
POSIX Lexing with Derivatives of Regular Expressions
(Proof Pearl)

Fahad Ausaf1, Roy Dyckhoff2, and Christian Urban3

1 King’s College London
fahad.ausaf@icloud.com

2 University of St Andrews
roy.dyckhoff@st-andrews.ac.uk

3 King’s College London
christian.urban@kcl.ac.uk

Abstract. Brzozowski introduced the notion of derivatives for regular expres-
sions. They can be used for a very simple regular expression matching algorithm.
Sulzmann and Lu cleverly extended this algorithm in order to deal with POSIX
matching, which is the underlying disambiguation strategy for regular expres-
sions needed in lexers. Sulzmann and Lu have made available on-line what they
call a “rigorous proof” of the correctness of their algorithm w.r.t. their specifica-
tion; regrettably, it appears to us to have unfillable gaps. In the first part of this
paper we give our inductive definition of what a POSIX value is and show (i) that
such a value is unique (for given regular expression and string being matched) and
(ii) that Sulzmann and Lu’s algorithm always generates such a value (provided
that the regular expression matches the string). We also prove the correctness
of an optimised version of the POSIX matching algorithm. Our definitions and
proof are much simpler than those by Sulzmann and Lu and can be easily for-
malised in Isabelle/HOL. In the second part we analyse the correctness argument
by Sulzmann and Lu and explain why the gaps in this argument cannot be filled
easily.

Keywords: POSIX matching, Derivatives of Regular Expressions, Isabelle/HOL

1 Introduction

Brzozowski [1] introduced the notion of the derivative r\c of a regular expression r
w.r.t. a character c, and showed that it gave a simple solution to the problem of matching
a string s with a regular expression r: if the derivative of r w.r.t. (in succession) all the
characters of the string matches the empty string, then r matches s (and vice versa). The
derivative has the property (which may almost be regarded as its specification) that, for
every string s and regular expression r and character c, one has cs ∈ L(r) if and only if
s ∈ L(r\c). The beauty of Brzozowski’s derivatives is that they are neatly expressible in
any functional language, and easily definable and reasoned about in theorem provers—
the definitions just consist of inductive datatypes and simple recursive functions. A

2 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

completely formalised correctness proof of this matcher in for example HOL4 has been
mentioned by Owens and Slind [8]. Another one in Isabelle/HOL is part of the work by
Krauss and Nipkow [5]. And another one in Coq is given by Coquand and Siles [2].

If a regular expression matches a string, then in general there is more than one way
of how the string is matched. There are two commonly used disambiguation strate-
gies to generate a unique answer: one is called GREEDY matching [3] and the other is
POSIX matching [6,10,12]. For example consider the string xy and the regular expres-
sion (x + y + xy)⋆. Either the string can be matched in two ‘iterations’ by the single
letter-regular expressions x and y, or directly in one iteration by xy. The first case corre-
sponds to GREEDY matching, which first matches with the left-most symbol and only
matches the next symbol in case of a mismatch (this is greedy in the sense of preferring
instant gratification to delayed repletion). The second case is POSIX matching, which
prefers the longest match.

In the context of lexing, where an input string needs to be split up into a sequence of
tokens, POSIX is the more natural disambiguation strategy for what programmers con-
sider basic syntactic building blocks in their programs. These building blocks are often
specified by some regular expressions, say rkey and rid for recognising keywords and
identifiers, respectively. There are two underlying (informal) rules behind tokenising a
string in a POSIX fashion according to a collection of regular expressions:

• The Longest Match Rule (or “maximal munch rule”): The longest initial substring
matched by any regular expression is taken as next token.

• Priority Rule: For a particular longest initial substring, the first regular expression
that can match determines the token.

Consider for example rkey recognising keywords such as if, then and so on; and rid
recognising identifiers (say, a single character followed by characters or numbers). Then
we can form the regular expression (rkey + rid)

⋆ and use POSIX matching to tokenise
strings, say iffoo and if. For iffoo we obtain by the Longest Match Rule a single identifier
token, not a keyword followed by an identifier. For if we obtain by the Priority Rule a
keyword token, not an identifier token—even if rid matches also.

One limitation of Brzozowski’s matcher is that it only generates a YES/NO answer
for whether a string is being matched by a regular expression. Sulzmann and Lu [10]
extended this matcher to allow generation not just of a YES/NO answer but of an actual
matching, called a [lexical] value. They give a simple algorithm to calculate a value
that appears to be the value associated with POSIX matching. The challenge then is to
specify that value, in an algorithm-independent fashion, and to show that Sulzmann and
Lu’s derivative-based algorithm does indeed calculate a value that is correct according
to the specification.

