POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Fahad Ausaf King's College London

joint work with Roy Dyckhoff and Christian Urban

Regular Expressions

<i>r</i> :::	$= \emptyset$	null
	ϵ	empty string
	C	character
	$r_{I} \cdot r_{2}$	sequence
	$r_{\rm I}+r_2$	alternative / choice
	r *	star (zero or more)

The Derivative of a Rexp

If *r* matches the string *c*::*s*, what is a regular expression that matches just *s*?

der c r gives the answer, Brzozowski (1964), Owens (2005) "...have been lost in the sands of time..."

It is a relative easy exercise in a theorem prover:

matches(r,s) if and only if $s \in L(r)$

where *matches*(r, s) $\stackrel{\text{def}}{=}$ *nullable*(*ders*(r, s))

POSIX Regex Matching Two rules:

• Longest match rule ("maximal munch rule"): The longest initial substring matched by any regular expression is taken as the next token.

iffoo_la

• Rule priority: For a particular longest initial substring, the first regular expression that can match determines the token.

POSIX Regex Matching Two rules:

• Longest match rule ("maximal munch rule"): The longest initial substring matched by any regular expression is taken as the next token.

iffoo_la

• Rule priority: For a particular longest initial substring, the first regular expression that can match determines the token.

i f _ b l a

Kuklewicz: most POSIX matchers are buggy http://www.haskell.org/haskellwiki/Regex_Posix

POSIX Regex Matching

 Sulzmann & Lu came up with a beautiful idea for how to extend the simple regular expression matcher to POSIX matching/lexing (FLOPS 2014)

Martin Sulzmann

• the idea: define an inverse operation to the derivatives

Regexes and Values

Regular expressions and their corresponding values (for *how* a regular expression matched a string):

Regexes and Values

Regular expressions and their corresponding values (for *how* a regular expression matched a string):

There is also a notion of a string behind a value: |v|

$$r_{1} \xrightarrow{der a} r_{2} \xrightarrow{der b} r_{3}$$

$$r_1 \xrightarrow{der a} r_2 \xrightarrow{der b} r_3 \xrightarrow{der c} r_4$$

$$r_1 \xrightarrow{der a} r_2 \xrightarrow{der b} r_3 \xrightarrow{der c} r_4$$
 nullable?

We want to match the string *abc* using r_{I} :

The original ideas of Sulzmann and Lu are the *mkeps* and *inj* functions (ommitted here).

Sulzmann & Lu Paper

• I have no doubt the algorithm is correct — the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless when stating this Lemma :) Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

Sulzmann & Lu Paper

• I have no doubt the algorithm is correct — the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless when stating this Lemma :) Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

"Well, I don't think there's any flaw. The issue is how to come up with a mechanical proof. In my world mathematical proof = mechanical proof doesn't necessarily hold."

Sulzmann & Lu Paper

• I have no doubt the algorithm is correct — the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless

Lemma 3 (Projection and Injection). Let r be a regular expression, l a letter and v a parse tree.

1. If
$$\vdash v : r$$
 and $|v| = lw$ for some word w, then $\vdash proj_{(r,l)} v : r \setminus l$.

2. If
$$\vdash v : r \setminus l$$
 then $(proj_{(r,l)} \circ inj_{r \setminus l}) v = v$

3. If $\vdash v : r$ and |v| = lw for some word w, then $(inj_{r \setminus l} \circ proj_{(r,l)}) v = v$.

MS:BUG[Come accross this issue when going back to our constructive reg-ex work] Consider $\vdash [Right (), Left a] : (a + \epsilon)^*$. However, $proj_{((a+\epsilon)^*,a)}$ [Right (), Left a] fails! The point is that proj only works correctly if applied on POSIX parse trees.

MS:Possible fixes We only ever apply proj on Posix parse trees.

For convenience, we write " $\vdash v : r$ is POSIX" where we mean that $\vdash v : r$ holds and v is the POSIX parse tree of r for word |v|.

Lemma 2 follows from the following statement.

necessarily nord

The Proof Idea by Sulzmann & Lu

- introduce an inductively defined ordering relation
 v ≻_r v' which captures the idea of POSIX
 matching
- the algorithm returns the maximum of all possible values that are possible for a regular expression.

