
POSIX Lexing with Derivatives
of Regular Expressions

Or, How to Find Bugs with the
Isabelle Theorem Prover

Christian Urban

joint work with Fahad Ausaf and Roy Dyckhoff

SMAL, 23.3.2016 – p. 1/1

Why Bother?
Surely regular expressions must have been
studied and implemented to death by now, no?

…well, take for example the “evil” regular
expression (a?)n · an to match strings a . . . a︸ ︷︷ ︸

n

5 10 15 20 25 30
0
5

10
15

20
25
30

strings of as

tim
e

in
 se

cs Python
Ruby

SMAL, 23.3.2016 – p. 2/1

Why Bother?
Surely regular expressions must have been
studied and implemented to death by now, no?
…well, take for example the “evil” regular
expression (a?)n · an to match strings a . . . a︸ ︷︷ ︸

n

5 10 15 20 25 30
0
5

10
15

20
25
30

strings of as

tim
e

in
 se

cs Python
Ruby

SMAL, 23.3.2016 – p. 2/1

Isabelle interactive theorem prover; some proofs
are automatic – most however need help
the learning curve is steep; you often have to fight
the theorem prover…no different in other ITPs

SMAL, 23.3.2016 – p. 3/1

Isabelle Theorem Prover
started to use Isabelle after my PhD (in 2000)
the thesis included a rather complicated
“pencil-and-paper” proof for a termination
argument (SN for a sort of λ-calculus)

me, my supervisor, the examiners did not find any
problems

Henk Barendregt Andrew Pitts

people were building their work on my result
SMAL, 23.3.2016 – p. 4/1

Nominal Isabelle
implemented a package for the Isabelle prover in
order to reason conveniently about binders

λx. M ∀x. P x

when finally being able to formalise the proof
from my PhD, I found that the main result
(termination) is correct, but a central lemma
needed to be generalised

SMAL, 23.3.2016 – p. 5/1

a a

Nominal Isabelle
implemented a package for the Isabelle prover in
order to reason conveniently about binders

λx. M ∀x. P x

when finally being able to formalise the proof
from my PhD, I found that the main result
(termination) is correct, but a central lemma
needed to be generalised

SMAL, 23.3.2016 – p. 5/1

a a

Nominal Isabelle
implemented a package for the Isabelle prover in
order to reason conveniently about binders

λx. M ∀x. P x

when finally being able to formalise the proof
from my PhD, I found that the main result
(termination) is correct, but a central lemma
needed to be generalised

SMAL, 23.3.2016 – p. 5/1

a a

Variable Convention

Variable Convention:
If M1, . . . , Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound
variables are chosen to be different from the free
variables.

Barendregt in “The Lambda-Calculus: Its Syntax and Semantics”

instead of proving a property for all bound
variables, you prove it only for some…?
this is mostly OK, but in some corner-cases you
can use it to prove false…we fixed this!

SMAL, 23.3.2016 – p. 6/1

Bob Harper Frank Pfenning

published a proof on LF in
ACM Transactions on
Computational Logic,
2005, ∼31pp

Andrew Appel

relied on their proof in a
security critical
application

SMAL, 23.3.2016 – p. 7/1

Proof-Carrying Code

SMAL, 23.3.2016 – p. 8/1

Idea:

user:
untrusted

code
developer

—
web server

proof-
checker

code

certificate
a proof in LF

Appel’s checker is ∼2700 lines of code (1865 loc of
LF definitions; 803 loc in C including 2 library functions)
167 loc in C implement a type-checker
(proved correct by Harper and Pfenning)

Proof-Carrying Code

SMAL, 23.3.2016 – p. 8/1

Idea:

user:
untrusted

code
developer

—
web server

proof-
checker

code

certificate
a proof in LF

Appel’s checker is ∼2700 lines of code (1865 loc of
LF definitions; 803 loc in C including 2 library functions)
167 loc in C implement a type-checker
(proved correct by Harper and Pfenning)

SMAL, 23.3.2016 – p. 9/1

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

Each time one needs to check ∼31pp of informal paper
proofs—impossible without tool support. You have to be able
to keep definitions and proofs consistent.

SMAL, 23.3.2016 – p. 9/1

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

Each time one needs to check ∼31pp of informal paper
proofs—impossible without tool support. You have to be able
to keep definitions and proofs consistent.

SMAL, 23.3.2016 – p. 9/1

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

Each time one needs to check ∼31pp of informal paper
proofs—impossible without tool support. You have to be able
to keep definitions and proofs consistent.

