
A lemma which might be true, but can also be false, is as follows:1

If (1) v1 ≻der c r v2,
(2) ⊢ v1 : der c r, and
(3) ⊢ v2 : der c r holds,

then inj r c v1 ≻r inj r c v2 also holds.

2

It essentially states that if one value v1 is bigger than v2 then this ordering3

is preserved under injections. This is proved by induction (on the definition4

of der. . . this is very similar to an induction on r).5

The case that is still unproved is the sequence case where we assume r =6

r1 · r2 and also r1 being nullable. The derivative der c r is then7

der c r = ((der c r1) · r2) + (der c r2)8

or without the parentheses9

der c r = (der c r1) · r2 + der c r210

In this case the assumptions are11

(a) v1 ≻(der c r1)·r2+der c r2 v2
(b) ⊢ v1 : (der c r1) · r2 + der c r2
(c) ⊢ v2 : (der c r1) · r2 + der c r2
(d) nullable(r1)

12

The induction hypotheses are13

(IH1) ∀v1v2. v1 ≻der c r1 v2 ∧ ⊢ v1 : der c r1 ∧ ⊢ v2 : der c r1
−→ inj r1 c v1 ≻ r1 inj r1 c v2

(IH2) ∀v1v2. v1 ≻der c r2 v2 ∧ ⊢ v2 : der c r2 ∧ ⊢ v2 : der c r2
−→ inj r2 c v1 ≻ r2 inj r2 c v2

14

The goal is15

(goal) inj (r1 · r2) c v1 ≻r1·r2 inj (r1 · r2) c v2
If we analyse how (a) could have arisen (that is make a case distinction),16

then we will find four cases:17

LL v1 = Left(w1), v2 = Left(w2)
LR v1 = Left(w1), v2 = Right(w2)
RL v1 = Right(w1), v2 = Left(w2)
RR v1 = Right(w1), v2 = Right(w2)

18

We have to establish our goal in all four cases.19

1

Case LR20

The corresponding rule (instantiated) is:21

len |w1| ≥ len |w2|
Left(w1) ≻(der c r1)·r2+der c r2 Right(w2)

22

This means we can also assume in this case23

(e) len |w1| ≥ len |w2|

which is the premise of the rule above. Instantiating v1 and v2 in the as-24

sumptions (b) and (c) gives us25

(b*) ⊢ Left(w1) : (der c r1) · r2 + der c r2
(c*) ⊢ Right(w2) : (der c r1) · r2 + der c r2

26

Since these are assumptions, we can further analyse how they could have27

arisen according to the rules of ⊢ : . This gives us two new assumptions28

(b**) ⊢ w1 : (der c r1) · r2
(c**) ⊢ w2 : der c r2

29

Looking at (b**) we can further analyse how this judgement could have30

arisen. This tells us that w1 must have been a sequence, say u1 · u2, with31

(b***) ⊢ u1 : der c r1
⊢ u2 : r2

32

Instantiating the goal means we need to prove33

inj (r1 · r2) c (Left(u1 · u2)) ≻r1·r2 inj (r1 · r2) c (Right(w2))

We can simplify this according to the rules of inj:34

(inj r1 c u1) · u2 ≻r1·r2 (mkeps r1) · (inj r2 c w2)

This is what we need to prove. There are only two rules that can be used35

to prove this judgement:36

v1 = v′1 v2 ≻r2 v′2
v1 · v2 ≻r1·r2 v′1 · v′2

v1 ≻r1 v′1
v1 · v2 ≻r1·r2 v′1 · v′2

37

2

Using the left rule would mean we need to show that38

inj r1 c u1 = mkeps r1

but this can never be the case.1 Lets assume it would be true, then also if39

we flat each side, it must hold that40

|inj r1 c u1| = |mkeps r1|

But this leads to a contradiction, because the right-hand side will be equal to41

the empty list, or empty string. This is because we assumed nullable(r1) and42

there is a lemma called mkeps flat which shows this. On the other side we43

know by assumption (b***) and lemma v4 that the other side needs to be a44

string starting with c (since we inject c into u1). The empty string can never45

be equal to something starting with c. . . therefore there is a contradiction.46

That means we can only use the rule on the right-hand side to prove our47

goal. This implies we need to prove48

inj r1 c u1 ≻r1 mkeps r1

Case RL49

The corresponding rule (instantiated) is:50

len |w1| > len |w2|
Right(w1) ≻(der c r1)·r2+der c r2 Left(w2)

51

1Actually Isabelle found this out after analysing its argument. ;o)

3