The answer given by Sulzmann and Lu [10] is to define a relation (called an “or-
der relation”) on the set of values of r, and to show that (once a string to be matched
is chosen) there is a maximum element and that it is computed by their derivative-
based algorithm. This proof idea is inspired by work of Frisch and Cardelli [3] on a
GREEDY regular expression matching algorithm. However, we were not able to estab-
lish transitivity and totality for the “order relation” by Sulzmann and Lu. In Section 5
we identify some inherent problems with their approach (of which some of the proofs

POSIX Lexing with Derivatives of Regular Expressions 3

are not published in [10]); perhaps more importantly, we give a simple inductive (and
algorithm-independent) definition of what we call being a POSIX value for a regular
expression r and a string s; we show that the algorithm computes such a value and that
such a value is unique. Our proofs are both done by hand and checked in Isabelle/HOL.
The experience of doing our proofs has been that this mechanical checking was abso-
lutely essential: this subject area has hidden snares. This was also noted by Kuklewicz
[6] who found that nearly all POSIX matching implementations are “buggy” [10, Page
203] and by Grathwohl et al [4, Page 36] who wrote:

“The POSIX strategy is more complicated than the greedy because of the de-
pendence on information about the length of matched strings in the various
subexpressions.”

Contributions: We have implemented in Isabelle/HOL the derivative-based regular ex-
pression matching algorithm of Sulzmann and Lu [10]. We have proved the correctness
of this algorithm according to our specification of what a POSIX value is (inspired by
work of Vansummeren [12]). Sulzmann and Lu sketch in [10] an informal correctness
proof: but to us it contains unfillable gaps.4 Our specification of a POSIX value consists
of a simple inductive definition that given a string and a regular expression uniquely de-
termines this value. Derivatives as calculated by Brzozowski’s method are usually more
complex regular expressions than the initial one; various optimisations are possible. We
prove the correctness when simplifications of 0 + r, r + 0, 1 · r and r · 1 to r are applied.

2 Preliminaries

Strings in Isabelle/HOL are lists of characters with the empty string being represented
by the empty list, written [], and list-cons being written as :: . Often we use the usual
bracket notation for lists also for strings; for example a string consisting of just a single
character c is written [c]. By using the type char for characters we have a supply of
finitely many characters roughly corresponding to the ASCII character set. Regular
expressions are defined as usual as the elements of the following inductive datatype:

r := 0 | 1 | c | r1 + r2 | r1 · r2 | r⋆

where 0 stands for the regular expression that does not match any string, 1 for the
regular expression that matches only the empty string and c for matching a character
literal. The language of a regular expression is also defined as usual by the recursive
function L with the six clauses:

(1) L(0) def
= ∅

(2) L(1) def
= {[]}

(3) L(c) def
= {[c]}

(4) L(r1 · r2)
def
= L(r1) @ L(r2)

(5) L(r1 + r2)
def
= L(r1) ∪ L(r2)

(6) L(r⋆) def
= (L(r))⋆

4 An extended version of [10] is available at the website of its first author; this extended version
already includes remarks in the appendix that their informal proof contains gaps, and possible
fixes are not fully worked out.

4 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

In clause (4) we use the operation @ for the concatenation of two languages (it is
also list-append for strings). We use the star-notation for regular expressions and for
languages (in the last clause above). The star for languages is defined inductively by
two clauses: (i) the empty string being in the star of a language and (ii) if s1 is in a
language and s2 in the star of this language, then also s1 @ s2 is in the star of this
language. It will also be convenient to use the following notion of a semantic derivative
(or left quotient) of a language defined as:

Der c A def
= {s | c :: s ∈ A}

For semantic derivatives we have the following equations (for example mechanically
proved in [5]):

Der c ∅ def
= ∅

Der c {[]} def
= ∅

Der c {[d]} def
= if c = d then {[]} else ∅

Der c (A ∪ B) def
= Der c A ∪ Der c B

Der c (A @ B) def
= (Der c A @ B) ∪ (if [] ∈ A then Der c B else ∅)

Der c (A⋆) def
= Der c A @ A⋆

(1)

Brzozowski’s derivatives of regular expressions [1] can be easily defined by two recur-
sive functions: the first is from regular expressions to booleans (implementing a test
when a regular expression can match the empty string), and the second takes a regular
expression and a character to a (derivative) regular expression:

nullable (0) def
= False

nullable (1) def
= True

nullable (c) def
= False

nullable (r1 + r2)
def
= nullable r1 ∨ nullable r2

nullable (r1 · r2)
def
= nullable r1 ∧ nullable r2

nullable (r⋆) def
= True

(0)\c def
= 0

(1)\c def
= 0

d\c def
= if c = d then 1 else 0

(r1 + r2)\c def
= (r1\c) + (r2\c)

(r1 · r2)\c def
= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) · r2

(r⋆)\c def
= (r\c) · r⋆

We may extend this definition to give derivatives w.r.t. strings:

r\[] def
= r

r\(c :: s) def
= (r\c)\s

POSIX Lexing with Derivatives of Regular Expressions 5

Given the equations in (1), it is a relatively easy exercise in mechanical reasoning to
establish that

Proposition 1.
(1) nullable r if and only if [] ∈ L(r), and
(2) L(r\c) = Der c (L(r)).

With this in place it is also very routine to prove that the regular expression matcher
defined as

match r s
def
= nullable (r\s)

gives a positive answer if and only if s ∈ L(r). Consequently, this regular expression
matching algorithm satisfies the usual specification for regular expression matching.
While the matcher above calculates a provably correct YES/NO answer for whether a
regular expression matches a string or not, the novel idea of Sulzmann and Lu [10] is to
append another phase to this algorithm in order to calculate a [lexical] value. We will
explain the details next.

