A Flexible and Efficient ML Lexer Tool based on
Extended Regular Expression Submatching

Martin Sulzmann* and Pippijn van Steenhoven**

Hochschule Karlsruhe - Technik und Wirtschaft

Abstract. Lexical analysis has many applications beyond the first phase
of compilation in programming language processing. We argue that ex-
tended regular expressions combined with the ability to extract sub-
match information significantly increase the expressiveness of lexer spec-
ifications. We show that such an expressive lexical analysis can be done
efficiently using some novel automata-based methods. The approach has
been implemented in an ML lexer tool which is compatible with ocamllex.
Experimental results confirm that our approach is competitive with re-
spect to existing ML lexer tools.

1 Introduction

The task of lexical analysis consists of identifying patterns of character sequences
also known as lexeme [1]. Patterns are typically described by regular expressions.
Thus, scanning can be performed efficiently by applying automata-based meth-
ods.

In this paper, we introduce an efficient lexical analysis approach based on
extended regular expressions with support for intersection and negation in com-
bined with submatching. As we will explain in more detail later, extended regular
expressions and submatching provide the means to support clean and concise
lexer specifications. While earlier works [10,9] supports either one of the two,
we are the first to support both extensions. Powerful regular expression libraries
such as [11] provide also a rich feature set but can possibly exhibit a running time
which can be exponential in the size of the input. Our lexical analysis approach
has a guaranteed linear run-time.

Specifically, our contributions are:

— We introduce a novel and expressive scanner approach based on extended
regular expressions combined with submatching (Section 2).

— The expressiveness of our approach poses new challenges when it comes to ef-
ficient scanning (Section 3). We present an efficient automata-based method
to track submatches connected to extended regular expressions. Our method
combines and extends prior work on partial derivative automata-based sub-
matching [14] and partial derivatives of an extended regular expression [4]
(Section 4).

* martin.sulzmann@hs-karlsruhe.de
** pip88nl@gmail.com

— We have implemented the approach in an ML lexer tool dreml which is
compatible with ocamllex (Section 5).

— We present empirical measurements which show that our approach is com-
petitive with respect to existing ML lexer tools (Section 6).

Related work is discussed in Section 3 and Section 6. Section 7 concludes.
Our tool including benchmark examples is available via

https://github.com/pippijn/dreml/

2 Expressiveness

We start off with a cursory overview of the novel features of our lexer tool. We
make use of standard math notation for regular expression patterns r:

ruo=elolleX|r4+r|rm|r|-r|r0r|z:r

Letters [are taken from a finite alphabet Y. Symbol ¢ denotes the empty word
and ¢ denotes the empty language. The next forms describe alternation, con-
catenation and Kleene star. In examples, we write r™ as a short-hand for rr*.
In patterns, we will write X' as a short-hand for [+ ... +1,, where [; € Y. Choice
and concatenation are assumed to be right-associative. The novelty lies in nega-
tion (—), intersection (N) and the submatch annotation z : r. We assume that
pattern variables = are linear, i.e. occurrences are distinct.

As observed in [10], negation is useful for C comments of the form /* ... */.
A pattern to match C comments may be written as

J#(a s ~(Z %/ 5))/

Describing the same language without negation would require a longer, more
complex and cumbersome expression:

/(DN A{x}) (e ++7 (DN {/,%})))"*/

Submatch annotations are highly useful to directly extract subparts during
lexical analysis to avoid clumsy post-processing steps. See the above example
where we directly extract the comment text. Another typical use case for sub-
matching are C preprocessor directives, particularly the #include directive. A
lexical analysis is only interested in the name of the included file, which can be
extracted using a pattern such as #include W*"(x : (X\ {"})*)".

Matching a valid include-directive with this pattern will record the file name
in the pattern variable x. For example, consider input #include "stdio.h", the
resulting matching environment will consist of the set I' = {(z : stdio.h)}. The
file name can then be extracted and used in a semantic action or post-processing
step.

