operation, we can define the following simple regular expression
matcher:

match s r def= nullable(r\s)

This is essentially Brzozowski’s algorithm from 1964. Its main virtue is that the algorithm can be
easily implemented as a functional program (either in a functional programming language or in a
theorem prover). The correctness proof for match amounts to establishing the property

I Proposition 1. match s r if and only if s ∈ L(r)

It is a fun exercise to formally prove this property in a theorem prover.
The novel idea of Sulzmann and Lu is to extend this algorithm for lexing, where it is important to

find out which part of the string is matched by which part of the regular expression. For this Sulzmann
and Lu presented two lexing algorithms in their paper [12]. The first algorithm consists of two phases:
first a matching phase (which is Brzozowski’s algorithm) and then a value construction phase. The
values encode how a regular expression matches a string. Values are defined as the inductive datatype

v := Empty | Char c | Left v | Right v | Seq v1 v2 | Stars vs

where we use vs to stand for a list of values. The string underlying a value can be calculated by a flat
function, written |_|. It traverses a value and collects the characters contained in it. Sulzmann and Lu
also define inductively an inhabitation relation that associates values to regular expressions:

` Empty : 1 ` Char c : c

` v1 : r1

` Left v1 : r1 + r2

` v2 : r2

` Right v2 : r1 + r2

` v1 : r1 ` v2 : r2

` Seq v1 v2 : r1 · r2

∀ v∈ vs. ` v : r ∧ |v| 6= []
` Stars vs : r∗
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([], 1)→ Empty
P1

([c], c)→ Char c
Pc

(s, r1)→ v

(s, r1 + r2)→ Left v
P+L

(s, r2)→ v s /∈ L r1

(s, r1 + r2)→ Right v
P+R

(s1, r1)→ v1 (s2, r2)→ v2

@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r1 ∧ s4 ∈ L r2

(s1 @ s2, r1 · r2)→ Seq v1 v2
PS

([], r∗)→ Stars []
P[]

(s1, r)→ v (s2, r∗)→ Stars vs |v| 6= []
@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r ∧ s4 ∈ L (r∗)

(s1 @ s2, r∗)→ Stars (v :: vs)
P?

Figure 1 The inductive definition of POSIX values taken from our earlier paper [3]. The ternary relation,
written (s, r)→ v, formalises the notion of given a string s and a regular expression r what is the unique value
v that satisfies the informal POSIX constraints for regular expression matching.

Note that no values are associated with the regular expression 0, since it cannot match any string. It
is routine to establish how values “inhabiting” a regular expression correspond to the language of a
regular expression, namely

I Proposition 2. L r = {|v| | ` v : r}

In general there is more than one value inhabited by a regular expression (meaning regular
expressions can typically match more than one string). But even when fixing a string from the
language of the regular expression, there are generally more than one way of how the regular
expression can match this string. POSIX lexing is about identifying the unique value for a given
regular expression and a string that satisfies the informal POSIX rules (see [1, 8, 9, 12, 13]).1

Sometimes these informal rules are called maximal much rule and rule priority. One contribution of
our earlier paper is to give a convenient specification for what POSIX values are (the inductive rules
are shown in Figure 1).

The clever idea by Sulzmann and Lu [12] in their first algorithm is to define an injection function
on values that mirrors (but inverts) the construction of the derivative on regular expressions. Essentially
it injects back a character into a value. For this they define two functions called mkeps and inj:

mkeps 1 def= Empty

mkeps (r1 · r2) def= Seq (mkeps r1) (mkeps r2)
mkeps (r1 + r2) def= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)
mkeps (r∗) def= Stars []

inj d c (Empty) def= Char d

inj (r1 + r2) c (Left v1) def= Left (inj r1 c v1)
inj (r1 + r2) c (Right v2) def= Right (inj r2 c v2)
inj (r1 · r2) c (Seq v1 v2) def= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Left (Seq v1 v2)) def= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Right v2) def= Seq (mkeps r1) (inj r2 c v2)
inj (r∗) c (Seq v (Stars vs)) def= Stars (inj r c v :: vs)

1 POSIX lexing acquired its name from the fact that the corresponding rules were described as part of the POSIX
specification for Unix-like operating systems [1].
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r1 r2
_\a

r3
_\b

r4
_\c

nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

Figure 2 The two phases of the first algorithm by Sulzmann & Lu [12], matching the string [a, b, c]. The
first phase (the arrows from left to right) is Brzozowski’s matcher building successive derivatives. If the last
regular expression is nullable, then the functions of the second phase are called (the top-down and right-to-left
arrows): first mkeps calculates a value v4 witnessing how the empty string has been recognised by r4. After
that the function inj “injects back” the characters of the string into the values. The value v1 is the result of the
algorithm representing the POSIX value for this string and regular expression.