3 POSIX Regular Expression Matching

The clever idea by Sulzmann and Lu [10] is to define values for encoding how a reg-
ular expression matches a string and then define a function on values that mirrors (but
inverts) the construction of the derivative on regular expressions. Values are defined as
the inductive datatype

v := () | Char c | Left v | Right v | Seq v1 v2 | Stars vs

where we use vs to stand for a list of values. (This is similar to the approach taken
by Frisch and Cardelli for GREEDY matching [3], and Sulzmann and Lu for POSIX
matching [10]). The string underlying a value can be calculated by the flat function,
written | | and defined as:

|()| def
= []

|Char c| def
= [c]

|Left v| def
= |v|

|Right v| def
= |v|

|Seq v1 v2|
def
= |v1| @ |v2|

|Stars []| def
= []

|Stars (v :: vs)| def
= |v| @ |Stars vs|

Sulzmann and Lu also define inductively an inhabitation relation that associates values
to regular expressions:

() : 1 Char c : c
v1 : r1

Left v1 : r1 + r2

v2 : r1
Right v2 : r2 + r1

v1 : r1 v2 : r2
Seq v1 v2 : r1 · r2

Stars [] : r⋆
v : r Stars vs : r⋆

Stars (v :: vs) : r⋆

6 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

r1 r2
\a

r3
\b

r4
\c

nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

Fig. 1. The two phases of the algorithm by Sulzmann & Lu [10], matching the string [a,
b, c]. The first phase (the arrows from left to right) is Brzozowski’s matcher building
successive derivatives. If the last regular expression is nullable, then the functions of the
second phase are called (the top-down and right-to-left arrows): first mkeps calculates a
value witnessing how the empty string has been recognised by r4. After that the function
inj “injects back” the characters of the string into the values.

Note that no values are associated with the regular expression 0, and that the only value
associated with the regular expression 1 is (), pronounced (if one must) as Void. It
is routine to establish how values “inhabiting” a regular expression correspond to the
language of a regular expression, namely

Proposition 2. L(r) = {|v| | v : r}

In general there is more than one value associated with a regular expression. In case
of POSIX matching the problem is to calculate the unique value that satisfies the (in-
formal) POSIX rules from the Introduction. Graphically the POSIX value calculation
algorithm by Sulzmann and Lu can be illustrated by the picture in Figure 1 where the
path from the left to the right involving derivatives/nullable is the first phase of the al-
gorithm (calculating successive Brzozowski’s derivatives) and mkeps/inj, the path from
right to left, the second phase. This picture shows the steps required when a regular
expression, say r1, matches the string [a, b, c]. We first build the three derivatives (ac-
cording to a, b and c). We then use nullable to find out whether the resulting derivative
regular expression r4 can match the empty string. If yes, we call the function mkeps
that produces a value v4 for how r4 can match the empty string (taking into account
the POSIX constraints in case there are several ways). This function is defined by the
clauses:

mkeps (1) def
= ()

mkeps (r1 · r2)
def
= Seq (mkeps r1) (mkeps r2)

mkeps (r1 + r2)
def
= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)

mkeps (r⋆) def
= Stars []

Note that this function needs only to be partially defined, namely only for regular ex-
pressions that are nullable. In case nullable fails, the string [a, b, c] cannot be matched

POSIX Lexing with Derivatives of Regular Expressions 7

by r1 and the null value None is returned. Note also how this function makes some sub-
tle choices leading to a POSIX value: for example if an alternative regular expression,
say r1 + r2, can match the empty string and furthermore r1 can match the empty string,
then we return a Left-value. The Right-value will only be returned if r1 cannot match
the empty string.

The most interesting idea from Sulzmann and Lu [10] is the construction of a value
for how r1 can match the string [a, b, c] from the value how the last derivative, r4 in
Fig 1, can match the empty string. Sulzmann and Lu achieve this by stepwise “injecting
back” the characters into the values thus inverting the operation of building derivatives,
but on the level of values. The corresponding function, called inj, takes three arguments,
a regular expression, a character and a value. For example in the first (or right-most) inj-
step in Fig 1 the regular expression r3, the character c from the last derivative step and
v4, which is the value corresponding to the derivative regular expression r4. The result
is the new value v3. The final result of the algorithm is the value v1. The inj function
is defined by recursion on regular expressions and by analysing the shape of values
(corresponding to the derivative regular expressions).

(1) inj d c ()
def
= Char d

(2) inj (r1 + r2) c (Left v1)
def
= Left (inj r1 c v1)

(3) inj (r1 + r2) c (Right v2)
def
= Right (inj r2 c v2)

(4) inj (r1 · r2) c (Seq v1 v2)
def
= Seq (inj r1 c v1) v2

(5) inj (r1 · r2) c (Left (Seq v1 v2))
def
= Seq (inj r1 c v1) v2

(6) inj (r1 · r2) c (Right v2)
def
= Seq (mkeps r1) (inj r2 c v2)

(7) inj (r⋆) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

To better understand what is going on in this definition it might be instructive to look
first at the three sequence cases (clauses (4)–(6)). In each case we need to construct an
“injected value” for r1 · r2. This must be a value of the form Seq . Recall the clause
of the derivative-function for sequence regular expressions:

(r1 · r2)\c def
= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) · r2

Consider first the else-branch where the derivative is (r1\c) · r2. The corresponding
value must therefore be of the form Seq v1 v2, which matches the left-hand side in
clause (4) of inj. In the if -branch the derivative is an alternative, namely (r1\c) · r2 +
(r2\c). This means we either have to consider a Left- or Right-value. In case of the Left-
value we know further it must be a value for a sequence regular expression. Therefore
the pattern we match in the clause (5) is Left (Seq v1 v2), while in (6) it is just Right v2.
One more interesting point is in the right-hand side of clause (6): since in this case the
regular expression r1 does not “contribute” to matching the string, that means it only
matches the empty string, we need to call mkeps in order to construct a value for how r1
can match this empty string. A similar argument applies for why we can expect in the
left-hand side of clause (7) that the value is of the form Seq v (Stars vs)—the derivative
of a star is (r\c) · r⋆. Finally, the reason for why we can ignore the second argument
in clause (1) of inj is that it will only ever be called in cases where c = d, but the usual

8 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

linearity restrictions in patterns do not allow us to build this constraint explicitly into
our function definition.5

The idea of the inj-function to “inject” a character, say c, into a value can be made
precise by the first part of the following lemma, which shows that the underlying string
of an injected value has a prepended character c; the second part shows that the under-
lying string of an mkeps-value is always the empty string (given the regular expression
is nullable since otherwise mkeps might not be defined).

Lemma 1.
(1) If v : r\c then |inj r c v| = c :: |v|.
(2) If nullable r then |mkeps r| = [].

Proof. Both properties are by routine inductions: the first one can, for example, be
proved by induction over the definition of derivatives; the second by an induction on r.
There are no interesting cases. ⊓⊔

Having defined the mkeps and inj function we can extend Brzozowski’s matcher
so that a [lexical] value is constructed (assuming the regular expression matches the
string). The clauses of the Sulzmann and Lu lexer are

lexer r [] def
= if nullable r then Some (mkeps r) else None

lexer r (c :: s) def
= case lexer (r\c) s of

None ⇒ None
| Some v ⇒ Some (inj r c v)

If the regular expression does not match the string, None is returned. If the regular
expression does match the string, then Some value is returned. One important virtue of
this algorithm is that it can be implemented with ease in any functional programming
language and also in Isabelle/HOL. In the remaining part of this section we prove that
this algorithm is correct.

The well-known idea of POSIX matching is informally defined by the longest match
and priority rule (see Introduction); as correctly argued in [10], this needs formal spec-
ification. Sulzmann and Lu define an “ordering relation” between values and argue that
there is a maximum value, as given by the derivative-based algorithm. In contrast, we
shall introduce a simple inductive definition that specifies directly what a POSIX value
is, incorporating the POSIX-specific choices into the side-conditions of our rules. Our
definition is inspired by the matching relation given by Vansummeren [12]. The relation
we define is ternary and written as (s, r) → v, relating strings, regular expressions and
values.

5 Sulzmann and Lu state this clause as inj c c ()
def
= Char c, but our deviation is harmless.

POSIX Lexing with Derivatives of Regular Expressions 9

([], 1) → ()
P1

([c], c)→ Char c
Pc

(s, r1) → v
(s, r1 + r2)→ Left v

P+L
(s, r2) → v s /∈ L(r1)
(s, r1 + r2)→ Right v

P+R

(s1, r1) → v1 (s2, r2) → v2
∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

(s1 @ s2, r1 · r2) → Seq v1 v2
PS

([], r⋆)→ Stars []
P[]

(s1, r) → v (s2, r⋆) → Stars vs |v| ̸= []
∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r) ∧ s4 ∈ L(r⋆)

(s1 @ s2, r⋆) → Stars (v :: vs)
P⋆

We can prove that given a string s and regular expression r, the POSIX value v is
uniquely determined by (s, r) → v.

Theorem 1. If (s, r) → v1 and (s, r) → v2 then v1 = v2.

Proof. By induction on the definition of (s, r)→ v1 and a case analysis of (s, r) → v2.
This proof requires the auxiliary lemma that (s, r) → v implies s ∈ L(r) and |v| = s,
which are both easily established by inductions. ⊓⊔

We claim that our (s, r) → v relation captures the idea behind the two informal POSIX
rules shown in the Introduction: Consider for example the rules P+L and P+R where
the POSIX value for a string and an alternative regular expression, that is (s, r1 + r2),
is specified—it is always a Left-value, except when the string to be matched is not in the
language of r1; only then it is a Right-value (see the side-condition in P+R). Interesting
is also the rule for sequence regular expressions (PS). The first two premises state that
v1 and v2 are the POSIX values for (s1, r1) and (s2, r2) respectively. Consider now the
third premise and note that the POSIX value of this rule should match the string s1 @
s2. According to the longest match rule, we want that the s1 is the longest initial split
of s1 @ s2 such that s2 is still recognised by r2. Let us assume, contrary to the third
premise, that there exist an s3 and s4 such that s2 can be split up into a non-empty string
s3 and a possibly empty string s4. Moreover the longer string s1 @ s3 can be matched
by r1 and the shorter s4 can still be matched by r2. In this case s1 would not be the
longest initial split of s1 @ s2 and therefore Seq v1 v2 cannot be a POSIX value for (s1
@ s2, r1 · r2). The main point is that this side-condition ensures the longest match rule
is satisfied.