SMAL, 23.3.2016 – p. 9/1

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

Each time one needs to check ∼31pp of informal paper
proofs—impossible without tool support. You have to be able
to keep definitions and proofs consistent.

SMAL, 23.3.2016 – p. 9/1

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

Each time one needs to check ∼31pp of informal paper
proofs—impossible without tool support. You have to be able
to keep definitions and proofs consistent.

Lessons Learned

by using a theorem prover we were able to keep a
large proof consistent with changes in the first
definitions

it took us appr. 10 days to get to the
error…probably the same time Harper and
Pfenning needed to LATEX their paper

once there, we ran circles around them

SMAL, 23.3.2016 – p. 10/1

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

time0

low priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

locks a resource

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

locks a resource

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

locks a resource

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

locks a resource

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

locks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

locks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

locks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

locks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

locks a resource

…

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

a

locks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

alocks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Real-Time Scheduling

SMAL, 23.3.2016 – p. 11/1

a

alocks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Priority Inheritance Scheduling
Idea: Let a low priority process L temporarily
inherit the high priority of H until L leaves the
critical section unlocking the resource.

Once the resource is unlocked, L “returns to its
original priority level.”

L. Sha, R. Rajkumar, and J. P. Lehoczky.
Priority Inheritance Protocols: An Approach
to Real-Time Synchronization. IEEE Trans-
actions on Computers, 39(9):1175–1185,
1990

classic, proved correct, reviewed in a respectable
journal....what could possibly be wrong?

SMAL, 23.3.2016 – p. 12/1

Priority Inheritance Scheduling
Idea: Let a low priority process L temporarily
inherit the high priority of H until L leaves the
critical section unlocking the resource.

Once the resource is unlocked, L “returns to its
original priority level.”

L. Sha, R. Rajkumar, and J. P. Lehoczky.
Priority Inheritance Protocols: An Approach
to Real-Time Synchronization. IEEE Trans-
actions on Computers, 39(9):1175–1185,
1990

classic, proved correct, reviewed in a respectable
journal....what could possibly be wrong?

SMAL, 23.3.2016 – p. 12/1

SMAL, 23.3.2016 – p. 13/1

a

a

AL BL AR BR

time0

low priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

SMAL, 23.3.2016 – p. 13/1

a

a

AL BL AR BR

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

SMAL, 23.3.2016 – p. 13/1

a

a

AL BL AR BR

A

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

SMAL, 23.3.2016 – p. 13/1

a

a

AL BL AR BR

A B

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

SMAL, 23.3.2016 – p. 13/1

a

a

AL BL

AR BR

A B

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

SMAL, 23.3.2016 – p. 13/1

a

a

AL BL

AR BR

A B

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

SMAL, 23.3.2016 – p. 13/1

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

SMAL, 23.3.2016 – p. 13/1

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

SMAL, 23.3.2016 – p. 13/1

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

SMAL, 23.3.2016 – p. 13/1

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

SMAL, 23.3.2016 – p. 13/1

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a high-priority
process is starved indefinitely by lower priority processes.

Priority Inheritance Scheduling

Idea: Let a low priority process L temporarily
inherit the high priority of H until L leaves the
critical section unlocking the resource.

Once the resource is unlocked, L returns to its
original priority level. BOGUS

…L needs to switch to the highest remaining
priority of the threads that it blocks.

this error is already known since around 1999

SMAL, 23.3.2016 – p. 14/1

Priority Inheritance Scheduling

Idea: Let a low priority process L temporarily
inherit the high priority of H until L leaves the
critical section unlocking the resource.

Once the resource is unlocked, L returns to its
original priority level. BOGUS

…L needs to switch to the highest remaining
priority of the threads that it blocks.

this error is already known since around 1999

SMAL, 23.3.2016 – p. 14/1

SMAL, 23.3.2016 – p. 15/1

by Rajkumar, 1991
“it resumes the priority it had at the point of entry
into the critical section”

SMAL, 23.3.2016 – p. 15/1

by Jane Liu, 2000
“The job Jl executes at its inherited priority until it
releases R; at that time, the priority of Jl returns to its
priority at the time when it acquires the resource R.”
gives pseudo code and uses pretty bogus data structures
the interesting part is “left as an exercise”

SMAL, 23.3.2016 – p. 15/1

by Laplante and Ovaska, 2011 ($113.76)
“when [the task] exits the critical section that caused
the block, it reverts to the priority it had when it
entered that section”

SMAL, 23.3.2016 – p. 15/1

by Silberschatz, Galvin and Gagne (9th edition,
2013)
“Upon releasing the lock, the [low-priority] thread
will revert to its original priority.”