The function mkeps is run when the last derivative is nullable, that is the string to be matched is in
the language of the regular expression. It generates a value for how the last derivative can match the
empty string. The injection function then calculates the corresponding value for each intermediate
derivative until a value for the original regular expression is generated. Graphically the algorithm by
Sulzmann and Lu can be illustrated by the picture in Figure 2 where the path from the left to the right
involving derivatives/nullable is the first phase of the algorithm (calculating successive Brzozowski’s
derivatives) and mkeps/inj, the path from right to left, the second phase. The picture above shows
the steps required when a regular expression, say r1, matches the string [a, b, c]. The first lexing
algorithm by Sulzmann and Lu can be defined as:

lexer r [] def= if nullable r then Some (mkeps r) else None

lexer r (c :: s) def= case lexer (r\c) s of
None⇒ None
| Some v⇒ Some (inj r c v)

We have shown in our earlier paper [3] that this algorithm is correct, that is it generates POSIX
values. The central property we established relates the derivative operation to the injection function.

I Proposition 3. If (s, r\c)→ v then (c :: s, r)→ inj r c v.

With this in place we were able to prove:

I Proposition 4.
(1) s /∈ L r if and only if lexer r s = None
(2) s ∈ L r if and only if ∃ v. lexer r s = Some v ∧ (s, r)→ v

In fact we have shown that in the success case the generated POSIX value v is unique and in the
failure case that there is no POSIX value v that satisfies (s, r)→ v. While the algorithm is correct, it
is excruciatingly slow in cases where the derivatives grow arbitrarily (recall the example from the
Introduction). However it can be used as a convenient reference point for the correctness proof of the
second algorithm by Sulzmann and Lu, which we shall describe next.

3 Bitcoded Regular Expressions and Derivatives

In the second part of their paper [12], Sulzmann and Lu describe another algorithm that also generates
POSIX values but dispenses with the second phase where characters are injected “back” into values.
For this they annotate bitcodes to regular expressions, which we define in Isabelle/HOL as the datatype



XX:6 POSIX Lexing with Bitcoded Derivatives

breg ::= ZERO | ONE bs
| CHAR bs c
| ALTs bs rs
| SEQ bs r1 r2

| STAR bs r

where bs stands for bitsequences; r, r1 and r2 for bitcoded regular expressions; and rs for lists
of bitcoded regular expressions. The binary alternative ALT bs r1 r2 is just an abbreviation for
ALTs bs [r1, r2]. For bitsequences we use lists made up of the constants Z and S. The idea with
bitcoded regular expressions is to incrementally generate the value information (for example Left and
Right) as bitsequences. For this Sulzmann and Lu define a coding function for how values can be
coded into bitsequences.

code (Empty) def= []
code (Char c) def= []
code (Left v) def= Z :: code v

code (Right v) def= S :: code v

code (Seq v1 v2) def= code v1 @ code v2

code (Stars []) def= [S]
code (Stars (v :: vs)) def= Z :: code v @ code (Stars vs)

As can be seen, this coding is “lossy” in the sense that we do not record explicitly character values
and also not sequence values (for them we just append two bitsequences). However, the different
alternatives for Left, respectively Right, are recorded as Z and S followed by some bitsequence.
Similarly, we use Z to indicate if there is still a value coming in the list of Stars, whereas S indicates
the end of the list. The lossiness makes the process of decoding a bit more involved, but the point is
that if we have a regular expression and a bitsequence of a corresponding value, then we can always
decode the value accurately. The decoding can be defined by using two functions called decode′ and
decode:

decode′ bs (1) def= (Empty, bs)
decode′ bs (c) def= (Char c, bs)
decode′ (Z ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r1 in (Left v, bs1)
decode′ (S ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r2 in (Right v, bs1)
decode′ bs (r1 · r2) def= let (v1, bs1) = decode′ bs r1 in

let (v2, bs2) = decode′ bs1 r2 in (Seq v1 v2, bs2)
decode′ (Z ::bs) (r∗) def= (Stars [], bs)
decode′ (S ::bs) (r∗) def= let (v, bs1) = decode′ bs r in

let (Stars vs, bs2) = decode′ bs1 r
∗ in (Stars v ::vs, bs2)

decode bs r
def= let (v, bs′) = decode′ bs r in

if bs′ = [] then Some v else None

The function decode checks whether all of the bitsequence is consumed and returns the corresponding
value as Some v; otherwise it fails with None. We can establish that for a value v inhabited by a
regular expression r, the decoding of its bitsequence never fails.