A similar condition is imposed on the POSIX value in the P⋆-rule. Also there we
want that s1 is the longest initial split of s1 @ s2 and furthermore the corresponding
value v cannot be flattened to the empty string. In effect, we require that in each “iter-
ation” of the star, some non-empty substring needs to be “chipped” away; only in case
of the empty string we accept Stars [] as the POSIX value.

10 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

Next is the lemma that shows the function mkeps calculates the POSIX value for the
empty string and a nullable regular expression.

Lemma 2. If nullable r then ([], r)→ mkeps r.

Proof. By routine induction on r. ⊓⊔

The central lemma for our POSIX relation is that the inj-function preserves POSIX
values.

Lemma 3. If (s, r\c) → v then (c :: s, r) → inj r c v.

Proof. By induction on r. Suppose r = r1 + r2. There are two subcases, namely (a)
v = Left v ′ and (s, r1\c) → v ′; and (b) v = Right v ′, s /∈ L(r1\c) and (s, r2\c) → v ′.
In (a) we know (s, r1\c) → v ′, from which we can infer (c :: s, r1) → inj r1 c v ′ by
induction hypothesis and hence (c :: s, r1 + r2) → inj (r1 + r2) c (Left v ′) as needed.
Similarly in subcase (b) where, however, in addition we have to use Prop. 1(2) in order
to infer c :: s /∈ L(r1) from s /∈ L(r1\c).

Suppose r = r1 · r2. There are three subcases:

(a) v = Left (Seq v1 v2) and nullable r1
(b) v = Right v1 and nullable r1
(c) v = Seq v1 v2 and ¬ nullable r1

For (a) we know (s1, r1\c)→ v1 and (s2, r2)→ v2 as well as

∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1\c) ∧ s4 ∈ L(r2)

From the latter we can infer by Prop. 1(2):

∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ c :: s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

We can use the induction hypothesis for r1 to obtain (c :: s1, r1) → inj r1 c v1. Putting
this all together allows us to infer (c :: s1 @ s2, r1 · r2)→ Seq (inj r1 c v1) v2. The case
(c) is similar.

For (b) we know (s, r2\c) → v1 and s1 @ s2 /∈ L((r1\c) · r2). From the former we
have (c :: s, r2) → inj r2 c v1 by induction hypothesis for r2. From the latter we can
infer

∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = c :: s ∧ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

By Lem. 2 we know ([], r1)→ mkeps r1 holds. Putting this all together, we can conclude
with (c :: s, r1 · r2) → Seq (mkeps r1) (inj r2 c v1), as required.

Finally suppose r = r1⋆. This case is very similar to the sequence case, except that
we need to also ensure that |inj r1 c v1| ̸= []. This follows from (c :: s1, r1) → inj r1 c
v1 (which in turn follows from (s1, r1\c)→ v1 and the induction hypothesis). ⊓⊔

With Lem. 3 in place, it is completely routine to establish that the Sulzmann and Lu
lexer satisfies our specification (returning the null value None iff the string is not in the
language of the regular expression, and returning a unique POSIX value iff the string is
in the language):

POSIX Lexing with Derivatives of Regular Expressions 11

Theorem 2.
(1) s /∈ L(r) if and only if lexer r s = None
(2) s ∈ L(r) if and only if ∃ !v. lexer r s = Some v ∧ (s, r) → v

Proof. By induction on s using Lem. 2 and 3. ⊓⊔

This concludes our correctness proof. Note that we have not changed the algorithm of
Sulzmann and Lu,6 but introduced our own specification for what a correct result—a
POSIX value—should be. A strong point in favour of Sulzmann and Lu’s algorithm is
that it can be extended in various ways.

4 Extensions and Optimisations

If we are interested in tokenising a string, then we need to not just split up the string into
tokens, but also “classify” the tokens (for example whether it is a keyword or an iden-
tifier). This can be done with only minor modifications to the algorithm by introducing
record regular expressions and record values (for example [11]):

r := ... | (l : r) v := ... | (l : v)

where l is a label, say a string, r a regular expression and v a value. All functions can
be smoothly extended to these regular expressions and values. For example (l : r) is
nullable iff r is, and so on. The purpose of the record regular expression is to mark
certain parts of a regular expression and then record in the calculated value which
parts of the string were matched by this part. The label can then serve as classifica-
tion for the tokens. For this recall the regular expression (rkey + rid)

⋆ for keywords
and identifiers from the Introduction. With the record regular expression we can form
((key : rkey) + (id : rid))

⋆ and then traverse the calculated value and only collect the
underlying strings in record values. With this we obtain finite sequences of pairs of
labels and strings, for example

(l1 : s1), ..., (ln : sn)

from which tokens with classifications (keyword-token, identifier-token and so on) can
be extracted.

Derivatives as calculated by Brzozowski’s method are usually more complex regu-
lar expressions than the initial one; the result is that the derivative-based matching and
lexing algorithms are often abysmally slow. However, various optimisations are possi-
ble, such as the simplifications of 0 + r, r + 0, 1 · r and r · 1 to r. These simplifications
can speed up the algorithms considerably, as noted in [10]. One of the advantages of
having a simple specification and correctness proof is that the latter can be refined to
prove the correctness of such simplification steps.

