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Abstract. Regular expression matching using backtracking can have
exponential runtime, leading to an algorithmic complexity attack known
as REDoS in the systems security literature. In this paper, we present a
static analysis that detects whether a given regular expression can have
exponential runtime for some inputs. The analysis works by forming
powers and products of transition relations and thereby reducing the
REDoS problem to reachability. The correctness of the analysis is proved
using a substructural calculus of search trees, where the branching of
the tree causing exponential blowup is characterized as a form of non-
linearity.

1 Introduction

Regular expressions are everywhere. Yet the backtracking virtual machines that
are used to match them (in Java, .NET and other frameworks) are very differ-
ent from the DFA construction used in compiling. Whereas DFAs run in linear
time but may be expensive to construct, backtracking matchers have low initial
cost, but may have exponential runtime for some inputs [6]. This is a problem
when such matchers may be exposed to malicious input, say over a network, as
an attacker could craft an input in order for the matcher to take exponential
time. This problem is known as REDoS, short for Regular Expression Denial-of-
Service.

For a straightforward example of an exponential blowup, consider the follow-
ing regular expression:

(a | b | ab)∗c

Matching this expression against input strings of the form (ab)n leads the Java
virtual machine to a halt for very moderate values of n (∼ 50) on a contem-
porary computer. Certain other backtracking matchers like the PCRE library
and the matcher available in the .NET platform seem to handle this particular
example well. However, the ad-hoc nature of the workarounds implemented in
these frameworks are easily exposed with a slightly complicated expression /
input combination:

(a | b | ab)∗bc

This expression, when matched against input strings of the form (ab)nac, leads
to exponential blowups on all the three matchers mentioned.



The REDoS analysis builds on the idea of non-deterministic Kleene ex-
pressions. When matching the input string ab against the Kleene expression
(a | b | ab)∗, a match could be found by taking either of the two different paths
through the corresponding NFA. If we repeat this string to form abab, now there
are four different paths through the NFA; this process quickly builds up to an
exponential amount of paths through the NFA as the pumpable string ab is re-
peated. A matcher based on DFAs would not face a difficulty in dealing with such
expressions since the DFA construction eliminates such redundant paths. How-
ever, these expressions can be fatal for backtracking matchers based on NFAs,
as their operation depends on performing a depth-first traversal of the entire
search space.

We think of the various phases of the analysis as very simple and non-
standard logics for judgements for different implications of the form:

w : p1 → p2

Here p1 → p2 is a proposition and w is a proof of it, which we will call its realizer.
In this way, we can focus on what the analysis tries to construct, not how. Hence
the analysis can be seen as a form of proof search, and it is implemented via
straightforward closure algorithms.

A second use of logic or type theory in this paper comes in when proving
the soundness of the analysis, when we need to show that the constructed string
really leads to exponential runtime. While the backtracking machine that we use
as an idealization of backtracking matchers (like those in the Java platform) is
not very complicated, it is not straightforward to reason about how it behaves
on some constructed malicious input. This is because the machine traverses the
search tree in a depth-first strategy, whereas the attack string is best under-
stood in terms of a composition of horizontal slices of the search tree. To reason
compositionally, we first introduce a calculus of search trees, inspired by sub-
structural logics. In a nutshell, the existence of a pumpable string as part of a
REDoS vulnerability amounts to the existence of a non-linear derivation in the
search tree logic, essentially as in a derivation of this form:

p

p, p

Thus we can reason about the exponential growth of the search tree in a composi-
tional, logical style, separate of the search strategy of the backtracking matcher.
The exponential runtime of the machine then follows due to the fact that the
runtime is at least the width of the search tree if the matcher is forced to explore
the whole tree.

Outline of the paper

Section 2 presents some required background on regular expression matching in
a form that will be convenient for our purpose. We then define the three phases
(prefix, pumping, and suffix construction) of our REDoS analysis in Section 3



a, b, c input symbols
w, x, y, z strings of input symbols
p, q pointers to NFA nodes or states
β, θ ordered sequences p1 . . . pn of NFA states
Φ sets {p1, . . . , pn} of NFA states
σ sequences of state/index pairs (p, j)
ε empty word or sequence
� NFA transition relation (Definition 2)
7→ ordered NFA transition function (Definition 1)
 transitions of backtracking machine (Definition 3)
V multistate transition function (Definition 5)
�̀ ordered multistate transition function (Definition 8)

Fig. 1: Notational conventions

and validate it on some examples in Section 4. Section 5 and Section 6 prove the
soundness and the completeness of the analysis using a substructural calculus of
search trees. Section 7 presents a brief overview of the OCaml implementation
of the analysis and the practical performance of our tool. We conclude with
a discussion of related work in Section 8 and directions for further work in
Section 9.

2 Basic constructs

This section presents some background material that will be needed for the anal-
ysis, such as non-deterministic automata. Figure 1 gives an overview of notation.
We assume that the regular expression has been converted into an automaton
following one of the standard constructions.

2.1 Backtracking and the ordered NFA

The usual text-book definitions of NFAs do not impose any ordering on the
transition function. For an example, a traditional NFA for the regular expres-
sion a(bc | bd) would not prioritize any of the two transitions available for
character b over the other. Since backtracking matchers follow a greedy left-
to-right evaluation of alternations, the alternation operator effectively becomes
non-commutative in their semantics for regular expressions. Capturing this as-
pect in the analysis requires a specialized definition of NFAs.

If we are only concerned about acceptance, Kleene star is idempotent and
alternation is commutative. If we are interested in exponential runtime, they
are not. The non-commutativity of alternation is not that surprising in terms of
programming language semantics, as Boolean operators like && in C or andalso
in ML have a similar semantics: first the left alternative is evaluated, and if that
does not evaluate to true, the right alternative is evaluated. Since in our tool the



NFA is constructed from the syntax tree, the order is already available in the
data structures. The children of a NFA node have a left-to-right ordering.

Definition 1 (Ordered NFA). An ordered NFA N consists of a set of states,
an initial state p0, a set of accepting states Acc and for each input symbol a a
transition function from states to sequences of states. We write this function as

a : p 7→ q1 . . . qn

For each input symbol a and current NFA state p, we have a sequence of successor
states qi. The order is significant, as it determines the order of backtracking.

In the textbook definition of an ε-free NFA, the NFA has a transition function
δ of type

δ : (Q×Σ)→ 2Q

where Q is the set of states and Σ the set of input symbols. Here we have imposed
an order on the sets in the image of the function, replacing 2Q by Q∗, curried
the function, and swapped the order of Q and Σ.

Σ → (Q→ Q∗)
a 7→ p 7→ q1 . . . qn

Definition 2. The nondeterministic transition relation of the NFA is given by
the following inference:

a : p 7→ q1 . . . qn

a : p � qi

Note however, that we cannot recover the ordering of the successor states qi from
the non-deterministic transition relation. In this regard, the NFA on which the
matcher is based has a little extra structure compared to the standard definition
of NFA in automata theory. If we know that

a : p � q1 and a : p � q2

we cannot decide whether the ordered transition is

a : p 7→ q1 q2 or a : p 7→ q2 q1

To complement the ordered NFA, we introduce two kinds of data structures:
ordered multistates β are finite sequences of NFA states p, where the order is
significant. Multistates Φ represent sets of NFA states, so they can be represented
as lists, but are identified up to reordering. Each ordered multistate β can be
turned into a multistate given by the set of its elements. We write this set as
Set(β). If

β = p1 . . . pn

then
Set(β) = {p1, . . . , pn}

The difference between β and Set(β) may appear small, but the notion of equality
for sets is less fine-grained than for sequences, which has an impact on the search
space that the analysis has to explore.



2.2 The abstract machines

The analysis assumes exact matching semantics of regular expressions. Given
regular expression e and the input string w, the matcher is required to find a
match of the entire string, as opposed to a sub-string. Most practical matchers
search for a sub-match by default. However, such behavior can be modeled in
exact matching semantics by augmenting the regular expression with match-all
constructs at either end of the expression, as in (.∗e.∗). Practical implementations
offer special “anchoring” constructs that allow regular expression authors to
enforce exact matching semantics. For an example, expressions of the form (ˆe$)
require them to be matched against the entire input string.

While the theoretical formulation of our analysis assumes exact matching
semantics (thus avoiding unnecessary clutter), our implementation assumes sub-
match semantics, since it is more useful in practice. The translation between the
two semantics is quite straightforward.

Definition 3 (Backtracking abstract machine). Given an ordered NFA,
the backtracking machine is defined as follows. We assume an input string w
as given. Machine transitions may depend on w, but it does not change during
transitions, so that we do not explicitly list it as part of the machine state. The
input symbol at position j in w is written as w[j] (j is 0-based).