The combination of submatching and extended regular expressions is highly
useful as shown by our final example. Via submatching we can specify a base
pattern for C integer literals, not including hexadecimal literals:

Pint = (mum : (0. 9)) (suf + (I + L+ u+ U)")

after which num contains the number and suf the type suffix. Via intersection
we can restrict the pattern for octal integer literals by requiring it to begin with
a zero followed by anything not containing digits 8 or 9:

Toct = Tint (07 (Z \ {87 9})*)

In general, intersection is particularly useful in the presence of composed
regular grammars. A library of standard regular expressions may define a set
of valid C identifiers, which may then be restricted in specialized lexers used to
verify a coding style or perform syntax highlighting based on coding conventions.

3 Efficient Submatching

Our lexer tool takes as input a sequence of patterns (rq,...,7,). Each r; repre-
sents the pattern for a particular class of lexeme. The common lexical analysis
approach is to seek for the longest matching pattern by testing each pattern r;
in parallel. Thus, the scanning problem can be reduced to a single pattern r. The
particular challenge we face is that each r is composed of submatch annotations
and extended operations such as negation and intersection. During scanning we
need to efficiently keep track of submatchings.

Earlier works [6,7] advocate the use of Thompson NFAs [15] for tracking
of submatches efficiently. Roughly, the NFA non-deterministically searches for
possible (sub)matchings without having to back-track. Thus, a linear running
time can be guaranteed.

To deal with extended regular expressions, the Thompson transformation
approach from regular expressions to NFA requires some significant changes. To
deal with negation, we must first turn the underlying NFA into a DFA and then
build the negation of the DFA. The DFA construction is costly and may incur
some exponential explosion on the size of the automata. Similar issues arise in
case of intersection where we must build the product automata. Interestingly,
real world regular expression tools such as re2 [5] which rely on the Thompson
NFA construction do not support negation and intersection (but for only very
limited cases).

The work in [10] describes how to support extended regular expressions by
adapting Brzozowski’s derivative operation [3]. A DFA for recognizing expres-
sions is obtained by interpreting regular expression as states. Transitions among
states are obtained via the derivative operation which symbolically transforms
regular expressions by taking away the leading letters. The results in [10] show
that the resulting DFAs are generally optimal in size. However, like the Thomp-
son NFA method, the Brzozowski method possibly suffers from an exponential
explosion in the size of the automata. Furthermore, the work in [10] does not
consider submatching which we consider a highly useful feature.

In conclusion, it is entirely possible to extend earlier works [6, 7, 10] with miss-
ing features such as submatching and extended regular expressions. However, we
decide to take a different route which allows us to stick to NFAs.

To support submatching and extended regular expressions, our idea is to rely
on the concept of Antimirov’s partial derivatives [2]. Specifically, we build upon
our own prior work [14] where we show to construct an NFA submatch automata
for standard regular expressions via partial derivatives.

Like Brzozowski’s derivative operation, the partial derivative operation per-
forms a symbolic transformation on regular expressions to take away the leading
letters. The difference is that Brzozowski’s derivatives yield a DFA whereas An-
timirov’s partial derivatives yield an NFA. Roughly, the partial derivative opera-
tion takes an expression r and a letter [and yields a set of alternatives {rq, ..., 7, }
where each r; is a partial derivative. We find that L(r) = L(I(r1 + ... + 75)).

For example, for expression a*a the set of partial derivatives with respect
to a is {¢,a*a}. Each expression is a possible successor state. Antimirov shows
that the number of partial derivatives is finite and linear in the size of the initial
regular expressions. Thus, we obtain a fairly compact NFA.

Important for our work is that recently the partial derivative operation has
been generalized to include additional operations such as negation and inter-
section [4]. As we will show in the upcoming section, we can thus extend the
NFA submatch construction in [14] to the case of extended regular expressions.
Experiments in the later Section 6 confirm that our approach works well in
practice.

4 Extended Partial Derivative Submatch Automata

We present the details of the NFA construction for tracking submatches for an
expression which may contain negation and intersection. For the construction of
the automata, we use Antimirov’s partial derivatives method [2] extended to the
case of intersection and negation [4].

Before we dive into the technical details, we illustrate the key ideas of the con-
struction via some example which for simplicity makes use of submatching only.
For pattern (z : a) + (y : ab) our construction yields the following transitions.
Error states and the respective transitions are omitted for brevity.