While the simplification of regular expressions according to rules like

6 All deviations we introduced are harmless.

12 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

0 + r ⇒ r
r + 0 ⇒ r
1 · r ⇒ r
r · 1 ⇒ r

(2)

is well understood, there is an obstacle with the POSIX value calculation algorithm by
Sulzmann and Lu: if we build a derivative regular expression and then simplify it, we
will calculate a POSIX value for this simplified derivative regular expression, not for the
original (unsimplified) derivative regular expression. Sulzmann and Lu [10] overcome
this obstacle by not just calculating a simplified regular expression, but also calculating
a rectification function that “repairs” the incorrect value.

The rectification functions can be (slightly clumsily) implemented in Isabelle/HOL
as follows using some auxiliary functions:

FRight f v def
= Right (f v)

FLeft f v def
= Left (f v)

FAlt f 1 f 2 (Right v) def
= Right (f 2 v)

FAlt f 1 f 2 (Left v) def
= Left (f 1 v)

FSeq1 f 1 f 2 v def
= Seq (f 1 ()) (f 2 v)

FSeq2 f 1 f 2 v def
= Seq (f 1 v) (f 2 ())

FSeq f 1 f 2 (Seq v1 v2)
def
= Seq (f 1 v1) (f 2 v2)

simpAlt (0,) (r2, f 2)
def
= (r2, FRight f 2)

simpAlt (r1, f 1) (0,)
def
= (r1, FLeft f 1)

simpAlt (r1, f 1) (r2, f 2)
def
= (r1 + r2, FAlt f 1 f 2)

simpSeq (1, f 1) (r2, f 2)
def
= (r2, FSeq1 f 1 f 2)

simpSeq (r1, f 1) (1, f 2)
def
= (r1, FSeq2 f 1 f 2)

simpSeq (r1, f 1) (r2, f 2)
def
= (r1 · r2, FSeq f 1 f 2)

The functions simpAlt and simpSeq encode the simplification rules in (2) and compose
the rectification functions (simplifications can occur deep inside the regular expression).
The main simplification function is then

simp (r1 + r2)
def
= simpAlt (simp r1) (simp r2)

simp (r1 · r2)
def
= simpSeq (simp r1) (simp r2)

simp r def
= (r, id)

where id stands for the identity function. This function returns a simplified regular
expression and a corresponding rectification function. Note that we do not simplify
under stars: this seems to slow down the algorithm, rather than speed up. The optimised
lexer is then given by the clauses:

POSIX Lexing with Derivatives of Regular Expressions 13

lexer+ r [] def
= if nullable r then Some (mkeps r) else None

lexer+ r (c :: s) def
= let (rs, f r) = simp (r\c) in

case lexer+ rs s of
None ⇒ None

| Some v ⇒ Some (inj r c (f r v))

In the second clause we first calculate the derivative r\c and then simplify the result.
This gives us a simplified derivative rs and a rectification function f r. The lexer is then
recursively called with the simplified derivative, but before we inject the character c
into the value v, we need to rectify v (that is construct f r v). Before we can establish
the correctness of lexer+, we need to show that simplification preserves the language
and simplification preserves our POSIX relation once the value is rectified (recall simp
generates a regular expression, rectification function pair):

Lemma 4.
(1) L(fst (simp r)) = L(r)
(2) If (s, fst (simp r))→ v then (s, r) → snd (simp r) v.

Proof. Both are by induction on r. There is no interesting case for the first statement.
For the second statement of interest are the r = r1 · r2 and r = r1 + r2 cases.

We can now prove relatively straightforwardly that the optimised lexer produce the
expected result:

Theorem 3. lexer+ r s = lexer r s

Proof. By induction on s generalising over r. The case [] is trivial. For the cons-case
suppose the string is of the form c :: s. By induction hypothesis we know lexer+ r s
= lexer r s holds for all r (in particular for r being the derivative r\c). Let rs be the
simplified derivative regular expression, fst (simp (r\c)), and f r be the rectification
function, snd (simp (r\c)). We distinguish the cases whether (*) s ∈ L(r\c) or not. In
the first case we have by Thm 2(2) a value v so that lexer (r\c) s = Some v and (s, r\c)
→ v hold. By Lem 4(1) we can also infer from (*) that s ∈ L(rs) holds. Hence we know
by Thm 2(2) that there exists a v ′ with lexer rs s = Some v ′ and (s, rs) → v ′. From
the latter we know by Lem 4(2) that (s, r\c) → f r v ′ holds. By the uniqueness of the
POSIX relation (Thm 1) we can infer that v is equal to f r v ′—that is the rectification
function applied to v ′ produces the original v. Now the case follows by the definitions
of lexer and lexer+.