The Proof Idea by Sulzmann & Lu

- introduce an inductively defined ordering relation
 v ≻_r v' which captures the idea of POSIX
 matching
- the algorithm returns the maximum of all possible values that are possible for a regular expression.
- the idea is from a paper by Cardelli & Frisch about GREEDY matching (GREEDY = preferring instant gratification to delayed repletion):
- e.g. given $(a + (b + ab))^*$ and string ab

GREEDY: [Left(a), Right(Left(b)] POSIX: [Right(Right(Seq(a,b))))]

$$\overline{\vdash Empty : e}$$
$$\overline{\vdash Cbar(c) : c}$$
$$\frac{\vdash v_{1} : r_{1} \quad \vdash v_{2} : r_{2}}{\vdash Seq(v_{1}, v_{2}) : r_{1} \cdot r_{2}}$$
$$\frac{\vdash v : r_{1}}{\vdash Left(v) : r_{1} + r_{2}}$$
$$\frac{\vdash v : r_{2}}{\vdash Rigbt(v) : r_{1} + r_{2}}$$
$$\frac{\vdash v_{1} : r_{1} \quad \cdots \quad \vdash v_{n} : r}{\vdash [v_{1}, \dots, v_{n}] : r^{*}}$$

ITP ???? - p. 12/17

• Sulzmann: ...Let's assume v is not a *POSIX* value, then there must be another one ...contradiction.

- Sulzmann: ...Let's assume v is not a *POSIX* value, then there must be another one ...contradiction.
- Exists?

$$L(r) \neq \varnothing \Rightarrow \exists v. POSIX(v,r)$$

- Sulzmann: ...Let's assume v is not a *POSIX* value, then there must be another one ...contradiction.
- Exists?

$$L(\mathbf{r}) \neq \varnothing \Rightarrow \exists \mathbf{v}. POSIX(\mathbf{v}, \mathbf{r})$$

• in the sequence case $Seq(v_1, v_2) \succ_{r_1 \cdot r_2} Seq(v'_1, v'_2)$, the induction hypotheses require $|v_1| = |v'_1|$ and $|v_2| = |v'_2|$, but you only know $|v_1| @ |v_2| = |v'_1| @ |v'_2|$

- Sulzmann: ...Let's assume v is not a *POSIX* value, then there must be another one ...contradiction.
- Exists?

$$L(\mathbf{r}) \neq \varnothing \Rightarrow \exists \mathbf{v}. POSIX(\mathbf{v}, \mathbf{r})$$

- in the sequence case $Seq(v_1, v_2) \succ_{r_1 \cdot r_2} Seq(v'_1, v'_2)$, the induction hypotheses require $|v_1| = |v'_1|$ and $|v_2| = |v'_2|$, but you only know $|v_1| @ |v_2| = |v'_1| @ |v'_2|$
- although one begins with the assumption that the two values have the same flattening, this cannot be maintained as one descends into the induction (alternative, sequence)

Our Solution

• a direct definition of what a POSIX value is, using the relation $s \in r \rightarrow v$ (specification):

It is almost trival to prove:

• Uniqueness If $s \in r \to v_1$ and $s \in r \to v_2$ then $v_1 = v_2$.

Correctness

lexer(r, s) = v if and only if $s \in r \rightarrow v$

It is almost trival to prove:

• Uniqueness If $s \in r \to v_1$ and $s \in r \to v_2$ then $v_1 = v_2$.

Correctness

lexer(r, s) = v if and only if $s \in r \rightarrow v$

You can now start to implement optimisations and derive correctness proofs for them. But we still do not know whether

 $s \in r \rightarrow v$

is a POSIX value according to Sulzmann & Lu's definition (biggest value for s and r)

Conclusion

- we replaced the POSIX definition of Sulzmann & Lu by a new definition (ours is inspired by work of Vansummeren, 2006)
- their proof contained small gaps (acknowledged) but had also fundamental flaws
- now, its a nice exercise for theorem proving
- some optimisations need to be applied to the algorithm in order to become fast enough
- can be used for lexing, is a small beautiful functional program