– States of the backtracking machine are finite sequences of the form

σ = (p0, j0) . . . (pn, jn)

where each of the pi is an NFA state and each of the ji is an index into the
current input string. We refer to individual (p, i) pairs as frames (as in stack
frames).

– The initial state of the machine is the sequence of length 1 containing the
frame:

(p0, 0)

– The machine has matching transitions, which are inferred from the transition
function of the ordered NFA as follows:

w[j] = a a : p 7→ q1 . . . qn

w 
 (p, j)σ  (q1, j + 1) . . . (qn, j + 1)σ

– The machine has failing transition, of the form

(p, j) σ  σ

where w[j] 6= a or j is the length of w and p /∈ Acc.
– Accepting states are of the form:

w 
 (p, j) σ

where p ∈ Acc and j is the length of w.



– Transition sequences in n steps are written as
n
 and inferred using the

following rules:

w 
 σ  σ′

w 
 σ
1
 σ′

w 
 σ1
n
 σ2 w 
 σ2

m
 σ3

w 
 σ1
n+m
 σ3

We write w 
 σ1
∗
 σ2 for ∃n.w 
 (σ1

n
 σ2).

– Final states are either accepting or the empty sequence.

The state of the backtracking machine is a stack that implements failure
continuations. When the state is of the form (p, j)σ, the machine is currently
trying to match the symbol at position j in state p. Should this match fail, it
will pop the stack and proceed with the failure continuation σ.

Lemma 1. For any backtracking machine run:

w 
 σ
n
 σ′

And for any σ̄, the following run also exists:

w 
 σ σ̄
n
 σ′ σ̄

Proof. Observe that each transition taken by the the first machine can be sim-
ulated on the extended machine. Moreover, each transition of the extended ma-
chine leaves the additional σ̄ untouched.

The backtracking machine definition leaves a lot of leeway to the implemen-
tation. Implementation details are abstracted in the ordered transition relation.
The most important choice in the definition is that the machine performs a
depth-first traversal of the search tree. In principle, a backtracking matcher
could also use breadth-first search. In that case, our REDoS analysis would not
be applicable, and such matchers may avoid exponential run-time. However, the
space requirements of breadth-first search are arguably prohibitive. A more cred-
ible alternative to backtracking matchers is Thompson’s matcher [31,6,7], which
is immune to REDoS. However the relative inflexibility of the lockstep algorithm
(when supporting extended, non-regular pattern matching constructs) has made
is less popular among practical regular expression libraries. The REDoS problem
in the backtracking paradigm therefore remains quite significant.

Definition 4 (Lockstep abstract machine). The lockstep abstract machine,
based on Thompson’s matcher [31], is defined as follows.

– The states of the lockstep matcher are of the form

(Φ, j)

where Φ is a set of NFA states and j is an index into the input string w.
– The intial state is

({p0}, 0)



– The matching transition are inferred as follows:

w[j] = a a : p1 7→ β1 . . . a : pn 7→ βn

({p1, . . . , pn}, j) (Set(β1) ∪ . . . ∪ Set(βn), j + 1)

– An accepting state is of the form

(Φ, j)

where j is the length of w and Φ ∩Acc 6= ∅.

After each step, redundancy elimination is performed by taking sets rather than
sequences.

The lockstep machine will not be used in the rest of the paper. It is only
presented here to illustrate how it avoids the state-space explosion through re-
dundancy elimination.

2.3 The power DFA construction

Based on a construction that is standard in automata theory and compiler con-
struction, for each NFA there is a DFA. The set of states of this DFA is the
powerset of the set of states of the NFA. We refer to such sets of NFA states as
multistates.

Definition 5 (Power DFA). Given an NFA, its power DFA is constructed as
follows:

– The states of the power DFA are sets Φ of NFA states.
– The transition relation V is defined as

a : Φ1 V Φ2

if and only if
Φ2 = {p2 | ∃p1 ∈ Φ1.a : p1 � p2}

– The initial state of the power DFA is the singleton set {p0}.
– The accepting states of the power DFA are those sets Φ for which Φ∩Acc 6=
∅.

Definition 6. The transition function of the power DFA is extended from strings
w to sets of strings W using the following rule

Φ2 = {p2 | ∃p1 ∈ Φ1.∃w ∈W.w : p1 � p2}

W : Φ1 V Φ2

Intuitively, we regard W as the set of realizers that take us from Φ1 to Φ2.
Note that it is not only the case that (elements of) W will take us from (elements
of) Φ1 to (elements of) Φ2. Moreover, everything in Φ2 arises this way from Φ1

and W . In that sense, a judgement W : Φ1 V Φ2 is stronger than realizability
or pre- and post-conditions. The fact that Φ2 is uniquely determined by Φ1 and
W is useful for the analysis.



3 The REDoS analysis

For a given regular expression of the form e1e2
∗e3, the analysis attempts to

derive an attack string of the form:

xynz

The presence of a pumpable string y signals the analyser that a corresponding
prefix x and a suffix z need to be derived in order to form the final attack string
configuration. The requirements on the different segments of the attack string
are as follows:

x : x ∈ L(e1)

y : y ∈ L(e2
∗) (with b > 1 paths)

z : xynz 6∈ L(e1e2
∗e3)

Intuitively, the prefix x leads a backtracking matcher to a point where it has
to match the (vulnerable) Kleene expression e2

∗. At this point the matcher is
presented with n (n > 0) copies of the pumpable string y, increasing the search
space of the matcher to the order of bn. At the end of each of the search attempts
(paths through the NFA), the suffix z causes the matcher to backtrack, forcing
an exploration of the entire search space.

3.1 The phases of the REDoS analysis

Overall, the REDoS analysis of a node p` (loop node) consists of three phases.
The phases all work by incrementally exploring a transition relation. These re-
lations are the power DFA transition relation V and a new ordered variant �̀
(Definition 8). The three analysis phases construct a REDoS prefix x, a pumpable
string y and a REDoS suffix z:

Prefix analysis

{
x : p0 �̀ (β p` β

′)

Pumpable analysis


y1 : Φx V Φy1 where Φx = Set(β p`)

a : Φy1 V Φy1a

y2 : Φy1a V Φy2 where Φy2 ⊆ Φx

Suffix analysis

{
z : Φy2 V Φfail where Φfail ∩Acc = ∅

3.2 Prefix analysis

The analysis needs to find a string that causes the matcher to reach p`. However,
due to the nondeterminism of the underlying NFA, it is not enough to check
reachability. The same string x could also lead to some other states before p`
is reached by the matcher. If one of these states could lead to acceptance, the
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Fig. 2: Branching search tree with left context for x y y z

matcher will terminate successfully, and p` will never be reached. In this case,
there is no vulnerability, regardless of any exponential blowup in the subtree
under p`. See Figure 2.

Definition 7. The operator ≫ removes all but the leftmost occurrences in se-
quences according to the following rules:

[ ]≫ [ ]

p β≫ p β′ if (6 ∃β1, β2 . β = β1 p β2) ∧ β≫ β′

p β≫ β′ if (∃β1, β2 . β = β1 p β2) ∧ p β1 β2≫ β′

Note that≫ is applied on shorter sequences on the R.H.S, ensuring termination.
Moreover, in each reduced sequence each p can appear at most once, so there are
only finitely many sequences that can be reached in the REDoS prefix analysis
(below).

Definition 8. Let p` be the NFA state we are currently analyzing. The transition
relation for ordered multistates is defined as follows:

β1 = (p1 . . . pn) a : pi 7→ θi (θ1 . . . θn)≫ β2

a : β1 �̀ β2

The relation is extended to strings:

w : β1 �̀ β2 a : β2 �̀ β3

(w a) : β1 �̀ β3 ε : β �̀ β

The REDoS prefix analysis computes all ordered multistates β reachable from
p0, together with a realizer w, using the following rules:

(ε, p0) ∈ R
(w, β1) ∈ R a : β1 �̀ β2 6 ∃w′.(w′, β2) ∈ R

(w a, β2) ∈ R



In the implementation, we keep a set R. It is initialized to (ε, p0). We then
repeatedly check if there is a (w, β1) in the set such that for some a there is a
transition a : β1 �̀ β2. If there is, we add (w a, β2) to R and repeat the process.
We terminate when no new β2 has been found in the last iteration. Finally, the
analysis isolates (w, β) pairs of the form (x, β p` β

′) and takes Φx as Set(β p`)
for each such pair.

3.3 Pumping analysis

Definition 9. A branch point is a tuple

(pN , a, {pN1, pN2})

such that pN1 6= pN2, a : pN � pN1 and a : pN � pN2.

