¹ A lemma which might be true, but can also be false, is as follows:

If (1)
$$v_1 \succ_{der c r} v_2$$
,
(2) $\vdash v_1 : der c r$, and
(3) $\vdash v_2 : der c r$ holds,
then $inj r c v_1 \succ_r inj r c v_2$ also holds.

It essentially states that if one value v_1 is bigger than v_2 then this ordering is preserved under injections. This is proved by induction (on the definition of *der*...this is very similar to an induction on r).

⁶ The case that is still unproved is the sequence case where we assume $r = _{7} r_{1} \cdot r_{2}$ and also r_{1} being nullable. The derivative der c r is then

⁸
$$der \ c \ r = ((der \ c \ r_1) \cdot r_2) + (der \ c \ r_2)$$

⁹ or without the parentheses

2

10

12

14

$$der \ c \ r = (der \ c \ r_1) \cdot r_2 + der \ c \ r_2$$

¹¹ In this case the assumptions are

(a) $v_1 \succ_{(der \ c \ r_1) \cdot r_2 + der \ c \ r_2} v_2$ (b) $\vdash v_1 : (der \ c \ r_1) \cdot r_2 + der \ c \ r_2$ (c) $\vdash v_2 : (der \ c \ r_1) \cdot r_2 + der \ c \ r_2$ (d) $nullable(r_1)$

¹³ The induction hypotheses are

15 The goal is

$$(goal) \qquad inj \ (r_1 \cdot r_2) \ c \ v_1 \succ_{r_1 \cdot r_2} inj \ (r_1 \cdot r_2) \ c \ v_2$$

¹⁶ If we analyse how (a) could have arisen (that is make a case distinction),¹⁷ then we will find four cases:

18	LL	$v_1 = Left(w_1), v_2 = Left(w_2)$
	LR	$v_1 = Left(w_1), v_2 = Right(w_2)$
	RL	$v_1 = Right(w_1), v_2 = Left(w_2)$
	\mathbf{RR}	$v_1 = Right(w_1), v_2 = Right(w_2)$

¹⁹ We have to establish our goal in all four cases.

 $_{20}$ Case LR

22

37

²¹ The corresponding rule (instantiated) is:

$$\frac{len |w_1| \ge len |w_2|}{Left(w_1) \succ_{(der \ c \ r_1) \cdot r_2 + der \ c \ r_2} Right(w_2)}$$

²³ This means we can also assume in this case

$$(e) \quad len |w_1| \ge len |w_2|$$

which is the premise of the rule above. Instantiating v_1 and v_2 in the assumptions (b) and (c) gives us

$$(b^*) \vdash Left(w_1) : (der \ c \ r_1) \cdot r_2 + der \ c \ r_2$$

$$(c^*) \vdash Right(w_2) : (der \ c \ r_1) \cdot r_2 + der \ c \ r_2$$

Since these are assumptions, we can further analyse how they could have arisen according to the rules of \vdash _: _. This gives us two new assumptions

(b**)
$$\vdash w_1 : (der \ c \ r_1) \cdot r_2$$

(c**) $\vdash w_2 : der \ c \ r_2$

Looking at (b^{**}) we can further analyse how this judgement could have arisen. This tells us that w_1 must have been a sequence, say $u_1 \cdot u_2$, with

$$(b^{***}) \vdash u_1 : der \ c \ r_1 \\ \vdash u_2 : r_2$$

³³ Instantiating the goal means we need to prove

$$inj (r_1 \cdot r_2) c (Left(u_1 \cdot u_2)) \succ_{r_1 \cdot r_2} inj (r_1 \cdot r_2) c (Right(w_2))$$

³⁴ We can simplify this according to the rules of inj:

$$(inj r_1 c u_1) \cdot u_2 \succ_{r_1 \cdot r_2} (mkeps r_1) \cdot (inj r_2 c w_2)$$

This is what we need to prove. There are only two rules that can be used to prove this judgement:

$$\frac{v_1 = v'_1 \quad v_2 \succ_{r_2} v'_2}{v_1 \cdot v_2 \succ_{r_1 \cdot r_2} v'_1 \cdot v'_2} \quad \frac{v_1 \succ_{r_1} v'_1}{v_1 \cdot v_2 \succ_{r_1 \cdot r_2} v'_1 \cdot v'_2}$$

³⁸ Using the left rule would mean we need to show that

$$inj r_1 c u_1 = mkeps r_1$$

³⁹ but this can never be the case.¹ Lets assume it would be true, then also if ⁴⁰ we flat each side, it must hold that

$$|inj r_1 c u_1| = |mkeps r_1|$$

But this leads to a contradiction, because the right-hand side will be equal to 41 the empty list, or empty string. This is because we assumed $nullable(r_1)$ and 42 there is a lemma called mkeps_flat which shows this. On the other side we 43 know by assumption (b^{***}) and lemma v4 that the other side needs to be a 44 string starting with c (since we inject c into u_1). The empty string can never 45 be equal to something starting with c... therefore there is a contradiction. 46 That means we can only use the rule on the right-hand side to prove our 47 goal. This implies we need to prove 48

inj
$$r_1 c u_1 \succ_{r_1} mkeps r_1$$

49 Case RL

51

⁵⁰ The corresponding rule (instantiated) is:

_

$$\frac{len |w_1| > len |w_2|}{Right(w_1) \succ_{(der \ c \ r_1) \cdot r_2 + der \ c \ r_2} Left(w_2)}$$

¹Actually Isabelle found this out after analysing its argument. ;o)