In the second case where s /∈ L(r\c) we have that lexer (r\c) s = None by Thm 2(1).
We also know by Lem 4(1) that s /∈ L(rs). Hence lexer rs s = None by Thm 2(1) and
by IH then also lexer+ rs s = None. With this we can conclude in this case too. ⊓⊔

5 The Correctness Argument by Sulzmann and Lu

An extended version of [10] is available at the website of its first author; this includes
some “proofs”, claimed in [10] to be “rigorous”. Since these are evidently not in final

14 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

form, we make no comment thereon, preferring to give general reasons for our belief
that the approach of [10] is problematic. Their central definition is an “ordering rela-
tion” defined by the rules (slightly adapted to fit our notation):

v1 >r1 v1′

Seq v1 v2 >r1 · r2 Seq v1′ v2′
(C2)

v2 >r2 v2′

Seq v1 v2 >r1 · r2 Seq v1 v2′
(C1)

len |v1| < len |v2|
Right v2 >r1 + r2 Left v1

(A1)
len |v2| ≤ len |v1|

Left v1 >r1 + r2 Right v2
(A2)

v1 >r2 v2
Right v1 >r1 + r2 Right v2

(A3)
v1 >r1 v2

Left v1 >r1 + r2 Left v2
(A4)

|Stars (v :: vs)| = []

Stars [] >r⋆ Stars (v :: vs)
(K1)

|Stars (v :: vs)| ̸= []

Stars (v :: vs) >r⋆ Stars []
(K2)

v1 >r v2
Stars (v1 :: vs1) >r⋆ Stars (v2 :: vs2)

(K3)
Stars vs1 >r⋆ Stars vs2

Stars (v :: vs1) >r⋆ Stars (v :: vs2)
(K4)

The idea behind the rules (A1) and (A2), for example, is that a Left-value is bigger than
a Right-value, if the underlying string of the Left-value is longer or of equal length to the
underlying string of the Right-value. The order is reversed, however, if the Right-value
can match a longer string than a Left-value. In this way the POSIX value is supposed to
be the biggest value for a given string and regular expression.

Sulzmann and Lu explicitly refer to the paper [3] by Frisch and Cardelli from where
they have taken the idea for their correctness proof. Frisch and Cardelli introduced a
similar ordering for GREEDY matching and they showed that their GREEDY match-
ing algorithm always produces a maximal element according to this ordering (from
all possible solutions). The only difference between their GREEDY ordering and the
“ordering” by Sulzmann and Lu is that GREEDY always prefers a Left-value over a
Right-value, no matter what the underlying string is. This seems to be only a very minor
difference, but it has drastic consequences in terms of what properties both orderings
enjoy. What is interesting for our purposes is that the properties reflexivity, totality and
transitivity for this GREEDY ordering can be proved relatively easily by induction.

These properties of GREEDY, however, do not transfer to the POSIX “ordering” by
Sulzmann and Lu. To start with, v1 ≥r v2 is not defined inductively, but as v1 = v2 or
v1 >r v2 ∧ |v1| = |v2|. This means that v1 >r v2 does not necessarily imply v1 ≥r v2.
Moreover, transitivity does not hold in the “usual” formulation, for example:

Falsehood 1 Suppose v1 : r, v2 : r and v3 : r. If v1 >r v2 and v2 >r v3 then v1 >r v3.

If formulated in this way, then there are various counter examples: For example let r be
a + ((a + a)·(a + 0)) then the v1, v2 and v3 below are values of r:

v1 = Left (Char a)
v2 = Right (Seq (Left (Char a)) (Right ()))
v3 = Right (Seq (Right (Char a)) (Left (Char a)))

Moreover v1 >r v2 and v2 >r v3, but not v1 >r v3! The reason is that although v3 is
a Right-value, it can match a longer string, namely |v3| = [a, a], while |v1| (and |v2|)

POSIX Lexing with Derivatives of Regular Expressions 15

matches only [a]. So transitivity in this formulation does not hold—in this example
actually v3 >r v1!

Sulzmann and Lu “fix” this problem by weakening the transitivity property. They
require in addition that the underlying strings are of the same length. This excludes the
counter example above and any counter-example we were able to find (by hand and by
machine). Thus the transitivity lemma should be formulated as:

Conjecture 1 Suppose v1 : r, v2 : r and v3 : r, and also |v1| = |v2| = |v3|.
If v1 >r v2 and v2 >r v3 then v1 >r v3.

While we agree with Sulzmann and Lu that this property probably(!) holds, proving it
seems not so straightforward: although one begins with the assumption that the values
have the same flattening, this cannot be maintained as one descends into the induction.
This is a problem that occurs in a number of places in the proofs by Sulzmann and Lu.

Although they do not give an explicit proof of the transitivity property, they give a
closely related property about the existence of maximal elements. They state that this
can be verified by an induction on r. We disagree with this as we shall show next in
case of transitivity. The case where the reasoning breaks down is the sequence case, say
r1 · r2. The induction hypotheses in this case are

IH r1:
∀ v1, v2, v3.

v1 : r1 ∧ v2 : r1 ∧ v3 : r1
∧ |v1| = |v2| = |v3|
∧ v1 >r1 v2 ∧ v2 >r1 v3

⇒ v1 >r1 v3

IH r2:
∀ v1, v2, v3.

v1 : r2 ∧ v2 : r2 ∧ v3 : r2
∧ |v1| = |v2| = |v3|
∧ v1 >r2 v2 ∧ v2 >r2 v3

⇒ v1 >r2 v3

We can assume that

Seq v1l v1r >r1 · r2 Seq v2l v2r and Seq v2l v2r >r1 · r2 Seq v3l v3r (3)

hold, and furthermore that the values have equal length, namely:

|Seq v1l v1r| = |Seq v2l v2r| and |Seq v2l v2r| = |Seq v3l v3r| (4)