(a;(z—a))

(x:a)+ (y:ab) —/— (z: ¢)
(¢:0)+ (y: ab) L (y 2 0)
(v:b) L (g1

In the Antimirov method, NFA states can symbolically be represented by
regular expressions r. There are no e-transitions because the Antimirov method
builds new states by taking away the leading letter. For state (z : a) 4+ (y : ab)
the set of partial derivatives w.r.t. letter a is {(x : €),(y : b)}. Following [7],
transitions are tagged by matchings such as (z — a) for which we use function
notation.

For example, consider the transition arrow (@,(22a)) where in case we find
the input letter a we obtain the matching (z — a). Matchings are accumulated

to compute the bindings for submatch annotations. For example, running the
above NFA on input word ab yields the final binding y — ab.
In detail, here is a sample run of the NFA on input ab where we only follow
a specific path.
(x:a)+ (y: ab)

(a,(y—a)) (y . b)

(b,(y—b)o(y—a)) .

— Y+

Accumulation of tags is via function composition. We follow the standard def-
inition of function composition with the exception that we concatenate the
codomains of submappings with the same domain, i.e.

(y — wa) o (y — wi) = (y — wiwz)

Thus, we arrive at the final binding y — ab.

The main challenge is to extend the partial derivative operation to the case
of negation and intersection while retaining all the good properties (i.e. finite
number of partial derivatives). Thankfully for us, this problem has been solved
in [4]. The idea is to represent the extended partial derivative result as a dis-
junctive normal form. That is, as a set of alternatives where each alternative is
a conjunction of expressions which is again represented as a set. For example,
the normal form representation of ((a + b)* Nb*) + ¢ is {{(a + b)*,b*},{c}}.
In our setting, we additionally need to keep track of submatchings connected
to each alternative. Hence, we need to refine the normal form in [4] to include
submatching.

4.1 Extended Partial Derivatives with Submatchings

Extended regular expressions:
ro=el|l¢lleX|r+r|rr|r|-r|rOr|z:r

Normal form representation:

o= A{ry, e}t Conjunctive clause
fyg = (x1 — w1, ..., xn — wy) Matchings
R == (7", f) Conjunctive clause with matchings
R:={R1,..,Rn} Alternatives of conjunctions
Conjunctive clause to expression: Alternatives of conjunction to expression:
{rtl =r {J4=2¢
({riunl=rnr| (T HIUR) L =7 +(R)

Fig. 1. Extended Partial Derivatives Normal Form

Distributivity of concatenation, intersection and negation:
ROyr" ={{rr"|rer"}, fog) (P, f) € R}
Ri @Ry = {(T1" U™, fi 0 fo) [(T1", f1) € Ra, (72", f2) € Ra}

_ J{{~9e},id)} if R = {}
OF N { @¢n, pyer Upern ({77}, id) otherwise

Collection of € bindings:
zirlo=(x—eorl. el =id rral = (rl)o(r2lo)
-r|l.,=14d riNrel, . =ri]l . oral,

)= {rle if e € L(r)

id otherwise

ril. if e € L(r1)

r1+r2l. = {7“216 ife € L(r2)

Extended partial derivatives with submatching:

W) F@ =5 @=5 =0 @ 5@ ={{id}
®) 2w = {{: "D} =)o IS € o)}
@)%m+m=£mw%m>
(8) 507) = () Oy
L 1IN
(1) S0 = 2 ()@ 5 (r2)

Fig. 2. Extended Partial Derivatives with Submatching

Figure 1 describes the necessary adjustments. R describes the possible out-
comes of the (shortly defined) extended partial derivative operation %r. Each
component in R consists of a pair (7", f) where 7" is a set of conjunctions
{r1,...,7n} and f the associated matching function (i.e. mapping of pattern
variables to matched words). The translation of R to the underlying regular
expression is straightforward. See operations -| and - |}. By construction 7 is al-
ways non-empty whereas R can possibly be equal to the empty set. For example,
consider r = {({(a+b)*,b*}, f), ({c}, g)} for which we find r = ((a+b)*Nd*)+c.

Our refinement of the extended partial derivative operation 88 r with sub-

matching is given in Figure 2. We largely follow the definition given in [4] with
of course some necessary adjustments due to submatching. For the definition of
88 7 we require auxiliary operations (),, (@ and ©. These operations apply stan-
dard distributivity laws on expressions in normal form and additionally perform
operations on matching functions.