For example, if pN has three successor nodes p1, p2 and p3 for the same input
symbol a, there are three different branch points:

(pN , a, {p1, p2})
(pN , a, {p1, p3})
(pN , a, {p2, p3})

There can be only finitely many non-deterministic nodes in the given NFA. For
each of them, we need to solve a reachability problem.

The pumping analysis can be visualized with the diagram in Figure 3. The
analysis aims to find two different paths leading from p` to itself. Such paths
must at some point include a nondeterministic node pN that has at least two
transitions to different nodes pN1 and pN2 for the same symbol a. For such a
node to lie on a path from p` to itself, there must be some path labeled y1 leading
from p` to pN , and moreover there must be paths from the two child nodes pN1

and pN2 leading back to p`, such that both these paths have the label y2. The
left side of Figure 3 depicts this situation.

So far we have only considered what states may be reached. Due to the
nondeterminism of the transition relation a : p � q, there may be other states
that can be reached for the same strings y1 and y2. Therefore, we also need to
perform a must analysis that keeps track of all states reachable via the strings
we construct. This analysis uses the transition relation V of the power DFA
between sets of NFA states. In Figure 3, it is shown on the right-hand side.

Intuitively, we run the two transition relations in parallel on the same input
string. More formally, this involves constructing a product of two relations. Be-
fore we reach the branching point, we run the relations � and V in parallel.
After the nondeterministic node pN has produced two different successors, we
need to run two copies of� in parallel withV. One may visualize this situation
by reading the diagram in Figure 3 horizontally: above the splitting at pN , there
are two arrows in parallel for y1, whereas below that node, there are three arrows
in parallel for a and y2.



The twofold transition relation�2 for running� in parallel withV is given
by the rules in Figure 4. Analogously, the threefold product transition relation
�3 for running two copies of � in parallel with V is given by the rules in
Figure 5.

In summary, the pumping analysis consists of two phases:

1. Given p` and Φx, the analysis searches for a realizer y1 for reaching some
nondeterministic node pN :

y1 : (p`, Φx)�2 (pN , Φy1)

2. Given the successor nodes pN1 and pN2 of some pN node, the analysis
searches for a realizer y2 for reaching p`:

y2 : (pN1, pN2, Φy1a)�3 (p`, p`, Φy2)

Moreover, the analysis checks that the constructed state Φy2 satisfies the
inclusion:

Φy2 ⊆ Φx

If both phases of the analysis succeed, the string y1 a y2 is returned as the
pumpable string, together with the state Φy2.

p` Φx

pN Φy1

pN1 pN2 Φy1a

p` Φy2

y1

a a

y2 y2

y1

a

y2

Fig. 3: Pumping analysis construction of y1 a y2: “may” on the left using �,
and “must” on the right using V

Example 1. The following diagram shows an NFA corresponding to the regular
expression (a|b|ab)∗:

p1

p2

a

b

a

b



w : (p1, Φ1)�2 (p2, Φ2)
b : p2 � p3

b : Φ2 V Φ3

(w b) : (p1, Φ1)�2 (p3, Φ3)

ε : (p, Φ)�2 (p, Φ)

Fig. 4: The twofold product transition relation �2

w : (p1, p
′
1, Φ1)�3 (p2, p

′
2, Φ2)

b : p2 � p3

b : p′2 � p′3

b : Φ2 V Φ3

(w b) : (p1, p
′
1, Φ1)�3 (p3, p

′
3, Φ3)

ε : (p, p′, Φ)�3 (p, p′, Φ)

Fig. 5: The threefold product transition relation �3

Taking p` = p1 and Φx = {p1}, the pumping analysis leads to the following
derivation:

y1 = ε ε : (p1, {p1})�2 (p1, {p1})
(p1, a, {p1, p2}) a : {p1} V {p1, p2}

y2 = b b : (p1, p2, {p1, p2})�3 (p1, p1, {p1, p2})

Here we have an unstable derivation since {p1, p2} 6⊆ {p1} (i.e. Φy2
6⊆ Φx).

If we were to take Φx = {p1, p2} (i.e. x = a), the resulting derivation would
be stable (for the same pumpable string ab). Stable derivations ensure that
multiple pumpings of a pumpable string do not diverge Φy2 , which in turn ensures
the correctness of the failure suffix. We treat this inclusion more formally in
Lemma 7.

3.4 Suffix analysis

For each Φy2 constructed by the pumping analysis, the REDoS failure analysis
computes all multistates Φfail such that there is a z with:

z : Φy2 V Φfail ∧ Φfail ∩Acc = ∅

Intuitively, z fails all the states in Φy2 by taking them to Φfail, which does
not contain any accepting states.



4 Test cases for the REDoS analysis

In order to demonstrate the behavior of the analyser, here we present examples
that exercise the most important aspects of its operation.

4.1 Non commutativity of alternation

This aspect of the analysis can be illustrated with the following two example
expressions:

.∗ | (a | b | ab)∗c

(a | b | ab)∗c | .∗

Even though the two expressions correspond to the same language, only the sec-
ond expression yields a successful attack. In the first expression, all the multi-
states starting from Φx (Set(βp`)) consist of a state corresponding to the expres-
sion (.∗), which implies that this expression is capable of consuming any input
string thrown at it without invoking the vulnerable Kleene expression. On the
other hand, Φx calculated for the second expression lacks a state corresponding
to (.∗), leading to the following attack string configuration:

x = ε y = ab z = ε

4.2 Prefix construction

Prefix construction plays one of the most crucial roles in finding an attack string.
In the following example, only a certain prefix leads to a successful attack string
derivation:

c.∗|(c | d)(a | b | ab)∗e

Notice that a prefix c would trigger the (.∗) on the left due to the left-biased
treatment of alternation in backtracking matchers. The prefix d on the other
hand forces the matcher out of this possibility. The difference between these two
prefixes is captured in two different values of (x, Φx):

(c, {p1, p2}) (d, {p2})

Where
p1 |= .∗ and p2 |= (a | b | ab)∗e

Only the latter of these two leads to a successful attack string:

x = d y = ab z = ε

Prefix construction may also lead to loop unrolling when necessary. For an
example, consider the following regex:

(a | b).∗|c∗(a | ab | b)∗d



Without the unrolling of the Kleene expression c∗, any pumpable string intended
for the vulnerable Kleene expression will be consumed by the alternation on the
left. The analyser captures this situation again as two different values of (x, Φx),
one for x = c and the other for either x = a or x = b. Only the former value
leads to a successful attack string:

x = c y = ab z = ε

The amount of loop unrolling is limited by the finite-ness of the Φx values. In
the following example, the loop c∗ needs to be unrolled twice:

(c | a | b)(a | b).∗|c∗(a | b | ab)∗d

Here, unrolling c∗ 0 - 2 times leads to three distinct values of Φx due to the
different matching states on the left alternation. Only one of those unrollings
leads to a successful attack string:

x = cc y = ab z = ε

4.3 Pumpable construction

As is the case with prefixes, the existence of an attack string may depend on the
construction of an appropriate pumpable string. For an example, consider the
following regex:

(a | a | b | b)∗(a.∗ | c)

Here the pumpable string a does not yield an attack string since it also triggers
the (.∗) continuation. On the other hand, the pumpable string b avoids this
situation and leads to the following attack string configuration:

x = ε y = b z = ε

Similar to the prefix analysis, pumpable analysis utilises (y, Φy) values to select
between pumpable strings.

In some cases, the pumpable construction overlaps with prefix construction.
In the example below, an attack string may be composed in two different ways:

d.∗|((c | d)(a | a))
∗
b

Here, choosing ca as the pumpable string leads to a successful attack string
derivation:

x = ε y = ca z = ε

However, it is also possible to form an attack string with the following configu-
ration:

x = ca y = da z = ε

The important point here is that the attack string must begin with a c instead
of a d in order to avoid the obvious match on the left. The analyser is capable
of finding both the configurations that meet this requirement.



Pumpable construction may also lead to loop unrolling when necessary, as
demonstrated by the following example:

a.∗|(c∗a(b | b))∗d

Without unrolling the inner loop c∗, the pumpable string ab would trigger the
alternation on the left. A successful attack string requires the unrolling of this
inner loop, as in the following configuration:

x = ε y = cab z = ε

As with the previous example, the unrolling of the inner loop c∗ may be per-
formed as part of the prefix construction, leading to the following alternate attack
string configuration:

x = cab y = ab z = ε

The latter configuration may be considered more desirable in that it makes the
the pumpable string shorter, leading to much smaller attack strings.

5 Soundness of the analysis

The backtracking machine performs a depth-first search of a search tree. Proofs
about runs of the machine are thus complicated by the fact that the construction
of the tree and its traversal are conflated. To make reasoning more compositional,
we define a substructural calculus for constructing search trees. Machine runs
correspond to paths from roots to leaves in these trees.

