POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Fahad Ausaf King's College London

joint work with Roy Dyckhoff and Christian Urban

Regular Expressions

The Derivative of a Rexp

If *r* matches the string *c*::*s*, what is a regular expression that matches just *s*?

der c r gives the answer, Brzozowski (1964), Owens (2005) "…have been lost in the sands of time…"

It is a relative easy exercise in a theorem prover:

matches(r, s) if and only if $s \in L(r)$

 $where$ $matches(r, s) \stackrel{\text{def}}{=} \textit{nullable}(ders(r, s))$

POSIX Regex Matching

Two rules:

Longest match rule ("maximal munch rule"): The longest initial substring matched by any regular expression is taken as the next token.

 i f f o o b l a

• Rule priority: For a particular longest initial substring, the first regular expression that can match determines the token.

 $i \mid f \mid$ b $i \mid a$

POSIX Regex Matching

Two rules:

Longest match rule ("maximal munch rule"): The longest initial substring matched by any regular expression is taken as the next token.

 i f f o o b i a

• Rule priority: For a particular longest initial substring, the first regular expression that can match determines the token.

i f b l a

Kuklewicz: most POSIX matchers are buggy http://www.haskell.org/haskellwiki/Regex_Posix

POSIX Regex Matching

• Sulzmann & Lu came up with a beautiful idea for how to extend the simple regular expression matcher to POSIX matching/lexing (FLOPS 2014)

Martin Sulzmann

• the idea: define an inverse operation to the derivatives

Regexes and Values

Regular expressions and their corresponding values (for *how* a regular expression matched a string):

Regexes and Values

Regular expressions and their corresponding values (for *how* a regular expression matched a string):

There is also a notion of a string behind a value: *|v|*

$$
r_1 \xrightarrow{der\, a} r_2 \xrightarrow{der\, b} r_3
$$

$$
r_1 \xrightarrow{der\, a} r_2 \xrightarrow{der\, b} r_3 \xrightarrow{der\, c} r_4
$$

$$
r_1 \xrightarrow{der\ a} r_2 \xrightarrow{der\ b} r_3 \xrightarrow{der\ c} r_4 \ \ \text{nullable?}
$$

We want to match the string *abc* using $r_{\text{\tiny I}}$:

The original ideas of Sulzmann and Lu are the *mkeps* and *inj* functions (ommitted here).

Sulzmann & Lu Paper

 \bullet I have no doubt the algorithm is correct — the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless when stating this Lemma :) Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

Sulzmann & Lu Paper

 \bullet I have no doubt the algorithm is correct — the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless when stating this Lemma :) Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

"Well, I don't think there's any flaw. The issue is how to come up with a mechanical proof. In my world $mathematical proof = mechanical proof doesn't$ necessarily hold."

Sulzmann & Lu Paper

 \bullet I have no doubt the algorithm is correct — the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless

Lemma 3 (Projection and Injection). Let r be a regular expression, l a letter and v a parse tree.

1. If
$$
\vdash v : r
$$
 and $|v| = lw$ for some word w , then $\vdash proj_{(r,l)} v : r \setminus l$.

- 2. If $\vdash v : r \backslash l$ then $\left(proj_{(r,l)} \circ inj_{r \backslash l} \right) v = v$.
- 3. If $\vdash v : r$ and $|v| = lw$ for some word w, then $(inj_{r\setminus l} \circ proj_{(r,l)})$ $v = v$.

MS:BUG[Come accross this issue when going back to our con**structive reg-ex work**] Consider \vdash [*Right* (), *Left a*] : $(a + \epsilon)^*$. However, $proj_{((a+\epsilon)^*, a)}$ [*Right* (), *Left a*] fails! The point is that *proj* only works correctly if applied on POSIX parse trees. MS:Possible

For convenience, we write " $\vdash v : r$ is POSIX" where we mean that $\vdash v : r$ holds and v is the POSIX parse tree of r for word $|v|$.

Lemma 2 follows from the following statement.

nccessarily moru."

The Proof Idea by Sulzmann & Lu

- introduce an inductively defined ordering relation *v ≻^r v ′* which captures the idea of POSIX matching
- the algorithm returns the maximum of all possible values that are possible for a regular expression.

The Proof Idea by Sulzmann & Lu

- introduce an inductively defined ordering relation *v ≻^r v ′* which captures the idea of POSIX matching
- the algorithm returns the maximum of all possible values that are possible for a regular expression.
- \bullet the idea is from a paper by Cardelli & Frisch about $GREEDY$ matching $(GREEDY)$ = preferring instant gratification to delayed repletion):
- e.g. given (*a* + (*b* + *ab*))*[∗]* and string *ab*

GREEDY: $[Left(a), Right(Left(b)]$
POSIX: $[Right(Rioht(Sea(a, b))]$ $[Right(Right(Seq(a,b))))]$