For operation (O, g is generally the identity function. There are two special
non-identity use cases. For Kleene star, g can be customized such that we keep
the matchings for all iterations or (as it is standard) only the last match. For con-
catenation where the first component matches €, we must collect all “€” bindings
in combination with the operator |.. Both special cases will be shortly explained
in more detail. Operation (@) combines conjunctive clauses which requires us to
build the composition of the associated matching functions.

Operation Q) effectively cancels any submatchings which arise below negation
by simply recording the identity matching function id. The reason is that we can
not give any well-defined meaning to these submatchings. For example, consider

—(y : a*). Suppose the pattern matches some word. Then, pattern variable
2 will bind any word not containing any letter a. Clearly, the binding of y is
nonsensical here because (due to the outer negation) there cannot be any match
for a*.

Next, we take a look at the various cases of the extended partial derivative
operation 6%7“. Base cases (1), (2) are straightforward and so is case (4) which
deals with choice.

Case (3) deals with submatch annotations x : r. The result is a set of alter-
natives where each conjunctive clause component 7" resulting from -2 5.7 18 turned
into an expression by applying -] to satisfy the syntactic forms of extended reg-
ular expressions. For each submatching f connected to a conjunctive clause, we
compose the ‘top-level’ match x — a with f to build the overall submatching
for each alternative in %(z :r).

Case (5) deals with the Kleene star. We unfold the Kleene star once and then
concatenate the result with r*. In case of submatchings within r, the common
approach is to keep only the “last” match. This is achieved via lasty, () whose
special purpose is to cancel all “outer” mappings connected to any variable in
fo(r) where fu(r) refers to all pattern variables in r. * For example,

(y = wa) o lastyy o (y — w1) = (y — w1)

For concatenation r173, case (6), there are two subcases depending if r;
is nullable, i.e. € € L(r1). The nullable test for extended regular expression is
straightforward and omitted for simplicity. In case r; is not nullable, we only
apply the partial derivative operation on r; and concatenate the result with ro.
The () operation carries the identity function because the matchings for o yet
have to be computed.

! Is is also possible to tailor our approach to record the matchings for each iteration.
We ignore this variation here for brevity.

If 71 is nullable, we can simply drop 71 and apply the partial derivative
operation on ry. What about the bindings in 717 We clearly can not ignore
them. For example, consider

((z:(y:a)")+(z:0"))r

r1

Expression r; matches e. This implies that the bindings of nullable subexpres-
sions within r; are equal to e. Both alternatives are here nullable. The left
alternative (z : (y : a)*) yields (z — €,y — ¢€) and the right alternative yields
z — €. However, we will only report (z — ¢,y — ¢€) because we follow here a
greedy left-most matching strategy which strictly favors left-most matches.

Collection of “e bindings” is achieved via r;|.. By assumption r; is nullable.
Hence, we recurse over the structure of r; and consider all submatch annotations
which match e. We attach the resulting bindings 71|, to the bindings in 8%(7"2)
by slightly abusing the () operator. The concatenated expression € yields ele-
ments re in conjunctive clauses. We silently assume that re will be immediately
simplified to 7.

Cases (7) and (8) deal with intersection and negation and make use of the
respective distributivity operators. Recall that we do not track any submatchings
within negation.

4.2 Submatch NFA Construction

The construction of the actual submatch automata proceeds as follows. We re-

peatedly apply the g- operation to compute the set of all states, starting with
the pattern r. This set is finite as verified in [4]. Hence, we can apply the following

fixpoint construction:

fix({r1,...;rn}) i=let = {rq,....,rn} U UaeE,nE{n,...,rn}
inife={ry,..,rm}

then {r1,...,mn}

else fiz(x)
The set fiz({r}) denotes the set of states of the automata resulting from r where
r is the initial state and any state r’ € fiz(r) where € € L(r’) is a final state.