I Lemma 5. If ` v : r then decode (code v) r = Some v.

Proof. This follows from the property that decode′ ((code v) @ bs) r = (v, bs) holds for any bit-
sequence bs and ` v : r. This property can be easily proved by induction on ` v : r. J

Sulzmann and Lu define the function internalise in order to transform (standard) regular expressions
into annotated regular expressions. We write this operation as r↑. This internalisation uses the
following fuse function.
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fuse bs (ZERO) def= ZERO

fuse bs (ONE bs′) def= ONE (bs@ bs′)
fuse bs (CHAR bs′ c) def= CHAR (bs@ bs′) c
fuse bs (ALTs bs′ rs) def= ALTs (bs@ bs′) rs
fuse bs (SEQ bs′ r1 r2) def= SEQ (bs@ bs′) r1 r2

fuse bs (STAR bs′ r) def= STAR (bs@ bs′) r

A regular expression can then be internalised into a bitcoded regular expression as follows:

(0)↑ def= ZERO

(1)↑ def= ONE []
(c)↑ def= CHAR [] c
(r1 + r2)↑ def= ALT [] (fuse [Z ] r↑1) (fuse [S ] r↑2)
(r1 · r2)↑ def= SEQ [] r↑1 r

↑
2

(r∗)↑ def= STAR [] r↑

There is also an erase-function, written r↓, which transforms a bitcoded regular expression into a
(standard) regular expression by just erasing the annotated bitsequences. We omit the straightforward
definition. For defining the algorithm, we also need the functions bnullable and bmkeps(s), which are
the “lifted” versions of nullable and mkeps acting on bitcoded regular expressions.

bnullable (ZERO) def= False

bnullable (ONE bs) def= True

bnullable (CHAR bs c) def= False

bnullable (ALTs bs rs) def= ∃ r ∈ rs. bnullable r

bnullable (SEQ bs r1 r2) def= bnullable r1 ∧ bnullable r2

bnullable (STAR bs r) def= True

bmkeps (ONE bs) def= bs

bmkeps (ALTs bs rs) def= bs@ bmkepss rs
bmkeps (SEQ bs r1 r2) def=

bs@ bmkeps r1 @ bmkeps r2

bmkeps (STAR bs r) def= bs@ [S ]
bmkepss (r ::rs) def= if bnullable r

then bmkeps r
else bmkepss rs

The key function in the bitcoded algorithm is the derivative of a bitcoded regular expression. This
derivative function calculates the derivative but at the same time also the incremental part of the
bitsequences that contribute to constructing a POSIX value.

(ZERO)\c def= ZERO

(ONE bs)\c def= ZERO

(CHAR bs d)\c def= if c = d then ONE bs else ZERO

(ALTs bs rs)\c def= ALTs bs (map (_\c) rs)
(SEQ bs r1 r2)\c def= if bnullable r1

then ALT bs (SEQ [] (r1\c) r2)
(fuse (bmkeps r1) (r2\c))

else SEQ bs (r1\c) r2

(STAR bs r)\c def= SEQ bs (fuse [Z ](r\c)) (STAR [] r)

This function can also be extended to strings, written r\s, just like the standard derivative. We omit
the details. Finally we can define Sulzmann and Lu’s bitcoded lexer, which we call blexer:

blexer r s
def= let rder = (r↑)\s in

if bnullable(rder) then decode (bmkeps rder) r else None
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This bitcoded lexer first internalises the regular expression r and then builds the bitcoded derivative
according to s. If the derivative is (b)nullable the string is in the language of r and it extracts
the bitsequence using the bmkeps function. Finally it decodes the bitsequence into a value. If the
derivative is not nullable, then None is returned. We can show that this way of calculating a value
generates the same result as lexer.