5.1 Search tree logic

Definition 10 (Search tree logic). The search tree logic has judgements of
the form

w : β1 4 β2

where w is an input string, and both β1 and β2 are sequences of NFA states. The
inference rules are given in Figure 6.

Intuitively, the judgement

w : β1 4 β2

means that there is a horizontal slice of the search tree, such that the nodes at
the top form the sequence β1, the nodes at the bottom form the sequence β2,
and all paths have the same sequence of labels, forming w:

β1

w w

β2



a : p 7→ β
(Trans1)

a : p 4 β

6 ∃β.a : p 7→ β
(Trans2)

a : p 4 ε

w1 : β1 4 β2 w2 : β2 4 β3
(SeqComp)

(w1 w2) : β1 4 β3

(εSeq)
ε : β 4 β

w : β1 4 β2 w : β′
1 4 β′

2
(ParComp)

w : (β1 β
′
1) 4 (β2 β

′
2)

(εPar)
w : ε 4 ε

Fig. 6: Search tree logic

Each w represents an NFA run w : p1 � p2 for some p1 that occurs in β1
and some p2 that occurs in β2. The string w labels the sides of the trapezoid,
since that determines the compatible boundary for parallel composition. Again
we may like to think of w as a proof of reachability. Here the reachability is not
in the NFA, but in the matcher based on it.

The trapezoid can be stacked on top of each other if they share a common
β at the boundary. They can be placed side-by-side if they have the same w on
the inside:

w1 w1

w2 w2

p

β1 β′1

β′3β3

5.2 Pumpable implies exponential tree growth

We use the search tree logic to construct a tree by closely following the phases
of our REDoS analysis. The exponential growth of the search tree in response to
pumping is easiest to see when thinking of horizontal slices across the search tree
for each pumping of y. The machine computes a diagonal cut across the search
tree as it moves towards the left corner. The analysis constructs horizontal cuts
with all states at the same depth. It is sufficient to show that the width of the
search tree grows exponentially. The width is easier to formalize than the size.



We need a series of technical lemmas connecting different transition relations.

Lemma 2. The following rule is admissible:

w : Φ1 V Φ2 w : Φ′1 V Φ′2

w : (Φ1 ∪ Φ′1) V (Φ2 ∪ Φ′2)

Lemma 3 (V 4 simulation). If w : Φ1 V Φ2, w : β1 4 β2 and Φ1 = Set(β1),
then Φ2 = Set(β2).

Proof. Suppose:
β1 = (p1 . . . pn) a : pi 7→ θi

Then from the search tree logic we get a : β1 4 (θ1 . . . θn). Moreover, the defini-
tion of V implies a : {pi} V Set(θi). Now, applying Lemma 2 gives:

a : Set(β1) V Set(θ1) ∪ . . . ∪ Set(θn) = Set(θ1 . . . θn)

Therefore, the result holds for strings of unit length. An induction on the length
of w completes the proof.

Lemma 4 (�̀ 4 simulation). If w : β1 �̀ β2, w : β′1 4 β′2 and β′1≫ β1, then
β′2≫ β2.

Proof. Suppose:
β′1 = (p11 . . . pmk) a : pij 7→ θij

Where pij corresponds to the jth occurrence of the state pi. Equivalently:

pij = pi′j′ ⇐⇒ i = i′

Given β′1≫ β1, we deduce:

(p11 . . . pmk)≫ (p11 . . . pm1) = β1

Now, given a : β1 �̀ β2, the definition of �̀ gives:

(θ11 . . . θm1)≫ β2

On the other hand, a : β′1 4 β′2 gives:

β′2 = (θ11 . . . θmk)

The definition of ≫ can be generalized for multi-states, which leaves us with:

(θ11 . . . θmk)≫ (θ11 . . . θm1)

That is, we have shown:

β′2 = (θ11 . . . θmk)≫ (θ11 . . . θm1)≫ β2

An induction on the length of w completes the proof.



Lemma 5 (� 4 simulation). Given w : p � q, there are sequences of states
β1 and β2 such that w : p 4 β1 q β2.

Proof. The base case (w = a) holds from the definition of 4. For the inductive
step, suppose w : p � q and a : q 7→ q′. Then from the induction hypothesis
we get w : p 4 β1 q β2 for some β1, β2. Moreover, from the base case we have
a : q 4 β3 q

′ β4 for some β3, β4. Assuming a : β1 4 β′1 and a : β2 4 β′2 for some
β′1, β

′
2, the definition of 4 gives wa : p 4 β′1 β3 q

′ β4 β2′ .

Lemma 6 (Pumpable realizes non-linearity). Let y be pumpable for some
node p`. Then there exist β1, β2, β3 such that:

y : p` 4 β1 p` β2 p` β3

Proof. The pumpable analysis generates a string of the form:

y = y1 a y2

Where

y1 : p` � pN

a : pN 7→ (β pN1 β
′ pN2 β

′′)

y2 : pN1 � p` y2 : pN2 � p`

Now, Lemma 5 leads to the desired result.

Lemma 7. Let x, y be constructed from the prefix analysis and the pumpable
analysis such that:

x : p0 �̀ (β p` β
′)

y : Set(β p`)V Φy Φy ⊆ Set(β p`)

Then the following holds for any natural number n:

Φyn ⊆ Φyn−1

Where Φy0 = Set(β p`) and yn : Φy0 V Φyn .

Proof. By induction on n. Note that the base case (n = 1) holds by construction.
For the inductive step, suppose ∃ q ∈ Φyn , then from the definition of Φyn we get
∃ p ∈ Φyn−1 . y : p� q. Moreover, the induction hypothesis gives Φyn−1 ⊆ Φyn−2 .
Therefore, we have p ∈ Φyn−2 , which in turn implies q ∈ Φyn−1 .

The importance of Lemma 7 is that it allows us to calculate a failure suffix
z independent of the number of pumping iterations; Φyn can only shrink as n
increases.



Lemma 8 (Exponential tree growth). Let x, y, z be constructed from the
analysis such that:

x : p0 �̀ (β p` β
′)

y : Set(β p`)V Φy Φy ⊆ Set(β p`)
z : Φy V Φfail Φfail ∩Acc = ∅

Then there exists βL, βR such that:

x : p0 4 βL p` βR ∧ Set(βL) = Set(β) (A)

yn : βL p` 4 βn ⇒ |βn| ≥ 2n (B)

z : Set(βn)V Φ′ ⇒ Φ′ ∩Acc = ∅ (C)

Proof. – Statement (A): Suppose x : p0 4 βx. Then from Lemma 4 it follows
that βx ≫ β p` β

′. That is, p` must occur in βx. If we dissect βx into
βL p` βR such that p` 6∈ Set(βL), then from the definition of ≫ it follows
that Set(βL) = Set(β).

– Statement (B): Follows from Lemma 6. The number of copies of p` doubles
at each pumping iteration.

– Statement (C): Suppose yn : Set(βL p`)V β′n . Since Set(βL p`) = Set(β p`)
(statement A), Lemma 3 gives: Set(βn) = Set(β′n). Now from Lemma 7 it
follows that Set(βn) ⊆ Φy. Since z cannot lead to a successful match from
any state in Φy (by construction), the same should be true for Set(βn).

Lemma 8 may be visualized as in Figure 7. Note that the right hand slice
of the tree (emanating from β′) is irrelevant, the depth-first strategy of a back-
tracking matcher forces it to explore the left hand slice first. Since none of the
states at the bottom of the tree (β′n) are accepting, it is forced to explore the
(exponentially large, |βn| ≥ 2n) entire slice (as proved in the following section).

p0

β

p`

β′

βn

β′
n

z

yn

x

Fig. 7: Tree growth (Lemma 8)



5.3 From search tree to machine runs

Having proved that the attack strings lead to exponentially large search trees,
in this section we show how backtracking matchers are forced to traverse all of
it. We use the notation w[i : j] to represent the substring of w starting at index
i (inclusive) and ending at index j (exclusive). That is,

w[i : i] = ε

w[i : j] = w[i]...w[j − 1] (i < j)

Lemma 9. Let w be an input string of length n, s a (constant) offset into w
(0 ≤ s < n) and p a state such that:

w[s : i] : p 4 βi s ≤ i ≤ n

Set(βn) ∩Acc = ∅
Then for any state q appearing within some βi, and for any σ, the following run
exists:

w 
 (q, i)σ
∗
 σ

Proof. By induction on (n− i). For the base case (i = n), we have the machine:

(q, n)σ

Since q ∈ βn, this is not an accepting configuration. Therefore, we have:

w 
 (q, n)σ  σ

For the inductive step, suppose i = k (s ≤ k < n), then we have the machine:

w 
 (q, k)σ

If q has no transitions on w[k], the proof is trivial. Let us assume:

w[k] : q 7→ q′0 . . . q
′
m

Then we have the transition:

w 
 (q, k)σ  (q′0, k + 1) . . . (q′m, k + 1)σ

Now the definition of 4 implies that q′0, . . . , q
′
m are part of βk+1. Therefore,

we can apply the induction hypothesis to each of the newly spawned frames in
succession, which leads to the desired result.