We assume that transitions are recorded in some set 1" where 7' is defined as

follows:

T—i{n (a,f) ra | for each r1,re € fix({r}) Aa € X where

for some (7", f') € %7’1 we have that f/ = f and ro = 7|}

We describe the execution of the submatch automata of r on some input

word. Transitions operate on a configuration {r1, ,...,7,, } which is a set of

active states r; attached with the so far accumulated matching function f;. The

initial configuration is {r;q}. For input symbol a, the derivation step from one
configuration to the next is as follow:

(a,9)
{Tlfly-..yrnfn} 2, {T;ofi | Tiy, € {Tlh""’r".fn} AT, 189 e T}

That is, we build the set of follow states which are reachable via a transition
and extend the current matching function. 2

We may encounter duplicate states because submatching may be ambiguous.
For example, consider the pattern (z : a*) + (y : a*) where for input a we either
obtain the matching (z — a) or (y — b). Following [14], we remove duplicates
by giving preference to states which are to the left in the order as generated by
the partial derivative operation. We assume that two expressions r; and 7y are
duplicates if they are syntactically equal assuming that all submatch annotations
(x : r) are replaced by 7.

Thus, we follow the greedy left-most submatching strategy for the submatch-
ings connected to a pattern describing a lexeme. Recall that our lexer tool guar-
antees to compute the longest matching among all lexeme patterns by running
each pattern in parallel.

4.3 Example

a | [z/a, yleps]

a | [x/al b | [y/b]
Lo IvATY o
Notation: eps = ¢ [x/a]l =z —a

Fig.3.r = (z: a)rz where 72 = (y : —¢,r3) and r3 = (2 : ab + ac)

We consider some example to explain the construction in more detail. We
assume the alphabet X = {a,b,c} and the pattern expression r = (z : a)re
where ro = (y : =¢)rg and r3 = (2 : ab+ac), thus r = (z : a)(y : =¢)(z : ab+ ac).
The resulting NFA is given in Figure 3 where we exclude error states for brevity.
Below, we consider a few steps of the extended partial derivative construction.

We start off with the initial pattern r. The computation of the extended
partial derivative of r for letter a is as follows.

2 In our informal execution notation at the beginning of this section, the extended
matching is put over the derivation arrow whereas in our formalization the extended
matching is now attached to the resulting state.

2(r) %((w)w)
57(a)Diar2
= {({z: 71}, (x = a) o))[(F", f) € L(a)} Oig 72

Intermediate step:

5-(a) = {({e}, id)}
={({z:e},(x = a))} Oiara
= {({(z: &)ra}, (z — a))}

= {({r2}, (z — a))}

In the last step, we apply the simplification er = r. For brevity, such simplifica-
tions are omitted in the formal description in Figure 2.

Computation of 8%(r) and a@C(r) yield {({¢r2}, (z — b))} and {({¢r2}, (z —
¢))} which are equivalent to the error state.

We continue with the set of derived terms from the previous iteration, in this
case just rg which is equal to (y : =¢)(z : ab + ac). We start off with building
the extended partial derivative for the letter a. For the first component of the
concatenated pattern (y : —¢)(z : ab+ ac) we find € € L(—c). Hence, in the first
step we apply the ‘otherwise’ case for concatenation. See case (6) in Figure 2.

0

r—HQ;

Z((y: —c)(z : ab+ ac))
= g(y :2¢) O,q(z 1 ab+ac) U %(z rab+ac) Oy €
Intermediate step:
2 (=e) = {({~¢},id)}
={({y: ~¢)(z: ab+ac)}, (y — a)} U £ (2 : ab+ac) Oy €
Intermediate steps:
(D y:-cle=(y—e
(2) F(z:ab+ac) = {({z: b}, (2 = a)),({z : ¢}, (= a))}
where we simplify eb to b and ec to ¢
(3) Application of Oy:ﬂcle €
invokes another simplification step, be to b and ce to ¢
={({(y: 20)(z : ab+ ac)}, (y — a)), ({2 : b},

(z—=ay—6),({z:¢}(z = ay =)}

The remaining states and transitions are computed similarly.
Here is a sample execution for input aab.

State (z : €) is the only final state. Hence, the resulting matching is (xz —
a,y — €,z — ab).

5 The dreml Tool

Our tool aims to be a fully compatible drop-in replacement for ocamllex [9] with
extended regular expression support and minor additional usability features.
We give some examples in dreml syntax and discuss the current state of our
implementation.

5.1 Lexer Example

We consider some of the earlier examples from Section 2 which deal with C-style
comments and integer literals. Recall that both examples make use of submatch-
ing in combination with negation and intersection. Here are the examples in
dreml syntax.