Before we can proceed we need to define a helper function, called retrieve, which Sulzmann and
Lu introduced for the correctness proof.

retrieve (ONE bs) (Empty) def= bs

retrieve (CHAR bs c) (Char d) def= bs

retrieve (ALTs bs [r]) v
def= bs @ retrieve r v

retrieve (ALTs bs (r :: rs)) (Left v) def= bs @ retrieve r v

retrieve (ALTs bs (r :: rs)) (Right v) def= bs @ retrieve (ALTs [] rs) v

retrieve (SEQ bs r1 r2) (Seq v1 v2) def= bs @ retrieve r1 v1 @ retrieve r2 v2

retrieve (STAR bs r) (Stars []) def= bs @ [S]
retrieve (STAR bs r) (Stars (v :: vs)) def= bs @ [Z] @ retrieve r v @ retrieve (STAR [] r) (Stars vs)

The idea behind this function is to retrieve a possibly partial bitsequence from a bitcoded regular
expression, where the retrieval is guided by a value. For example if the value is Left then we descend
into the left-hand side of an alternative in order to assemble the bitcode. Similarly for Right. The
property we can show is that for a given v and r with ` v : r, the retrieved bitsequence from the
internalised regular expression is equal to the bitcoded version of v.

I Lemma 6. If ` v : r then code v = retrieve (r↑) v.

We also need some auxiliary facts about how the bitcoded operations relate to the “standard” operations
on regular expressions. For example if we build a bitcoded derivative and erase the result, this is the
same as if we first erase the bitcoded regular expression and then perform the “standard” derivative
operation.

I Lemma 7.
(1) (r\s)↓ = (r↓)\s
(2) bnullable(r) iff nullable(r↓)
(3) bmkeps(r) = retrieve r (mkeps (r↓)) provided nullable(r↓).

Proof. All properties are by induction on annotated regular expressions. There are no interesting
cases. J

The only difficulty left for the correctness proof is that the bitcoded algorithm has only a “forward
phase” where POSIX values are generated incrementally. We can achieve the same effect with lexer
(which has two phases) by stacking up injection functions during the forward phase. An auxiliary
function, called flex, allows us to recast the rules of lexer in terms of a single phase and stacked up
injection functions.

flex r f [] def= f

flex r f (c ::s) def= flex (r\c) (λv. f (inj r c v)) s

The point of this function is that when reaching the end of the string, we just need to apply the stacked
up injection functions to the value generated by mkeps. Using this function we can recast the success
case in lexer as follows:



C. Tan and C. Urban XX:9

I Proposition 8. If lexer r s = Some v then v = flex r id s (mkeps(r\s)).

Note we did not redefine lexer, we just established that the value generated by lexer can also be
obtained by a different method. While this different method is not efficient (we essentially need
to traverse the string s twice, once for building the derivative r\s and another time for stacking up
injection functions using flex), it helps us with proving that incrementally building up values in blexer
generates the same result.

This brings us to our main lemma in this section: if we calculate a derivative, say r\s, and have a
value, say v, inhabited by this derivative, then we can produce the result lexer generates by applying
this value to the stacked-up injection functions that flex assembles. The lemma establishes that this
is the same value as if we build the annotated derivative r↑\s and then retrieve the corresponding
bitcoded version, followed by a decoding step.

I Lemma 9 (Main Lemma). If ` v : r\s then

Some (flex r id s v) = decode(retrieve (r↑\s) v) r

Proof. This can be proved by induction on s and generalising over v. The interesting point is that
we need to prove this in the reverse direction for s. This means instead of cases [] and c ::s, we have
cases [] and s @ [c] where we unravel the string from the back.2

The case for [] is routine using Lemmas 5 and 6. In the case s @ [c], we can infer from the
assumption that ` v : (r\s)\c holds. Hence by Prop. 3 we know that (*) ` inj (r\s) c v : r\s holds
too. By definition of flex we can unfold the left-hand side to be

Some (flex r id (s @ [c]) v) = Some (flex r id s (inj (r\s) c v))

By induction hypothesis and (*) we can rewrite the right-hand side to

decode (retrieve (r↑\s) (inj (r\s) c v)) r

which is equal to decode (retrieve (r↑\(s @ [c])) v) r as required. The last rewrite step is possible
because we generalised over v in our induction. J

With this lemma in place, we can prove the correctness of blexer—it indeed produces the same result
as lexer.