We need to show that Seq v1l v1r >r1 · r2 Seq v3l v3r holds. We can proceed by
analysing how the assumptions in (3) have arisen. There are four cases. Let us assume
we are in the case where we know

v1l >r1 v2l and v2l >r1 v3l

and also know the corresponding inhabitation judgements. This is exactly a case where
we would like to apply the induction hypothesis IH r1. But we cannot! We still need
to show that |v1l| = |v2l| and |v2l| = |v3l|. We know from (4) that the lengths of the
sequence values are equal, but from this we cannot infer anything about the lengths of
the component values. Indeed in general they will be unequal, that is

|v1l| ̸= |v2l| and |v1r| ̸= |v2r|

16 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

but still (4) will hold. Now we are stuck, since the IH does not apply. As said, this
problem where the induction hypothesis does not apply arises in several places in the
proof of Sulzmann and Lu, not just for proving transitivity.

6 Conclusion

We have implemented the POSIX value calculation algorithm introduced by Sulzmann
and Lu [10]. Our implementation is nearly identical to the original and all modifica-
tions we introduced are harmless (like our char-clause for inj). We have proved this
algorithm to be correct, but correct according to our own specification of what POSIX
values are. Our specification (inspired from work by Vansummeren [12]) appears to be
much simpler than in [10] and our proofs are nearly always straightforward. We have
attempted to formalise the original proof by Sulzmann and Lu [10], but we believe it
contains unfillable gaps. In the online version of [10], the authors already acknowledge
some small problems, but our experience suggests that there are more serious problems.

Having proved the correctness of the POSIX lexing algorithm in [10], which lessons
have we learned? Well, this is a perfect example for the importance of the right defini-
tions. We have (on and off) banged our heads on doors as soon as first versions of [10]
appeared, but have made little progress with turning the relatively detailed proof sketch
in [10] into a formalisable proof. Having seen [12] and adapted the POSIX definition
given there for the algorithm by Sulzmann and Lu made all the difference: the proofs, as
said, are nearly straightforward. The question remains whether the original proof idea
of [10], potentially using our result as a stepping stone, can be made to work? Alas, we
really do not know despite considerable effort and door banging.

Closely related to our work is an automata-based lexer formalised by Nipkow [7].
This lexer also splits up strings into longest initial substrings, but Nipkow’s algorithm
is not completely computational. The algorithm by Sulzmann and Lu, in contrast, can
be implemented with ease in any functional language. A bespoke lexer for the Imp-
language is formalised in Coq as part of the Software Foundations book by Pierce et
al [9]. The disadvantage of such bespoke lexers is that they do not generalise easily to
more advanced features. Our formalisation is available from http://www.inf.kcl.ac.uk/
staff/urbanc/lex.

Acknowledgements: We are very grateful to Martin Sulzmann for his comments on
our work and moreover patiently explaining to us the details in [10]. We also received
very helpful comments from James Cheney and anonymous referees.

References

1. J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481–494,
1964.

2. T. Coquand and V. Siles. A Decision Procedure for Regular Expression Equivalence in
Type Theory. In Proc. of the 1st International Conference on Certified Programs and Proofs
(CPP), volume 7086 of LNCS, pages 119–134, 2011.

http://www.inf.kcl.ac.uk/staff/urbanc/lex
http://www.inf.kcl.ac.uk/staff/urbanc/lex

POSIX Lexing with Derivatives of Regular Expressions 17

3. A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In Proc. of the 31st Inter-
national Conference on Automata, Languages and Programming (ICALP), volume 3142 of
LNCS, pages 618–629, 2004.

4. N. B. B. Grathwohl, F. Henglein, and U. T. Rasmussen. A Crash-Course in Regular Expres-
sion Parsing and Regular Expressions as Types. Technical report, University of Copenhagen,
2014.

5. A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence and Relation Alge-
bra. Journal of Automated Reasoning, 49:95–106, 2012.

6. C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex Posix.
7. T. Nipkow. Verified Lexical Analysis. In Proc. of the 11th International Conference on

Theorem Proving in Higher Order Logics (TPHOLs), volume 1479 of LNCS, pages 1–15,
1998.

8. S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order
and Symbolic Computation, 21(4):377–409, 2008.

9. B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjoberg, and
B. Yorgey. Software Foundations. Electronic textbook, 2015. http://www.cis.upenn.edu/
∼bcpierce/sf.

10. M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of
the 12th International Conference on Functional and Logic Programming (FLOPS), volume
8475 of LNCS, pages 203–220, 2014.

11. M. Sulzmann and P. van Steenhoven. A Flexible and Efficient ML Lexer Tool Based on
Extended Regular Expression Submatching. In Proc. of the 23rd International Conference
on Compiler Construction (CC), volume 8409 of LNCS, pages 174–191, 2014.

12. S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on Pro-
gramming Languages and Systems, 28(3):389–428, 2006.

https://wiki.haskell.org/Regex_Posix
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf

	Introduction
	Preliminaries
	POSIX Regular Expression Matching
	Extensions and Optimisations
	The Correctness Argument by Sulzmann and Lu
	Conclusion