(* Shortcut definitions for regular expressions. x*)
let digit = [’0°-’9"]

let lowercase = [’a’-’z’]

let suffix = [’1’ 'L’ ’uw’ °U’]

let int = (digit+ as num) (suffix+ as suf)

(* Lexer specifications. %)

rule c_token = parse

| "/x" ("(Cx "x/" _x) as s) "x/" { Comment s }

| int & (["20°] _%) { IntLiteral (Decimal, num, suf) }
| int & (0’ (["’8” ’9°1%) { IntLiteral (Octal, num, suf) }

| - { failwith "invalid character" }

The dreml tool follows the ocamllex syntax which already has support for
submatching. In addition, dreml adds support for negation and intersection.

~ for negation of regular expressions,

& for their intersection,

— re as name to introduce a pattern variable binding name referring to the
text matched by re,

— (...) for grouping of expressions, not introducing a pattern variable,

— ’a’ to match a single character, and

— "abc" as shorthand for the concatenation of characters in the string.

— [20°-29°] for character classes

[~’8’ ’9°] for negated character classes.

The earlier C comment text extraction is an almost literal translation to
dreml. The earlier octal number specification

Ping = (num : (0...9) ") (suf : I+ L+u+U)*)

is written in dreml syntax as follows

let int = (digit+ as num) (suffix+ as suf)

The shortcut definition int introduces pattern bindings num and suf. We
can refer to these bindings inside the semantic actions of patterns. For example,
consider

| int & (°0° (["’87 ’9°]x%) { IntLiteral (Octal, num, suf) }

where on the right-hand side we refer to bindings num and suf which arise
from int. Note that the negated character class [~’8’ ’9’] corresponds to
(2 {8.9})".

The above refines our earlier specification by including decimal numbers.
Decimal numbers are required to start with a non-zero digit, since the base
pattern requires at least a leading digit.

| int & (["’0°] _x) { IntLiteral (Decimal, num, suf) }

Readers familiar with Perl style regular expressions will notice that the
ocamllex syntax slightly differs from Perl. The purpose of the ocamllex syntax
is to match the OCaml syntax more closely, thus making it easier for syntax
highlighting source code editors to properly display the code. Most notably the
two key differences to the Perl style syntax are:

— Characters and strings must be explicitly quoted with >’ and "", respec-

tively.
— The ML-style _ operator replaces . as wildcard character representing 3.

5.2 Lexer Engine

Concatenation
or=rp=0¢ er=re=r

Choice
r+r=r —p+r=r+-¢p=-¢

Kleene star

** *

rto=r" gf=¢ ¢*=c¢

Intersection
rOr=r dNr=rNe=7a¢

Negation
! (—\T) =T

Fig. 4. Simplification rules for regular expression patterns

Simplifications To reduce the number of states during the NFA submatch au-
tomata construction, we apply simplifications on regular expression patterns.

See Figure 4. For example, via the rules for concatenation we can replace state
¢ro from the earlier Section 4.3 by the canonical error state ¢. In r +r = r
we assume that the “right” r will be removed to maintain the greedy left-most
nature of our NFA submatch engine.

Simplification rules are applied from left to right and are guaranteed to ter-
minate as we strictly produce a smaller expression. It is straightforward to verify
that simplification rules are equivalence preserving.

Character classes Currently, character classes are desugared into plain regular
expressions. We plan to provide ‘native’ support for character classes and adopt
ideas in [10] to support Unicode.

FEzecution The current dreml prototype follows an interpreter style table-driven
approach. We are in the process of supporting full code generation. Our plan
is to support two back-ends: a table-based one using a modified version of our
prototype implementation, and a code-based back-end using mutually recur-
sive functions. An implementation of such code generation already exists in the
Thompson DFA based re2ml [12] tool. This older tool supports neither extended
regular expressions nor pattern submatching. Our development of dreml will su-
persede this tool.

Tokenization At the time of submission, we only provide limited tokenization
support because we do not fully support the Lexing interface in ocamllex.
This interface abstracts processing of arbitrary streams as well as plain strings.
Position information is extracted by notifying the library when matching a full
lexeme. The underlying library takes care of all details concerning buffering.
Hence, the implementation effort to achieve full support for tokenization is rather
straightforward.