I Theorem 10. lexer r s = blexer r s

Proof. We can first expand both sides using Prop. 8 and the definition of blexer. This gives us two
if -statements, which we need to show to be equal. By Lemma 7(2) we know the if -tests coincide:

bnullable(r↑\s) iff nullable(r\s)

For the if -branch suppose rd
def= r↑\s and d

def= r\s. We have (*) nullable d. We can then show by
Lemma 7(3) that

decode(bmkeps rd) r = decode(retrieve rd (mkeps d)) r

where the right-hand side is equal to Some (flex r id s (mkeps d)) by Lemma 9 (we know ` mkeps d : d

by (*)). This shows the if -branches return the same value. In the else-branches both lexer and blexer
return None. Therefore we can conclude the proof. J

This establishes that the bitcoded algorithm by Sulzmann and Lu without simplification produces
correct results. This was only conjectured by Sulzmann and Lu in their paper [12]. The next step is to
add simplifications.

2 Isabelle/HOL provides an induction principle for this way of performing the induction.
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4 Simplification

Derivatives as calculated by Brzozowski’s method are usually more complex regular expressions than
the initial one; the result is that derivative-based matching and lexing algorithms are often abysmally
slow if the “growth problem” is not addressed. As Sulzmann and Lu wrote, various optimisations
are possible, such as the simplifications 0 r ⇒ 0, 1 r ⇒ r, 0 + r ⇒ r and r + r ⇒ r. While
these simplifications can considerably speed up the two algorithms in many cases, they do not solve
fundamentally the growth problem with derivatives. To see this let us return to the example from
the Introduction that shows the derivatives for (a + aa)∗. If we delete in the 3rd step all 0s and 1s
according to the simplification rules shown above we obtain

(a + aa)∗ _\[a,a,a]−−−−−→ (1 + 1a) · (a + aa)∗︸ ︷︷ ︸
r

+ ((a + aa)∗ + (1 + 1a) · (a + aa)∗︸ ︷︷ ︸
r

) (1)

This is a simpler derivative, but unfortunately we cannot make any further simplifications. This is
a problem because the outermost alternatives contains two copies of the same regular expression
(underlined with r). These copies will spawn new copies in later derivative steps and they in turn even
more copies. This destroys any hope of taming the size of the derivatives. But the second copy of r in
(1) will never contribute to a value, because POSIX lexing will always prefer matching a string with
the first copy. So it could be safely removed without affecting the correctness of the algorithm. The
dilemma with the simple-minded simplification rules above is that the rule r + r ⇒ r will never be
applicable because as can be seen in this example the regular expressions are not next to each other
but separated by another regular expression.

But here is where Sulzmann and Lu’s representation of generalised alternatives in the bitcoded
algorithm shines: in ALTs bs rs we can define a more aggressive simplification by recursively
simplifying all regular expressions in rs and then analyse the resulting list and remove any duplicates.
Another advantage with the bitsequences in bitcoded regular expressions is that they can be easily
modified such that simplification does not interfere with the value constructions. For example we can
“flatten”, or de-nest, ALTs as follows

ALTs bs1 (ALTs bs2 rs2 :: rs1) bsimp−−−−→ ALTs bs1 (map (fuse bs2) rs2 :: rs1)

where we just need to fuse the bitsequence that has accumulated in bs2 to the alternatives in rs2. As
we shall show below this will ensure that the correct value corresponding to the original (unsimplified)
regular expression can still be extracted.

However there is one problem with the definition for the more aggressive simplification rules
described by Sulzmann and Lu. Recasting their definition with our syntax they define the step of
removing duplicates as

bsimp (ALTs bs rs) def= ALTs bs (nub (map bsimp rs))

where they first recursively simplify the regular expressions in rs (using map) and then use Haskell’s
nub-function to remove potential duplicates. While this makes sense when considering the example
shown in (1), nub is the inappropriate function in the case of bitcoded regular expressions. The reason
is that in general the elements in rs will have a different annotated bitsequence and in this way nub
will never find a duplicate to be removed. One correct way to handle this situation is to first erase the
regular expressions when comparing potential duplicates. This is inspired by Scala’s list functions of
the form distinctBy rs f acc where a function is applied first before two elements are compared. We
define this function in Isabelle/HOL as

distinctBy [] f acc
def= []

distinctBy (x :: xs) f acc
def= if f x ∈ acc then distinctBy xs f acc else x :: distinctBy xs f ({f x} ∪ acc)
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where we scan the list from left to right (because we have to remove later copies). In distinctBy, f is a
function and acc is an accumulator for regular expressions—essentially a set of regular expressions
that we have already seen while scanning the list. Therefore we delete an element, say x, from the
list provided f x is already in the accumulator; otherwise we keep x and scan the rest of the list but
add f x as another “seen” element to acc. We will use distinctBy where f is the erase function, _↓,
that deletes bitsequences from bitcoded regular expressions. This is clearly a computationally more
expensive operation, than nub, but is needed in order to make the removal of unnecessary copies to
work properly.