Lemma 10. Let w be an input string of length n, s a (constant) offset into w
(0 ≤ s < n) and p a state such that:

w[s : i] : p 4 βi s ≤ i ≤ n

Set(βn) ∩Acc = ∅
Then for any state q appearing within some βi, the following run exists (for some
σ):

w 
 (p, s)
∗
 (q, i)σ



Proof. By induction on (i − s). The base case (i = s) holds trivially. For the
inductive step, suppose i = k (s < k ≤ n) and that q̇ appears in βk. Then from
the definition of 4, there must be some q′ appearing in βk−1 such that:

βk−1 = β q′ β′ w[k − 1] : q′ � q0 . . . q̇ . . . qm

Now from the induction hypothesis we get:

w 
 (p, s)
∗
 (q′, k − 1)σ

Therefore, we deduce the run:

w 
 (p, s)
∗
 (q′, k − 1)σ  (q0, k) . . . (q̇, k) . . . (qm, k)σ

At this point, applying Lemma 9 to the newly spawned frames yields the required
result.

Given a search tree with all failure nodes at the bottom, Lemma 9 shows that
any intermediate frame reached during a simulation will eventually be rejected.
Moreover, Lemma 10 shows that a simulation corresponding to such a search
tree is forced to visit each and every node of the tree.

Lemma 11 (Tree traversal). Suppose w is an input string of length n such
that:

w[0 : s] : p0 4 β β

w[s : n] : β 4 β′

Set(β′) ∩Acc = ∅

Then for any state q appearing in β, the following machine run exists (for some
σ):

w 
 (p0, 0)
∗
 (q, s)σ

Proof. By induction on s. Note that the base case (s = 0) follows from Lemma 10.
For the inductive step, suppose s > 0. Here we focus on the lowest common an-
cestor of all the states in β, this situation is illustrated in the following figure:



p0

β β

β′β′

θ θ

u

s

n

Let us assume that this state (lowest common ancestor of β) occurs at depth u
(u > 0, as otherwise we would have the base case again). Now from the diagram
we deduce:

w[0 : u] : p0 4 θ θ

w[u : n] : θ 4 β′

Set(β′) ∩Acc = ∅

Therefore, if q̇ is the lowest common ancestor of β, from the induction hypothesis
(since u < s) we get:

w 
 (p0, 0)
∗
 (q̇, u)σ

For some σ. Moreover, from Lemma 10 we deduce:

w 
 (q̇, u)
∗
 (q, s)σ′

Where q is some state in β and σ′ is some failure continuation. Finally, we use
Lemma 1 to compose these two runs into:

w 
 (p0, 0)
∗
 (q̇, u)σ

∗
 (q, s)σ′ σ

In sum, we have shown that the pumped part of the search tree grows expo-
nentially in the size of the input, and that the backtracking machine is forced to
traverse all of it.

Theorem 1 (Redos analyis soundness). Let the strings x, y and z be con-
structed by the REDoS analysis. Let k be an integer. Then the backtracking
machine takes at least 2k steps on the input string x yk z

Proof. Follows from Lemma 8 and Lemma 11.



6 Completeness of the analysis

The analysis assumes that only a pumpable NFA can lead to an exponential
runtime vulnerability. For completeness, we need to ensure that there are no
other configurations that can cause such a vulnerability. Here we show that for
any non-pumpable NFA, the width of any search tree is bounded from above
by a polynomial. In places where an NFA is mentioned in a discussion below, a
non-pumpable NFA is to be assumed (unless otherwise mentioned).

Definition 11. For an ordered multi-state β and a state p, we define the func-

tion [β]p as the number of ocurrences of p within β. Moreover, the relations
p∼

(p-simulate) and ' (simulate) on ordered multi-states are incrementally defined
as follows:

β
p∼ β′ ⇔ [β]p = [β′]p

β ' β′ ⇔ ∀ p ∈ Q . β
p∼ β′

It can be shown that both
p∼ and ' are reflexive, symmetric and transitive rela-

tions.

Lemma 12. The relation ' can be shown to satisfy the following basic proper-
ties:

β ' β′ ⇒ Set(β) = Set(β′) ∧ |β| = |β′|

β1β2 ' β3β4 ⇔ ∀β . β1ββ2 ' β3ββ4

β ' β1β′β2 ∧ β′ ' β′′ ⇒ β ' β1β′′β2

β1 ' β′1 ∧ β2 ' β′2 ⇒ β1β2 ' β′1β′2

Lemma 13. Let w be an input string, β1, β2 be ordered multi-states such that:

β1 ' β2 w : β1 4 β′1 w : β2 4 β′2

Then β′1 ' β′2.

Proof. Informally, β2 is merely a re-ordering of β1 (and vice versa). The trapezoid
emanating from β1 will be composed of individual search trees rooted at each
constituent state of β1. Therefore, the trapezoid emanating from β2 will be a
re-ordering of those search trees.

More formally, let n = |β1| = |β2| (the latter equality holds since β1 ' β2).
We perform an induction on n. The base case (n = 1) follows from the definition
of 4 (β1 = β2 = p for some p ∈ Q). For the inductive step, note that any state
q introduced to both β1 and β2 (to make them n+ 1 in size) must be the same
(in order to preserve β1 ' β2). Since the search tree rooted at q is same for both
β1 and β2 (regardless of where it appears within each of the multi-states), its
contribution to β′1 and β′2 is the same.



Definition 12. Given an NFA, a path γ is a sequence of triples:

(p0, a0, p1)(p1, a1, p2) . . . (pn−1, an−1, pn)

where for 0 ≤ i < n, there is a transition ai : pi → pi+1 in the NFA. We write
dom(γ) for the first node p0 and cod(γ) for the last node pn in the path. The
sequence of input symbols a0 . . . an along the path is written as γ and called the
label of the path. Moreover, the set of nodes {p0, . . . , pn} along the path γ is
written as nodes(γ).

Lemma 14. Given a tree judgement w : p 4 β, for any state q appearing in β,
there exists a path γ with dom(γ) = p, cod(γ) = q and γ = w.

Proof. By induction on the length of w.

Definition 13. We write w : p ⇒ q (p two-paths q) iff ∃p1, p2, w1, w2 such
that:

p1 6= p2 w = w1 w2

w1 : p � p1 w1 : p � p2
w2 : p1 � q w2 : p2 � q

Definition 13 allows us to formulate pumpability in a different notation; if
we have w1 : p ⇒ q and w2 : q � p (loop), then the state p is pumpable on
the input string w1w2 (see Figure 3).

Definition 14. Let γ be a path. We define the sets S(γ) and F(γ) as follows:

S(γ) = {p | ∃ γ1, γ2 . γ = γ1γ2

∧ γ2 : dom(γ2) ⇒ cod(γ2) ∧ p = dom(γ2)}
F(γ) = Q \ S(γ)

Essentially, S(γ) identifies the non-deterministic states along a path γ. There
are at least two paths from a given state in S(γ) to cod(γ) bearing the same
label (γ2 above, a suffix of γ).

Lemma 15. Suppose γ is a path corresponding to a non-pumpable NFA such
that p = cod(γ). Then the following holds for any w:

w : p 4 β ⇒ Set(β) ⊆ F(γ)

Proof. From the definitions we have:

Set(β) ⊆ Q = S(γ) ∪ F(γ)

Suppose q ∈ Set(β) ∩ S(γ). Then q ∈ S(γ) gives:

∃ w′ . w′ : q ⇒ p

However, since q ∈ Set(β) we also have:

w : p� q



Leading to the contradiction:

w′w : q ⇒ p� q

Therefore, it must be the case that Set(β) ∩ S(γ) = ∅. This leads to the conclu-
sion:

Set(β) ⊆ F(γ)

p0

q

p p

β β

w

w′

Fig. 8: Sibling restriction on S(γ)

Lemma 15 is illustrated in Figure 8. Note that the fringes of the sibling trees
rooted at the two p’s are identical (4 logic is deterministic), making it impossible
for either of them to contain a q (q would be pumpable otherwise). In other
words, q ∈ S(γ) cannot appear again within search trees rooted at cod(γ). It
is this restriction on non-determinism that leads us to the polynomial bound.
However, flushing out this polynomial bound requires quite an elaborate analysis
of the search tree structure, as we shall see next.