$$
\frac{\overline{\smash[b]{\mathsf{Empty}:e}}}\qquad \overline{\smash[b]{\mathsf{Color}(c):e}} \\
 \frac{\smash[b]{\mathsf{y}_{1}:r_{1}}\qquad \smash[b]{\mathsf{y}_{2}:r_{2}}}{\smash[b]{\mathsf{Seq}(v_{1},v_{2}):r_{1}\cdot r_{2}}}\n \qquad \qquad \frac{\smash[b]{\mathsf{y}_{2}:r_{2}}}{\smash[b]{\mathsf{Left}(v):r_{1}+r_{2}}}\qquad \smash[b]{\smash[b]{\mathsf{key}(v_{1},v_{2}):r_{1}\cdot r_{2}}}\n \qquad \qquad \frac{\smash[b]{\mathsf{y}:r_{2}}}{\smash[b]{\mathsf{key}(v):r_{1}+r_{2}}}\n \qquad \qquad \frac{\smash[b]{\mathsf{y}:r_{2}}\cdots\smash[b]{\mathsf{y}_{n}:r_{n}}}{\smash[b]{\smash[b]{\mathsf{row}(v_{1},v_{2})}:r^{*}}}\n \qquad \qquad \frac{\smash[b]{\mathsf{y}:r_{2}}\cdots\smash[b]{\mathsf{y}_{n}:r_{n}}}{\smash[b]{\smash[b]{\mathsf{row}(v_{1},v_{2})}:r^{*}}}\n \qquad \qquad \frac{\smash[b]{\mathsf{y}:r_{2}}\cdots\smash[b]{\mathsf{y}_{n}:r_{n}}}{\smash[b]{\smash[b]{\mathsf{row}(v_{1},v_{2})}:r^{*}}}\n \qquad \qquad \frac{\smash[b]{\mathsf{y}:r_{2}}\cdots\smash[b]{\mathsf{y}_{n}:r_{n}}}{\smash[b]{\smash[b]{\mathsf{row}(v_{1},v_{2})}:r^{*}}}\n \qquad \qquad \frac{\smash[b]{\mathsf{y}:r_{2}}\cdots\smash[b]{\mathsf{y}_{n}}}{\smash[b]{\smash[b]{\mathsf{row}(v_{n})}:r^{*}}}\n \qquad \qquad \frac{\smash[b]{\mathsf{y}:r_{2}}\cdots\smash[b]{\mathsf{row}(v_{n})}}{\smash[b]{\smash[b]{\mathsf{row}(v_{n})}:r^{*}}}\n \qquad \qquad \frac{\smash[b]{\mathsf{row}(v_{n})\cdots\mathsf{row}(v_{n})}}{\smash[b]{\mathsf{row}(v_{n}):\mathsf{row}(v_{n})}}\n \qquad \qquad \frac{\smash[b]{\math
$$

ITP ???? – p. 12/17

Sulzmann: …Let's assume *v* is not a *POSIX* value, then there must be another one …contradiction.

- Sulzmann: …Let's assume *v* is not a *POSIX* value, then there must be another one …contradiction.
- Exists?

 $L(r) \neq \emptyset \Rightarrow \exists v. \; POSIX(v,r)$

- Sulzmann: …Let's assume *v* is not a *POSIX* value, then there must be another one …contradiction.
- Exists?

$$
L(r) \neq \varnothing \Rightarrow \exists v.\,POSIX(v,r)
$$

in the sequence case $Seq(v_1, v_2) \succ_{r_1 \cdot r_2} Seq(v'_1, v'_2)$, the induction hypotheses require $|v_1| = |v'_1|$ and $|v_2| = |v_2'|$, but you only know $|v_1| \omega_2 | = |v'_1| \omega_2 |v'_2|$

- Sulzmann: …Let's assume *v* is not a *POSIX* value, then there must be another one …contradiction.
- Exists?

$$
L(r) \neq \varnothing \Rightarrow \exists v.\,POSIX(v,r)
$$

- in the sequence case $Seq(v_1, v_2) \succ_{r_1 \cdot r_2} Seq(v'_1, v'_2)$, the induction hypotheses require $|v_1| = |v'_1|$ and $|v_2| = |v_2'|$, but you only know $|v_1| \omega_2 | = |v'_1| \omega_2 |v'_2|$
- although one begins with the assumption that the two values have the same flattening, this cannot be maintained as one descends into the induction (alternative, sequence)

Our Solution

• a direct definition of what a POSIX value is, using the relation $s \in r \rightarrow v$ (specification):

$$
\begin{array}{ll}\n\boxed{\vert\epsilon\epsilon\rightarrow \textit{Empty}} & \overline{c\in c\rightarrow \textit{Char}(c)} \\
\hline\n\text{ } s \in r_1 \rightarrow v & \text{ } s \in r_2 \rightarrow v \quad s \notin L(r_1) \\
\hline\n\text{s} \in r_1 + r_2 \rightarrow \textit{Left}(v) & \text{s} \in r_1 + r_2 \rightarrow \textit{Right}(v) \\
\text{s}_1 \in r_1 \rightarrow v_1 & \text{s}_2 \in r_2 \rightarrow v_2 \\
\hline\n\text{s}_2 \in r_2 \rightarrow v_2 & \text{s}_1 \text{s}_2 \rightarrow s_1 \text{s}_3 \in L(r_1) \land s_4 \in L(r_2) \\
\hline\n\text{s}_1 \text{Cos}_2 \in r_1 \cdot r_2 \rightarrow \textit{Seq}(v_1, v_2)\n\end{array}
$$

…

It is almost trival to prove:

• Uniqueness If $s \in r \to v_1$ and $s \in r \to v_2$ then $v_1 = v_2$.

• Correctness

 $lexer(r, s) = v$ if and only if $s \in r \rightarrow v$

It is almost trival to prove:

• Uniqueness If $s \in r \to v_1$ and $s \in r \to v_2$ then $v_1 = v_2$.

• Correctness

 $lexer(r, s) = v$ if and only if $s \in r \rightarrow v$

You can now start to implement optimisations and derive correctness proofs for them. But we still do not know whether

s ∈ r → v

is a POSIX value according to Sulzmann & Lu's definition (biggest value for *s* and *r*)

Conclusion

- we replaced the POSIX definition of Sulzmann & Lu by a new definition (ours is inspired by work of Vansummeren, 2006)
- their proof contained small gaps (acknowledged) but had also fundamental flaws
- now, its a nice exercise for theorem proving
- some optimisations need to be applied to the algorithm in order to become fast enough
- can be used for lexing, is a small beautiful functional program