Redundancy Check Using our extended regular expression automata construc-
tion, we can decide whether the language of an expression r; is a subset of the
language of another expression ro. If it is, and 71 occurs after 7o, a greedy left-
most match will never reach it. We can notify the user of this problem. re2ml
implements this check in an ad-hoc way, due to the lack of extended regular
expressions. In dreml, we can accurately solve the equation

by constructing the automata for vy N —ro. If the resulting automata accepts no
language, i.e. it is empty or contains no final state, the equation is true and we
can issue a warning.

6 Empirical Results

We benchmark the performance of dreml. Benchmarks are executed under Ubuntu
Linux 3.8.0 with 3.4GHz Intel Quad Core and 8GB RAM. Our benchmarks fo-
cus on the size of the resulting automata and the time spent on the automata
construction. We also consider timing results for (sub)matching but for all cases
we ignore the cost of tokenization. The contenders are ocamllex and ml-ulex
which are lexing tools part of OCaml [8] and respectively SML/NJ [13]. For
experiments, we use OCaml 4.00.1 and SML/NJ 110.74. ocamllex supports
submatching and ml1-ulex supports extended regular expressions based on the
ideas described in [10]. Neither tool supports both features like our dreml tool.

The comparison to ocamllex is interesting, as we aim to produce a drop-
in replacement for this tool. However, dreml is strictly implemented in OCaml
and currently only supports a table-driven approach whereas the ocamllex DFA
matching engine is implemented in C. Our measurements show that we already
obtain good performance results.

A comparison with ml1-ulex is more representative, since both SML/NJ and
ocamlopt® produce relatively straightforward native code.

In our first benchmark, we consider a C lexical grammar specification. The
ml-ulex and dreml variant make use of extended regular expressions whereas
the ocamllex variant uses a more clumsy workaround with standard regular
expressions. Both ocamllex and dreml use submatching which is not supported
by ml-ulex.

Tool States
ml-ulex 171
ml-ulex (minimized)|167
ocamllex 127
dreml 60

Fig. 5. Number of automata states

Figure 5 shows the number of automata states. Note that since ocamllex has
a very low automata size limit, the grammar we use does not include keywords
and simply collapses all of them into the identifier rule with a subsequent
table lookup. As can been seen, our non-deterministic automata is the smallest
(as expected). The reason why the DFA produced by ocamllex is smaller than
the minimized m1-ulex DFA is unclear to us.

Figure 6 shows the timing result matching against a larger C file. Timings
for ocamllex and dreml include variations where we do not perform any sub-
matching. That is, effectively ignore the context of C comments and the path

3 The “optimizing” OCaml native compiler merely performs some inlining, which was
turned off for the tests.

——oe—— sub-dreml
—=—— sub-ocamllex
——*—— nosub-dreml
——&—— nosub-ocamllex
———— nosub-mlulex

P . i e I
3x 106 6x10° 9x10° 1.2x107
n

Fig. 6. Time taken lexing a Mozilla source file of n bytes

of include directives. As can been seen, for both cases performance results are
comparable. This indicates that submatching generally does not incur any severe
run-time penalty.

The timings for m1-ulex (which does not support submatching) appear to be
the worst. We would have expected its timings to be similar to, or even slightly
better, due to the DFA-based approach, than the ones for the NFA-based dreml.
We suspect the ‘bad’ timing behavior of ml1-ulex might be due to the fact that
the input file is read in chunks of 4KB. Hence, we observe overhead due to I0.

0.003 =

[dreml
— 0.002 [~ ——— ml-ulex
i r —— ocamllex
- 0.001 [~ ———s—— perl

— %« pcre

M

10 20 30 40 50
n

Fig. 7. Running a* on n bytes

Figure 7 shows the timing results for matching a simple pattern against some
large file. dreml and ml-ulex are comparable whereas ocamllex is much faster
due to its C-based table engine. For comparison, we also include results for Perl
and PCRE.

The next two benchmarks measure the time spent on constructing the au-
tomata. Figure 8 considers the pattern a™ which is a short-hand for a con-
catenated n times. Clearly, the pattern is deterministic. Hence, dreml will also
produce a DFA. As expected, the dreml NFA method causes some unnecessary
overhead. Interestingly, ocamllex performs the worst.