Definition 15. We define the reduction . on pairs of ordered multi-states ac-
cording to the following rules:

(q1 . . . qn, β1qβ2) . (q1 . . . qiq . . . qn, β1β2) (∃ i . q = qi)

(q1 . . . qn, β1qβ2qβ3) . (q1 . . . qnqq, β1β2β3) ( 6 ∃ i . q = qi)

The reduction . groups repeated states together. Given that each transition de-
creases the length of the second component, the reduction must terminate. We
use the notation .. to denote a maximal reduction:

(α1, β1) . .(α2, β2)⇒6 ∃(α3, β3) . (α2, β2) . (α3, β3)



Lemma 16. For a reduction (ε, β) . .(α, σ), the following basic properties can
be shown to hold:

β ' ασ (a)

Set(α) ∪ Set(σ) = Set(β) (b)

∀ p ∈ Set(α) . [α]p = [β]p > 1 (c)

|σ| = |Set(σ)| (d)

Definition 16. We introduce an ordering variant of the search tree logic:

w : (β, α, σ)4̄(β′, α′, σ′)

with the following inference rules:

a : β1α1 4 β2 a : σ1 4 β3 (ε, β3) . .(α2, σ2)

a : (β1, α1, σ1)4̄(β2, α2, σ2)

w : (β1, α1, σ1)4̄(β2, α2, σ2) a : (β2, α2, σ2)4̄(β3, α3, σ3)

wa : (β1, α1, σ1)4̄(β3, α3, σ3)

The 4̄ semantics recursively re-arranges the search tree into β, α and σ
components at each depth. A derivation using the 4̄ semantics may be visualized
as in Figure 9. Note that in this hypothetical derivation, we encounter repeated
states at depth w1, thus giving rise to the first non-empty α component (α1).
From w1 to w1w2, we have non-empty β and σ components. Again at depth w1w2

we can observe a non-empty α component, which is the result of the previous σ
component generating duplicates at this depth. The β component can be thought
of as the shadow/projection of all the previous α components.

p

α1 σ1

β2 α2 σ2

w3

w2

w1

Fig. 9: An example 4̄ derivation.



Lemma 17. Let p be a state and w an input string such that:

w : p 4 β w : (ε, ε, p)4̄(β′, α, σ)

Then β′ασ ' β.

Proof. By induction on the length of w. For the base case (w = a), suppose
a : p 4 β. Then from the definition of 4̄ we get:

a : (ε, ε, p)4̄(ε, α, σ)

Where (ε, β)..(α, σ). Therefore, Lemma 16 (a) gives β ' ασ. For the inductive
step (w = w′a), suppose:

w′ : p 4 β1 (A.1)

w′ : (ε, ε, p)4̄(β′1, α1, σ1) (A.2)

Then the induction hypothesis yields β1 ' β′1α1σ1. Now let us assume:

a : β1 4 β2 (B.1)

a : β′1α1 4 β′2 (B.2)

a : σ1 4 β3′ (B.3)

(ε, β′3) . .(α2, σ2) (B.4)

Assumptions (A.1), (B.2) - (B.4) and the definition of 4̄ leads to:

w′ : (ε, ε, p)4̄(β′2, α2, σ2)

Moreover, assumptions (B.2), (B.3) implies

a : β′1α1σ1 4 β2′β3′

That is, we have:
β1 ' β′1α1σ1 (I.H)

a : β1 4 β2 (B.1)

a : β′1α1σ1 4 β2′β3′

Applying Lemma 13 to these three relations yield β2 ' β2′β3′ . Furthermore,
Lemma 16 (a) implies (with B.4) β3′ ' α2σ2. Finally, Lemma 12 (c) gives β2 '
β2′α2σ2 as required.

Lemma 18. Let γ be a path with p = cod(γ) and w an input string such that:

w : (ε, ε, p)4̄(β, α, σ)

Then the following properties hold:

Set(βασ) ⊆ F(γ) (a)

|σ| ≤ |F(γ)| (b)

|ασ| ≤ |F(γ)| ∗ o (c)



Proof. For property (a), suppose w : p 4 β′. From Lemma 15 we get Set(β′) ⊆
F(γ). Moreover, Lemma 17 gives βασ ' β′. Now, Lemma 12 (a) gives βασ ⊆
F(γ).

For property (b), note that it follows from property (a) that Set(σ) ⊆ F(γ).
From the definition of 4̄ it follows that ∃ β′ . (ε, β′) . .(α, σ). Therefore, from
Lemma 16 (d) we get |σ| = |Set(σ)| ≤ |F(γ)|.

For property (c), suppose w = w′a (the result holds trivially for w = ε).
Then from the definition of 4̄ there exist σ′, β′ such that:

w′ : (ε, ε, p)4̄( , , σ′) (A.1)

a : σ′ 4 β′ (A.2)

(ε, β′) . .(α, σ) (A.3)

From (A.2) and the structure of the NFA, we derive |β′| ≤ |σ′| ∗o (where o is the
fan-out of the NFA). Furthermore, (A.3) and Lemma 16 (a) implies ασ ' β′.
Therefore, Lemma 12 (a) and property (b) above leads to |ασ| = |β′| ≤ |σ′|∗o ≤
|F(γ)| ∗ o.

Lemma 19. Let w be an input string and p a state. Let k be a constant offset
into w and i an index such that:

0 < i ≤ k ≤ |w|

w[0 : i] : (ε, ε, p)4̄(βi, αi, σi)

w[i : k] : αi 4 α(i,k)

Then βk = α(1,k) . . . α(k−1,k)

Proof. By induction on k (omitted).

With reference to Figure 9, Lemma 19 establishes the connection between
the fringe of the overall triangle and those of individual trapezoidal slices (the
concatenation of the bases of the trapezoids make up the base of the overall
triangle).

Lemma 20. Let γ be a path with p = cod(γ) and w an input string such that:

w : (ε, ε, p)4̄(β, α, σ)

Then for a state q appearing in α, there exists a path γ′ from p to q such that
F(γγ′) ⊂ F(γ).

Proof. Follows from Lemma 15 (q is repeated within α).

Lemma 21. Suppose γ is a path with p = cod(γ) and w an input string of
length n such that:

w : p 4 β

Then the following holds:
|β| < kk ∗ ok ∗ nk

Where k = |F(γ)|.



Proof. By induction on k.

Base case - 1: Suppose k = 0. Then it follows from Lemma 15 that |β| = 0,
which is within the bounds of our polynomial.

Base case - 2: Suppose k = c (for some constant c) and:

6 ∃γ′ . γ′ = γγ′′ ∧ F(γ′) < c

This means the search tree rooted at cod(γ) cannot contain duplicates at any
depth, for if it does, we can always find an extended path γ′ for which F(γ′)
is less. This restriction immediately implies that the fringe of the search tree
cannot grow beyond c, which is well within the bounds of our (over-estimating)
polynomial (cc ∗ oc ∗ nc).

Inductive step: Suppose:

w[0 : i] : (ε, ε, p)4̄(βi, αi, σi)

w[i : n] : αi 4 α(i,n)

Where 0 < i ≤ n. From Lemma 19 we deduce:

βnαnσn = α(1,n) . . . α(n−1,n)αnσn (A)

It follows from Lemma 20 that we can apply the induction hypothesis to each
path ending in some state within an αi. Therefore, we derive:

∀i ∃v < k .
∣∣α(i,n)

∣∣ < |αi| ∗ vv ∗ ov ∗ |w[i : n]|v

In terms of the illustration in Figure 9, this statement measures the bottom
edges of the trapezoids. Now, taking into account that v < k and |w[i : k]| < n,
we arrive at:

∀i .
∣∣α(i,n)

∣∣ < |αi| ∗ kk ∗ ok ∗ nk

Moreover, it follows from Lemma 18 (c) that |αi| ≤ k ∗ o. Therefore, we get:

∀i .
∣∣α(i,n)

∣∣ < kk+1 ∗ ok+1 ∗ nk (B)

Now, we combine (A) and (B) to obtain:

|βnαnσn| < (n− 1) ∗ kk+1 ∗ ok+1 ∗ nk + |αnσn|

Furthermore, it follows from Lemma 18 (c) that:

|αnσn| ≤ k ∗ o < kk+1 ∗ ok+1 ∗ nk

Therefore, we get:
|βnαnσn| < kk+1 ∗ ok+1 ∗ nk+1

Since we know β ' βnαnσn from Lemma 17, the inductive step holds.



Theorem 2 (Redos analysis completeness). Given an NFA with an expo-
nential runtime vulnerability, the REDoS analysis presented in Section 3 will
produce an attack string which triggers this behaviour on a backtracking regular
expression matcher.