Our simplification function depends on three helper functions, one is called flts and analyses lists
of regular expressions coming from alternatives. It is defined as follows:

flts [] def= []
flts (ZERO :: rs) def= flts rs

flts (ALTs bs ′ rs ′ :: rs) def= map (fuse bs ′) rs ′@ flts rs

The second clause of flts removes all instances of ZERO in alternatives and the third “spills” out
nested alternatives (but retaining the bitsequence bs ′ accumulated in the inner alternative). There are
some corner cases to be considered when the resulting list inside an alternative is empty or a singleton
list. We take care of those cases in the bsimpALTs function; similarly we define a helper function that
simplifies sequences according to the usual rules about ZEROs and ONEs:

bsimpALTs bs [] def= ZERO

bsimpALTs bs [r] def= fuse bs r

bsimpALTs bs rs
def= ALTs bs rs

bsimpSEQ bs __ ZERO
def= ZERO

bsimpSEQ bs ZERO __
def= ZERO

bsimpSEQ bs1 (ONE bs2) r2
def= fuse (bs1 @ bs2) r2

bsimpSEQ bs r1 r2
def= SEQ bs r1 r2

With this in place we can define our simplification function as

bsimp (SEQ bs r1 r2) def= bsimpSEQ bs (bsimp r1) (bsimp r2)
bsimp (ALTs bs rs) def= bsimpALT bs (distinctBy (flts (map bsimp rs)) erase ∅)
bsimp r

def= r

As far as we can see, our recursive function bsimp simplifies regular expressions as intended by
Sulzmann and Lu. There is no point in applying the bsimp function repeatedly (like the simplification
in their paper which needs to be applied until a fixpoint is reached) because we can show that bsimp
is idempotent, that is

I Proposition 11. bsimp (bsimp r) = bsimp r

This can be proved by induction on r but requires a detailed analysis that the de-nesting of alternatives
always results in a flat list of regular expressions. We omit the details since it does not concern the
correctness proof.

Next we can include simplification after each derivative step leading to the following notion of
bitcoded derivatives:

r\bsimp [] def= r r\bsimp (c :: s) def= bsimp (r\c)\bsimp s

and use it in the improved lexing algorithm defined as

blexer+ r s
def= let rder = (r↑)\bsimp s in

if bnullable(rder) then decode (bmkeps rder) r else None
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The remaining task is to show that blexer and blexer+ generate the same answers.
When we first attempted this proof we encountered a problem with the idea in Sulzmann and

Lu’s paper where the argument seems to be to appeal again to the retrieve-function defined for the
unsimplified version of the algorithm. But this does not work, because desirable properties such as

retrieve r v = retrieve (bsimp r) v

do not hold under simplification—this property essentially purports that we can retrieve the same value
from a simplified version of the regular expression. To start with retrieve depends on the fact that the
value v correspond to the structure of the regular expressions—but the whole point of simplification is
to “destroy” this structure by making the regular expression simpler. To see this consider the regular
expression r = r ′+ 0 and a corresponding value v = Left v ′. If we annotate bitcodes to r, then we can
use retrieve and v in order to extract a corresponding bitsequence. The reason that this works is that
r is an alternative regular expression and v a corresponding value. However, if we simplify r, then
v does not correspond to the shape of the regular expression anymore. So unless one can somehow
synchronise the change in the simplified regular expressions with the original POSIX value, there is
no hope of appealing to retrieve in the correctness argument for blexer+.

We found it more helpful to introduce the rewriting systems shown in Figure 3. The idea is to
generate simplified regular expressions in small steps (unlike the bsimp-function which does the same
in a big step), and show that each of the small steps preserves the bitcodes that lead to the final POSIX
value. The rewrite system is organised such that is for bitcoded regular expressions and s

 for lists
of bitcoded regular expressions. The former essentially implements the simplifications of bsimpSEQ
and flts; while the latter implements the simplifications in bsimpALTs. We can show that any bitcoded
regular expression reduces in zero or more steps to the simplified regular expression generated by
bsimp:

I Lemma 12. r  ∗ bsimp r

Proof. By induction on r. For this we can use the properties rs s
 
∗

flts rs and rs s
 
∗

distinctBy rs
erase ∅. The latter uses repeated applications of the LD rule which allows the removal of duplicates
that can recognise the same strings. J

We can show that this rewrite system preserves bnullable, that is simplification, essentially, does not
affect nullability:

I Lemma 13. If r1  r2 then bnullable r1 = bnullable r2.