SMAL, 23.3.2016 – p. 15/1

by Stallings (8th edition, 2014)
“This priority change takes place as soon as the
higher-priority task blocks on the resource; it should
end when the resource is released by the lower-priority
task.”

Priority Scheduling
a scheduling algorithm that is widely used in
real-time operating systems
has been “proved” correct by hand in a paper in
1990
but this algorithm turned out to be incorrect,
despite its “proof”

we (generalised) the algorithm and then really
proved that it is correct
we implemented this algorithm in a small OS
called PINTOS (used for teaching at Stanford)
our implementation was faster than their
reference implementation

SMAL, 23.3.2016 – p. 16/1

Priority Scheduling
a scheduling algorithm that is widely used in
real-time operating systems
has been “proved” correct by hand in a paper in
1990
but this algorithm turned out to be incorrect,
despite its “proof”

we (generalised) the algorithm and then really
proved that it is correct
we implemented this algorithm in a small OS
called PINTOS (used for teaching at Stanford)
our implementation was faster than their
reference implementation

SMAL, 23.3.2016 – p. 16/1

Lessons Learned

our proof-technique is adapted from security
protocols

we solved the single-processor case; the
multi-processor case: no idea!

SMAL, 23.3.2016 – p. 17/1

Regular Expressions

SMAL, 23.3.2016 – p. 18/1

r ::= ∅ null
| ϵ empty string
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

The Derivative of a Rexp

If r matches the string c :: s, what is a
regular expression that matches just s?

der c r gives the answer, Brzozowski (1964), Owens (2005)
“…have been lost in the sands of time…”

SMAL, 23.3.2016 – p. 19/1

…whether a regular expression can match the
empty string:

nullable(∅)
def
= false

nullable(ϵ) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

SMAL, 23.3.2016 – p. 20/1

The Derivative of a Rexp
der c (∅)

def
= ∅

der c (ϵ) def
= ∅

der c (d) def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

SMAL, 23.3.2016 – p. 21/1

The Derivative of a Rexp
der c (∅)

def
= ∅

der c (ϵ) def
= ∅

der c (d) def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

SMAL, 23.3.2016 – p. 21/1

Correctness

It is a relative easy exercise in a theorem prover:

matches(r, s) if and only if s ∈ L(r)

where matches(r, s) def
= nullable(ders(r, s))

SMAL, 23.3.2016 – p. 22/1

(a?)n · an

200 400 600 800 1,000
0
5

10
15

20
25
30

strings of as

tim
e

in
 se

cs
Python
Ruby
Scala V1
Scala V2

SMAL, 23.3.2016 – p. 23/1

(a?)n · an

0 3,000 6,000 9,000 12,000
0
5

10
15

20
25
30

strings of as

tim
e

in
 se

cs

SMAL, 23.3.2016 – p. 24/1

POSIX Regex Matching
Two rules:
Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

i f f o o b l a

Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

i f b l a

Kuklewicz: most POSIX matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix

SMAL, 23.3.2016 – p. 25/1

http://www.haskell.org/haskellwiki/Regex_Posix

POSIX Regex Matching
Two rules:
Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

i f f o o b l a

Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

i f b l a

Kuklewicz: most POSIX matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix

SMAL, 23.3.2016 – p. 25/1

http://www.haskell.org/haskellwiki/Regex_Posix

POSIX Regex Matching
Sulzmann & Lu came up with a beautiful idea for
how to extend the simple regular expression
matcher to POSIX matching/lexing (FLOPS
2014)

Martin Sulzmann

the idea: define an inverse operation to the
derivatives

SMAL, 23.3.2016 – p. 26/1

Regexes and Values
Regular expressions and their corresponding
values (for how a regular expression matched a
string):

r ::= ∅
| ϵ
| c
| r1 · r2
| r1 + r2

| r∗

v ::=
Empty

| Char(c)
| Seq(v1, v2)
| Left(v)
| Right(v)
| []
| [v1, . . . vn]

There is also a notion of a string behind a value: |v|

SMAL, 23.3.2016 – p. 27/1

Regexes and Values
Regular expressions and their corresponding
values (for how a regular expression matched a
string):

r ::= ∅
| ϵ
| c
| r1 · r2
| r1 + r2

| r∗

v ::=
Empty

| Char(c)
| Seq(v1, v2)
| Left(v)
| Right(v)
| []
| [v1, . . . vn]

There is also a notion of a string behind a value: |v|
SMAL, 23.3.2016 – p. 27/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a

r3
der b r4

der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

SMAL, 23.3.2016 – p. 28/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b

r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

SMAL, 23.3.2016 – p. 28/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

SMAL, 23.3.2016 – p. 28/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

SMAL, 23.3.2016 – p. 28/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4

v3
inj c

v2
inj b

v1
inj a

mkeps

SMAL, 23.3.2016 – p. 28/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

SMAL, 23.3.2016 – p. 28/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

SMAL, 23.3.2016 – p. 28/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

SMAL, 23.3.2016 – p. 28/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

SMAL, 23.3.2016 – p. 28/1

Sulzmann & Lu Matcher
We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

The original ideas of Sulzmann and Lu are the
mkeps and inj functions (ommitted here).