Proof. Lemma 21 implies that for a non-pumpable NFA, the search tree width is
polynomially bounded. Since w is finite, the entire search space in turn becomes
polynomially bounded. This suggests that only a pumpable NFA can lead to an
exponentially large search space. Finally, the analysis presented in Section 3 is
exhaustive in that if a suitable attack string exists for a pumpable NFA, it will
eventually be found.

7 Implementation

We implemented the analysis presented above in OCaml [30] (code-named RXXR).
Apart from the code used for parsing regular expressions (and some other boiler-
plate code), the main source modules have an almost one-to-one correspondence
with the concepts discussed thus far. This relationship is illustrated in Table 10.

Concept (Theory) Implementation (OCaml Module)

NFA Nfa.mli/ml

β Beta.mli/ml

Φ Phi.mli/ml

�2 Product.mli/ml

�3 Triple.mli/ml

Prefix analysis XAnalyser.mli/ml

Pumpable analysis (y1) Y1Analyser.mli/ml

Pumpable analysis (ay2) Y2Analyser.mli/ml

Suffix analysis ZAnalyser.mli/ml

Overall analysis AnalyserMain.mli/ml

Fig. 10: Theory to source-code correspondence

Each module interface (.mli file) contains function definitions which directly
correspond to various aspects of the analysis presented earlier. For an example,
the NFA module provides the following function for querying ordered transitions:

val get_transitions : Nfa.t -> int ->

((char * char) * int) list;;

The NFA states are represented as integers. Each symbol of the input alphabet
is encoded as a pair of characters, allowing a uniform representation of character
classes ([a-z]) as well as individual characters.



The NFA used in the implementation (Nfa.mli/ml) contains ε transitions,
which were not part of the NFA formalization presented earlier. The reason for
this deviation is that having ε transitions allows us to preserve the structure of
the regular expression within the NFA representation, which in turn preserves
the order of the transitions. The correctness of the implementation is unaffected
as the two forms of NFA representation are isomorphic. Only a slight mental ad-
justment (from ordered NFAs to ε-NFAs) is required to correlate the theoretical
formalizations to the OCaml code. For an example, Figure 11 presents the mod-
ule interface for β. The function advance() is utilized inside the XAnalyser.ml

(* internal representation of beta *)

type t;;

module BetaSet : (Set.S with type elt = t);;

(* beta with just one state *)

val make : int -> t;;

(* returns the set of states contained within this beta *)

val elems : t -> IntSet.t;;

(* calculate all one -character reachable betas *)

val advance : (Nfa.t * Word.t * t) -> (Word.t * t) list;;

(* consume all epsilon transitions while recording pumpable

kleene encounters *)

val evolve : (Nfa.t * Word.t * t) -> IntSet.t ->

Flags.t * t * (int * t) list;;

Fig. 11: Beta.mli

module to perfom the closure computation (i.e. compute all βs reachable from
the root node), whereas evolve() is a utility function used to work around
the ε transitions. The modules (Phi / Product / Triple).mli define similar
interfaces for Φ,�2 and �3 constructs introduced in the analysis.

The different phases of the analysis is implemented inside the corresponding
analyser modules. As an example, Figure 12 presents the Y2Analyser.mli mod-
ule responsible for carrying out the analysis after the branch point (�3 simula-
tion). The internal representation of the analyser (type t) holds the state of the
closure computation, which is initialized with an initial triple argument through
the init() function. We defer the interested reader to module definition (.ml)
files for further details on the implementation.



(* internal representation of the analyser *)

type t;;

(* initialize analyser instance for the specified triple and

the kleene state *)

val init : (Nfa.t * Word.t * Triple.t) -> int -> t;;

(* calculate the next (y2, phi) *)

val next : t -> (Word.t * Phi.t) option ;;

(* read analyser flags *)

val flags : t -> Flags.t;;

Fig. 12: Y2Analyser.mli

7.1 Evaluation data

The analysis was tested on two corpora of regexes. The first of these was ex-
tracted from an online regex library called RegExLib [23], which is a community-
maintained regex archive; programmers from various disciplines submit their so-
lutions to various pattern matching tasks, so that other developers can reuse
these expressions for their own pattern matching needs. The second corpus was
extracted from the popular intrusion detection and prevention system Snort [27],
which contains regex-based pattern matching rules for inspecting IP packets
across network boundaries. The contrasting purposes of these two corpora (one
used for casual pattern matching tasks and the other used in a security criti-
cal application) allow us to get a better view of the seriousness of exponential
vulnerabilities in practical regular expressions.

The regex archive for RegExLib was only available through the corresponding
website [23]. Therefore, as the first step the expressions had to be scraped from
their web source and adapted so that they can be fed into our tool. These
adaptations include removing unnecessary white-space, comments and spurious
line breaks. A detailed description of these adjustments as well as copies of
both adjusted and un-adjusted data sets have been included with the resources
linked from the RXXR distribution [30] (also including the Python script used
for scraping). The regexes for Snort, on the other hand, are embedded within
plain text files that define the Snort rule set. A Python script (also linked from
the RXXR webpage) allowed the extraction of these regexes, and no further
processing was necessary.

7.2 Results

The results of running the analysis on these two corpora of regexes are pre-
sented in Table 13. The figures show that we can process around 75% of each



of the corpora with the current level of syntax support. Out of these analyzable
amounts, it is notable that regular expressions from the RegExLib archive use
the Kleene operator more frequently (about 50% of the analyzable expressions)
than those from the Snort rule set (close to 30%). About 11.5% of the Kleene-
based RegExLib expressions were found to have a pumpable Kleene expression
as well as a suitable suffix, whereas for Snort this figure stands around 0.55%.

RegExLib Snort

Total patterns 2992 12499
Parsable 2290 9801
Pumpable 159 19
Vulnerable 131 15
Interrupted 4 0
Pruned 0 2
Time 61.51 (s) 30.10 (s)

Fig. 13: RXXR2 results - statistics

The tool makes every attempt to analyse a given pattern, even the ones which
contain non-regular constructs like backreferences. An expression (e1|e2) may be
vulnerable due to a pumpable Kleene that occurs within e1, whereas e2 might
contain a backreference. In these situations, the analyser attempts to derive
an attack string which avoids the non-regular construct. If such a non-regular
construct cannot be avoided, the analysis is terminated with the interrupted

flag.

On certain rare occasions, search pruning is employed as an optimization.
It is activated when there have been a number of unstable derivations (failing
to meet Φy2 ⊆ Φx) for a given prefix. For an example, consider the regular
expression:

([ˆa]
∗
b)
∗
[ˆc]{1000}

Here the Kleene expression ([ˆa]
∗
b)
∗

is pumpable for any string which contains
two copies of b (e.g. bb, bab, abb, cbb . . .). However, if the analysis were to pick a
pumpable string that does not contain the symbol c, it will lead to an unstable
derivation. Intuitively, the followup expression [ˆc]{1000} (which has a large
state space) will also consume the pumpable string and introduce a new state
in Φy2, breaking the inclusion Φy2 ⊆ Φx. Pruning allows the analysis to attempt
different variants of the pumpable string without getting stuck on a single search
path where all of the pumpable strings lead to unstable (but unique) derivations
(e.g. bb, bab, baab, baaab, . . . ). Needless to say, this is an ad-hoc optimization that
can be further improved with more sophisticated heuristics. Given that pruning
was only triggered in two instances for the entire data set above, we believe
the current heuristic (a static bound on the number of unstable derivations) is



adequate. If a pruned search does not report a vulnerability, it should be re-run
with a higher (or infinite) prune limit in order to obtain a conclusive result.

Validation The task of validating vulnerabilities is complicated by the fact that
different regular expression implementations (Java, Python, .NET etc.) have
different syntax flavours. RXXR itself is written to accept PCRE like patterns
of the form /<REGEX>/<FLAGS> where REGEX contains the main expression and
FLAGS are used to control various aspects of the matching process (e.g. whether
to match multi-line input or not). Java, Python and .NET use separate library
calls to configure such behavior. Moreover, they can also differ from one another
in terms of the syntax allowed within the main expression. For an example, Java
requires tricky escape sequences when working with meta-characters (e.g a literal
backslash requires \\\\), whereas Python is more flexible with its support for
raw (un-interpreted) input strings.

For these reasons we chose Python as our main validation platform (Python’s
support for raw strings makes the porting relatively simple). A sample of vul-
nerabilities were then manually validated on other platforms (Java, .NET and
PCRE). Table 14 illustrates how Python responds to above vulnerabilities.