Proof. Straightforward mutual induction on the definition of and s
 . The only interesting case is

the rule LD where the property holds since by the side-conditions of that rule the empty string will
be in both L (rsa @ [r1] @ rsb @ [r2] @ rsc) and L (rsa @ [r1] @ rsb @ rsc). J

From this, we can show that bmkeps will produce the same bitsequence as long as one of the bitcoded
regular expressions in is nullable (this lemma establishes the missing fact we were not able to
establish using retrieve, as suggested in the paper by Sulzmannn and Lu).

I Lemma 14. If r1  r2 and bnullable r1 then bmkeps r1 = bmkeps r2.

Proof. By straightforward mutual induction on the definition of and s
 . Again the only interesting

case is the rule LD where we need to ensure that

bmkeps (rsa @ [r1] @ rsb @ [r2] @ rsc) = bmkeps (rsa @ [r1] @ rsb @ rsc)

holds. This is indeed the case because according to the POSIX rules the generated bitsequence is
determined by the first alternative that can match the string (in this case being nullable). J
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(SEQ bs ZERO r2) (ZERO)
S0l (SEQ bs r1 ZERO) (ZERO)

S0r

(SEQ bs1 (ONE bs2) r) fuse (bs1 @ bs2) r
S1

r1  r2

(SEQ bs r1 r3) (SEQ bs r2 r3)
SL

r3  r4

(SEQ bs r1 r3) (SEQ bs r1 r4)
SR

(ALTs bs []) (ZERO)
A0

(ALTs bs [r]) fuse bs r
A1

rs1
s
 rs2

(ALTs bs rs1) (ALTs bs rs2)
AL

rs1
s
 rs2

r :: rs1
s
 r :: rs2

LH
r1  r2

r1 :: rs
s
 r2 :: rs

LT

ZERO :: rs
s
 rs

L0
ALTs bs rs1 :: rs2

s
 (map (fuse bs) rs1 @ rs2)

LS

L (r2
↓) ⊆ L (r1

↓)
(rs1 @ [r1] @ rs2 @ [r2] @ rs3) s

 (rs1 @ [r1] @ rs2 @ rs3)
LD

Figure 3 The rewrite rules that generate simplified regular expressions in small steps: r1 r2 is for bitcoded
regular expressions and rs1  ∗ rs2 for lists of bitcoded regular expressions. Interesting is the LD rule that
allows copies of regular expressions be removed provided a regular expression earlier in the list can match the
same strings.

Crucial is also the fact that derivative steps and simplification steps can be interleaved, which is shown
by the fact that is preserved under derivatives.

I Lemma 15. If r1  r2 then r1\c  ∗ r2\c.

Proof. By straightforward mutual induction on the definition of and s
 . The case for LD holds

because L ((r2\c)↓) ⊆ L ((r1\c)↓) if and only if L (r2
↓) ⊆ L (r1

↓). J

Using this fact together with Lemma 12 allows us to prove the central lemma that the unsimplified
derivative (with a string s) reduces to the simplified derivative (with the same string).

I Lemma 16. r\s  ∗ r\bsimp s

Proof. By reverse induction on s generalising over r. J

With these lemmas in place we can finally establish that blexer+ and blexer generate the same value,
and using Theorem 10 from the previous section that this value is indeed the POSIX value.

I Theorem 17. blexer r s = blexer+ r s

Proof. By unfolding the definitions and using Lemmas 16 and 14. J

This completes the correctness proof for the second POSIX lexing algorithm by Sulzmann and Lu.
The interesting point of this algorithm is that the sizes of derivatives do not grow arbitrarily, which
we shall show next.
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5 Finiteness of Derivatives

In this section let us sketch our argument for why the size of the simplified derivatives with the
aggressive simplification function is finite. Suppose we have a size function for bitcoded regular
expressions, written |r|, which counts the number of nodes if we regard r as a tree (we omit the
precise definition). For this we show that for every r there exists a bound N such that