SMAL, 23.3.2016 – p. 28/1

Sulzmann & Lu Paper
I have no doubt the algorithm is correct — the
problem is I do not believe their proof.

“How could I miss this? Well, I was rather careless
when stating this Lemma :)
Great example how formal machine checked proofs
(and proof assistants) can help to spot flawed reasoning
steps.”

“Well, I don’t think there’s any flaw. The issue is how to
come up with a mechanical proof. In my world
mathematical proof = mechanical proof doesn’t
necessarily hold.”

SMAL, 23.3.2016 – p. 29/1

Sulzmann & Lu Paper
I have no doubt the algorithm is correct — the
problem is I do not believe their proof.

“How could I miss this? Well, I was rather careless
when stating this Lemma :)
Great example how formal machine checked proofs
(and proof assistants) can help to spot flawed reasoning
steps.”

“Well, I don’t think there’s any flaw. The issue is how to
come up with a mechanical proof. In my world
mathematical proof = mechanical proof doesn’t
necessarily hold.”

SMAL, 23.3.2016 – p. 29/1

Sulzmann & Lu Paper
I have no doubt the algorithm is correct — the
problem is I do not believe their proof.

“How could I miss this? Well, I was rather careless
when stating this Lemma :)
Great example how formal machine checked proofs
(and proof assistants) can help to spot flawed reasoning
steps.”

“Well, I don’t think there’s any flaw. The issue is how to
come up with a mechanical proof. In my world
mathematical proof = mechanical proof doesn’t
necessarily hold.”

SMAL, 23.3.2016 – p. 29/1

The Proof Idea
by Sulzmann & Lu

introduce an inductively defined ordering relation
v ≻r v′ which captures the idea of POSIX
matching
the algorithm returns the maximum of all possible
values that are possible for a regular expression.

the idea is from a paper by Cardelli & Frisch about
GREEDY matching (GREEDY = preferring instant
gratification to delayed repletion):
e.g. given (a + (b + ab))∗ and string ab

GREEDY: [Left(a), Right(Left(b)]
POSIX: [Right(Right(Seq(a, b))))]

SMAL, 23.3.2016 – p. 30/1

The Proof Idea
by Sulzmann & Lu

introduce an inductively defined ordering relation
v ≻r v′ which captures the idea of POSIX
matching
the algorithm returns the maximum of all possible
values that are possible for a regular expression.

the idea is from a paper by Cardelli & Frisch about
GREEDY matching (GREEDY = preferring instant
gratification to delayed repletion):
e.g. given (a + (b + ab))∗ and string ab

GREEDY: [Left(a), Right(Left(b)]
POSIX: [Right(Right(Seq(a, b))))]

SMAL, 23.3.2016 – p. 30/1

⊢ Empty : ϵ ⊢ Char(c) : c

⊢ v1 : r1 ⊢ v2 : r2
⊢ Seq(v1, v2) : r1 · r2

⊢ v : r1
⊢ Left(v) : r1 + r2

⊢ v : r2
⊢ Right(v) : r1 + r2

⊢ [] : r∗
⊢ v1 : r . . . ⊢ vn : r

⊢ [v1, . . . , vn] : r∗

SMAL, 23.3.2016 – p. 31/1

SMAL, 23.3.2016 – p. 32/1

Problems
Sulzmann: …Let’s assume v is not a POSIX value,
then there must be another one …contradiction.

Exists?
L(r) ̸= ∅ ⇒ ∃v. POSIX(v, r)

in the sequence case Seq(v1, v2) ≻r1·r2 Seq(v′
1, v′

2),
the induction hypotheses require |v1| = |v′

1| and
|v2| = |v′

2|, but you only know
|v1| @ |v2| = |v′

1| @ |v′
2|

although one begins with the assumption that the two
values have the same flattening, this cannot be maintained
as one descends into the induction (alternative, sequence)

SMAL, 23.3.2016 – p. 33/1

Problems
Sulzmann: …Let’s assume v is not a POSIX value,
then there must be another one …contradiction.