Figure 9 shows a worst-case scenario for DFA approaches. Performance re-
sults of ml-ulex and dreml are similar for the extended regular expression

0.003 -

—— dreml
——— ml-ulex

g 0.002
* ——s— ocamllex
0.001 -
L !
10 20 30
n
Fig. 8. Constructing automata for a™
0.3
= 0.2 ——— dreml
k3 L ———— ml-ulex
= 01k ———=—— ocamllex
. 4 s o ¢ o000
10 20 30 40 50

n

Fig. 9. Constructing automata for (a + b)*b(a + b)"

(=(—a N =b))*. Obviously, we assume here that the above is not simplified to
(a+b)*.

2000

states

1000

——— dreml
——— ml-ulex
———s—— ocamllex

20 30 40 50
n

Fig. 10. Automata size for (a + b)*b(a +b)"

The exponential behavior of ocamllex and ml-ulex is due to the exponential
size of the DFA automata. See Figure 10. In contrast, the NFA approach in dreml

shows polynomial growth.

7 Conclusion

The combination of submatching and extended regular expressions improves
the expressiveness of lexer specifications. Efficient lexing is achieved via a novel
NFA-based method. Our prototype tool dreml implements the idea and can be
used as a drop-in replacement for ocamllex with additional functionality. Initial
performance results are encouraging. Future efforts will be aimed at improving
usability and performance of the tool.

Some ideas for future development are:

— Add Unicode support, building on the ideas implemented in ml-ulex and
presented in [10]. This would improve compile time performance even for
non-Unicode patterns.

— Perform static analysis on regular expressions and the resulting automaton
to provide better error messages, both at compile time and at runtime.
Abstract interpretation may be helpful to prove properties of a scanner de-
scription.

— Provide an option to turn the NFA into a DFA and minimize the resulting
DFA, at the expense of increased compile time. A DFA is often a feasible
alternative to NFAs, when the combinatorial explosion of states does not or
minimally occur.

— Implement an ML code generator producing mutually recursive functions in
addition to the current table-based back-end. This is likely to vastly improve
matching performance for large lexemes.

— Investigating the possibilities within a generic submatching based lexer en-
gine.

It would be interesting to include the semantic action functions in the AST
data structure representing patterns. These functions would replace the vari-
able names and using GADTs?*, we might be able to construct a statically
typed heterogeneous matching environment. Initial attempts at this failed,
so further research is required.

This type of lexer engine would not be compatible with ocamllex, but would
allow a user to write the semantic actions directly into the pattern in native
OCaml syntax.

Acknowledgments

We thank the reviewers for their comments. We thank John Reppy and Aaron
Turon for their m1-ulex benchmark examples.

References

1. Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2006.

4 Generalised Algebraic Data Types

10.

11.
12.

13.
14.

15.

. Valentin M. Antimirov. Partial derivatives of regular expressions and finite au-

tomaton constructions. Theoretical Computer Science, 155(2):291-319, 1996.
Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481-494,
1964.

Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. Partial derivatives
of an extended regular expression. In Proc. of LATA’11, volume 6638 of LNCS,
pages 179-191. Springer, 2011.

Russ Cox. re2 — an efficient, principled regular expression library.
http://code.google.com/p/re2/.

Russ Cox. Regular expression matching can be simple and fast (but is slow in java,
perl, php, python, ruby, ...), 2007.

http://swtch.com/ rsc/regexp/regexpl.html.

Ville Laurikari. NFAs with tagged transitions, their conversion to deterministic
automata and application to regular expressions. In SPIRFE, pages 181-187, 2000.
OCaml. http://caml.inria.fr/pub/docs/manual-ocaml.

ocamllex.
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html.

Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives reex-
amined. Journal of Functional Programming, 19(2):173-190, 2009.

PCRE - Perl Compatible Regular Expressions. http://www.pcre.org/.

re2ml: Code-based replacement for ocamllex without submatching support.
https://github.com/pippijn/re2ml.

Standard ML of New Jersey. http://www.smlnj.org/.

Martin Sulzmann and Kenny Zhuo Ming Lu. Regular expression sub-matching
using partial derivatives. In Proc. of PPDP’12, pages 79-90. ACM, 2012.

Ken Thompson. Programming techniques: Regular expression search algorithm.
Commaun. ACM, 11(6):419-422, 1968.