∀s. |r\bsimp s| < N

We prove this by induction on r. The base cases for ZERO, ONE bs and CHAR bs c are straightforward.
The interesting case is for sequences of the form SEQ bs r1 r2. In this case our induction hypotheses
state ∀s. |r1\bsimp s| < N1 and ∀s. |r2\bsimp s| < N2. We can reason as follows

|(SEQ bs r1 r2)\bsimp s|
= |bsimp(ALTs bs ((r1\bsimp s) · r2) :: [r2\bsimp s ′ | s′ ∈ Suffix(s)])| (1)
≤ |distinctBy (flts ((r1\bsimp s) · r2) :: [r2\bsimp s ′ | s′ ∈ Suffix(s)])|+ 1 (2)
≤ |(r1\bsimp s) · r2|+ |distinctBy (flts [r2\bsimp s ′ | s′ ∈ Suffix(s)])|+ 1 (3)
≤ N1 + |r2|+ 2 + |distinctBy (flts [r2\bsimp s ′ | s′ ∈ Suffix(s)])| (4)
≤ N1 + |r2|+ 2 + lN2 ∗N2 (5)

where in (1) the Suffix(s′) are the suffixes where r1\bsimp s ′′ is nullable for s = s ′′@ s ′. In (3) we
know that |(r1\bsimp s) ·r2| is bounded by N1 + |r2|. In (5) we know the list comprehension contains
only regular expressions of size smaller than N2. The list length after distinctBy is bounded by a
number, which we call lN2 . It stands for the number of distinct regular expressions with a maximum
size N2 (there can only be finitely many of them). We reason similarly in the Star-case.

Clearly we give in this finiteness argument (Step (5)) a very loose bound that is far from the actual
bound we can expect. We can do better than this, but this does not improve the finiteness property
we are proving. If we are interested in a polynomial bound, one would hope to obtain a similar tight
bound as for partial derivatives introduced by Antimirov [2]. After all the idea with distinctBy is to
maintain a “set” of alternatives (like the sets in partial derivatives). Unfortunately to obtain the exact
same bound would mean we need to introduce simplifications such as

(r1 + r2) · r3 −→ (r1 · r3) + (r2 · r3)

which exist for partial derivatives. However, if we introduce them in our setting we would lose the
POSIX property of our calculated values. We leave better bounds for future work.

6 Conclusion

We set out in this work to prove in Isabelle/HOL the correctness of the second POSIX lexing algorithm
by Sulzmann and Lu [12]. This follows earlier work where we established the correctness of the first
algorithm [3]. In the earlier work we needed to introduce our own specification about what POSIX
values are, because the informal definition given by Sulzmann and Lu did not stand up to a formal
proof. Also for the second algorithm we needed to introduce our own definitions and proof ideas in
order to establish the correctness. Our interest in the second algorithm lies in the fact that by using
bitcoded regular expressions and an aggressive simplification method there is a chance that the the
derivatives can be kept universally small (we established in this paper that they can be kept finite for
any string). This is important if one is after an efficient POSIX lexing algorithm.

Having proved the correctness of the POSIX lexing algorithm, which lessons have we learned?
Well, we feel this is a very good example where formal proofs give further insight into the matter at
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hand. For example it is very hard to see a problem with nub vs distinctBy with only experimental
data—one would still see the correct result but find that simplification does not simplify in well-
chosen, but not obscure, examples. We found that from an implementation point-of-view it is really
important to have the formal proofs of the corresponding properties at hand. We have also developed a
healthy suspicion when experimental data is used to back up efficiency claims. For example Sulzmann
and Lu write about their equivalent of blexer+ “...we can incrementally compute bitcoded parse
trees in linear time in the size of the input” [12, Page 14]. Given the growth of the derivatives in
some cases even after aggressive simplification, this is a hard to believe fact. A similar claim about a
theoretical runtime of O(n2) is made for the Verbatim lexer, which calculates POSIX matches and is
based on derivatives [6]. In this case derivatives are not even simplified. They write: “For a specific
list of lexical rules, Verbatim has quadratic theoretical time complexity with respect to the length of
the input string.” While their correctness proof for Verbatim is formalised in Coq, the claim about
the runtime complexity is only supported by emperical evidence. When we tried out their extracted
OCaml code with our example (a + aa)∗, it took around 5 minutes to tokenise a string of 40 a’s and
that increased to approximately 19 minutes when the string was 50 a’s long. Given that derivatives
are not simplified in the work on Verbatim, such numbers are not surprising. Clearly our result of
having finite derivatives might sound rather weak in this context but we think such effeciency claims
really require further scrutiny.

Our Isabelle/HOL code is available under https://github.com/urbanchr/posix.
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