Exists?
L(r) ̸= ∅ ⇒ ∃v. POSIX(v, r)

in the sequence case Seq(v1, v2) ≻r1·r2 Seq(v′
1, v′

2),
the induction hypotheses require |v1| = |v′

1| and
|v2| = |v′

2|, but you only know
|v1| @ |v2| = |v′

1| @ |v′
2|

although one begins with the assumption that the two
values have the same flattening, this cannot be maintained
as one descends into the induction (alternative, sequence)

SMAL, 23.3.2016 – p. 33/1

Problems
Sulzmann: …Let’s assume v is not a POSIX value,
then there must be another one …contradiction.

Exists?
L(r) ̸= ∅ ⇒ ∃v. POSIX(v, r)

in the sequence case Seq(v1, v2) ≻r1·r2 Seq(v′
1, v′

2),
the induction hypotheses require |v1| = |v′

1| and
|v2| = |v′

2|, but you only know
|v1| @ |v2| = |v′

1| @ |v′
2|

although one begins with the assumption that the two
values have the same flattening, this cannot be maintained
as one descends into the induction (alternative, sequence)

SMAL, 23.3.2016 – p. 33/1

Problems
Sulzmann: …Let’s assume v is not a POSIX value,
then there must be another one …contradiction.

Exists?
L(r) ̸= ∅ ⇒ ∃v. POSIX(v, r)

in the sequence case Seq(v1, v2) ≻r1·r2 Seq(v′
1, v′

2),
the induction hypotheses require |v1| = |v′

1| and
|v2| = |v′

2|, but you only know
|v1| @ |v2| = |v′

1| @ |v′
2|

although one begins with the assumption that the two
values have the same flattening, this cannot be maintained
as one descends into the induction (alternative, sequence)

SMAL, 23.3.2016 – p. 33/1

Our Solution
a direct definition of what a POSIX value is,
using the relation s ∈ r → v (specification):

[] ∈ ϵ → Empty c ∈ c → Char(c)

s ∈ r1 → v
s ∈ r1 + r2 → Left(v)

s ∈ r2 → v s ̸∈ L(r1)

s ∈ r1 + r2 → Right(v)

s1 ∈ r1 → v1
s2 ∈ r2 → v2
¬(∃s3 s4. s3 ̸= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L(r1) ∧ s4 ∈ L(r2))

s1@s2 ∈ r1 · r2 → Seq(v1, v2)
…

SMAL, 23.3.2016 – p. 34/1

Properties
It is almost trival to prove:
Uniqueness

If s ∈ r → v1 and s ∈ r → v2 then v1 = v2.

Correctness
lexer(r, s) = v if and only if s ∈ r → v

You can now start to implement optimisations and
derive correctness proofs for them. But we still do
not know whether

s ∈ r → v
is a POSIX value according to Sulzmann & Lu’s
definition (biggest value for s and r)

SMAL, 23.3.2016 – p. 35/1

Properties
It is almost trival to prove:
Uniqueness

If s ∈ r → v1 and s ∈ r → v2 then v1 = v2.

Correctness
lexer(r, s) = v if and only if s ∈ r → v

You can now start to implement optimisations and
derive correctness proofs for them. But we still do
not know whether

s ∈ r → v
is a POSIX value according to Sulzmann & Lu’s
definition (biggest value for s and r)

SMAL, 23.3.2016 – p. 35/1

Pencil-and-Paper Proofs
in CS are normally incorrect

case in point: in one of Roy’s proofs he made the
incorrect inference
if ∀s. |v2| ̸∈ L(der c r1) · s then ∀s. c |v2| ̸∈ L(r1) · s

while
if ∀s. |v2| ∈ L(der c r1) · s then ∀s. c |v2| ∈ L(r1) · s
is correct

SMAL, 23.3.2016 – p. 36/1

Proofs in Math vs. in CS
My theory on why CS-proofs are often buggy

Math:
in math, “objects” can be
“looked” at from all “angles”;
non-trivial proofs, but it seems
difficult to make mistakes

Code in CS:
the call-graph of the seL4
microkernel OS;
easy to make mistakes

SMAL, 23.3.2016 – p. 37/1

Conclusion
we replaced the POSIX definition of Sulzmann &
Lu by a new definition (ours is inspired by work
of Vansummeren, 2006)

their proof contained small gaps (acknowledged)
but had also fundamental flaws

now, its a nice exercise for theorem proving

some optimisations need to be applied to the
algorithm in order to become fast enough

can be used for lexing, is a small beautiful
functional program

SMAL, 23.3.2016 – p. 38/1

Questions?

SMAL, 23.3.2016 – p. 39/1