RegExLib Snort

Total vulnerabilities 131 15
Successfully validated 115 14
Python parsing bug 12 0
Python not vulnerable 4 1

Fig. 14: Validation of vulnerabilities - Python

The Python scripts developed for this validation are also included with the
RXXR distribution [30], along with instructions on how to reproduce the above
results. We discovered that Python was not able to compile regular expressions
of the form ([a− z]∗)∗, which is a known Python defect [32]. Variants of this
bug affected 12 of the RegExLib vulnerabilities which we could not validate
on Python. The remaining few cases were down to trivial vulnerabilities that
Python manages to work around. We observed that both Python and .NET
are capable of avoiding vulnerabilities in expressions like ([a− c]|b)∗d or (a|a)

∗
b,

where the redundancies are quite obvious. Interestingly however, Java does not
seem to implement any such workarounds; even when matching the expression
(a|a)

∗
b against the input string an(n ∼ 50), the JVM (Java Virtual Machine)

becomes non-responsive.

Sample vulnerabilities The vulnerabilities reported range from trivial pro-
gramming errors to more complicated cases. For an example, the following



regular expression is meant to validate time values in 24-hour format (from
RegExLib):

^(([01][0-9]|[012][0-3]):([0-5][0-9]))*$

Here the author has mistakenly used the Kleene operator instead of the ? op-
erator to suggest the presence or non-presence of the value. This pattern works
perfectly for all intended inputs. However, our analysis reports that this expres-
sion is vulnerable with the pumpable string “13:59” and the suffix “/”. This
result gives the programmer a warning that the regular expression presents a
DoS security risk if exposed to user-malleable input strings to match.

For a moderately complicated example, consider the following regular ex-
pression (again from RegExLib):

^([a-zA-z]:((\\([-*\.*\w+\s+\d+]+)|(\w+)\\)+)(\w+.zip)|(\w+.ZIP))$

This expression is meant to validate file paths to zip archives. Our tool identifies
this expression as vulnerable and generates the prefix “z:\ ”, the pumpable
string “\zzz\” and the empty string as the suffix. This is probably an unexpected
input in the author’s eye, and this is another way in which our tool can be
useful in that it can point out potential mis-interpretations which may have
materialized as vulnerabilities.

Out of the over 12,000 patterns examined, there were two cases that failed
to terminate within any reasonable amount of time. Closer inspection reveals
that a pumpable Kleene expression with a vast number of states is to blame.
Consider the following example (from RegExLib):

^(([a-zA-Z0-9_\-\.]+)@([a-zA-Z0-9_\-\.]+)\.

([a-zA-Z]{2,5}){1,25})+

([;.](([a-zA-Z0-9_\-\.]+)@([a-zA-Z0-9_\-\.]+)\.

([a-zA-Z]{2,5}){1,25})+)*$

If we change the counted expressions of the form e{1,25} into e{1,5}, the
analyser returns immediately. This shows that the analysis itself can take a long
time on certain inputs. However, such cases are extremely rare.

7.3 Comparison to fuzzers

REDoS analysers commonly used in practice are based on a brute-force approach
known as fuzzing, where the runtime of a pattern is tested against a set of strings.
A leading example of this approach is the Microsoft’s SDL Regex Fuzzer [22].

As is common with most brute-force approaches, the main problem with
fuzzing is that it can take a considerable amount of time to detect a vulnerabil-
ity. This is especially pronounced in the case of REDoS analysis as vulnerable
patterns tend to take increasing amounts of time with each iteration of testing.
This property alone disqualifies fuzzing based REDoS analysers from being in-
tegrated into code-analysis tools, as their operation would impose unacceptable
delays. For an example, consider the following simple pattern:



^(a|b|ab)*c$

Even with a lenient fuzzer configuration (ASCII only, 100 fuzzing iterations),
SDL fuzzer takes 5-10 minutes to report a vulnerability on this pattern. By
comparison, our analyser can process tens of thousands of patterns in less time.

Fuzzers can also miss out on vulnerabilities. For an example, consider the
following two patterns:

^.*|(a|b|ab)*c$

^(a|b|ab)*c|.*$

SDL Fuzzer reports both of these patterns as being safe. However, the non-
commutative property of the alternation renders the second pattern vulnerable
(as explained in Section 4). Another such example is:

^(a|b|c|ab|bc)*a.*$

For this pattern, only one of the pumpable strings (bc) can lead to an attack
string, and it must not end in an a. Such relationships are difficult to be caught
in a heuristics-based fuzzer.

Yet another problem with fuzzers is caused by the element of randomness
present in their string generating algorithms. Since fuzzers are not based on
any sound theory, some form of randomness is necessary in order to increase
the chance of stumbling upon a valid attack string. However, this can make the
fuzzer yield inconsistent results for the same pattern. Consider the following
pattern for an example:

(a|b)*[^c].*|(c)*(a|b|ab)*d

The SDL fuzzer reports this pattern as being safe in most invocations, but in
few cases it finds an attack string.

Finally, the ultimate purpose of using a static analyser is to detect potential
vulnerabilities upfront and lead to the corresponding fixes. Our analyser pin-
points the exact pumpable Kleene expression and generates a string (pumpable
string) which witnesses vulnerability, making the fixing of the error a straight-
forward task. This is notably in contrast to the fuzzer, which outputs a random
string (mostly in hex format) that does not provide any insight into the source
of the problem.

8 Related work

The starting point for the present paper was the regular expression analysis
RXXR [19]. While that paper was aimed at a security audience, the present
paper complements it by using a programming language approach inspired by
type theory and logic.

Program analysis for security is by now a well established field [5]. REDoS is
known in the literature as a special case of algorithmic complexity attacks [8,26].



Parsing Expression Grammars (PEGs) have been proposed as an alternative
to regular expressions [10] that avoid their nondeterminism. In a series of tuto-
rials [6,7], Cox has argued for Thompson’s lockstep matcher [31] as a superior
alternative to backtracking matchers. However, backtracking matchers vulnera-
ble to REDoS are still widely deployed, including the matchers in the Java and
.NET platforms as well as the PCRE matcher used in some intrusion detec-
tion systems. Hence the REDoS problem will remain with us for the foreseeable
future.

Backtracking is a classic application of continuations, and regular expres-
sion matchers similar to the backtracking machine have been investigated in the
functional programming literature [9,14,11]. Other recent work on regular ex-
pressions in the programming language community includes regular expression
inclusion [15] and submatching [28].

Apart from some basic constructions like the power DFA covered in standard
textbooks [17], we have not explicitly relied on automata theory. Instead, we
regarded the matcher as an abstract machine that can be analyzed with tools
from programming language research. Specifically, the techniques in this paper
are inspired by substructural logics, such as Linear Logic [12,13] and Separation
Logic [18,24]. Concerning the latter, it may be instructive to compare the sharing
of w or absence of sharing of β in Figure 6 to the connective of Separation logic.
In a conjunction, the heap h is shared:

h |= P1 h |= P2

h |= P1 ∧ P2

By contrast, in a separating conjunction, the heap is split into disjoint parts that
are not shared:

h1 |= P1 h2 |= P2 h1 ∩ h2 = ∅

h1 ∪ h2 |= P1 ∗ P2

Tree-shaped data structures have been one of the leading examples of sepa-
ration logic and variations of it, such as Context Logic [3]. However, a difference
to the search trees we have used in this paper is that the whole search tree is not
actually constructed as a data structure in memory. Rather, only a diagonal cut
across it is maintained at any time in the backtracking machine. The whole tree
does not exist in memory, but only in space and time, so to speak. In that regard
the search trees are like parse trees, which the parser only needs to construct in
principle by traversing them, and not necessarily as a data structure in memory
complete with details of all nodes [2,1].

Even though the backtracking machine is sequential, parts of the analysis
are reminiscent of transition systems in process algebras, particularly running
two or more automata in parallel (Figures 4 and 5). Seen that way, the may
and must part of the analysis are analogous to the two modalities 〈a〉 and [a] in
Henessy-Milner logic [16].



9 Directions for further research

At present, the analysis constructs attack strings when there is the possibility
of exponential runtime. It should be possible to extend the analysis to com-
pute a polynomial as an upper bound for the runtime when there is no REDoS
vulnerability causing exponential runtime.

The efficiency of the analyser compares favorably with that of the Microsoft
SDL Regex Fuzzer [22]. Given that we are computing sets of sets of states, the
analysis may explore a large search space. One may take some comfort from the
fact that type checking and inference for functional programming languages can
have high complexity in the worst case [21,25] that may not manifest itself in
practice. Nonetheless, we aim to revisit the design of the analysis and optimize
it.

Pruning the search space may lead to improvements in efficiency. An intrigu-
ing possibility is to implement the analysis on many-core graphics hardware
(GPUs). Using the right data structure representation for transitions, GPUs can
efficiently explore nondeterministic transitions in parallel, as demonstrated in
the iNFAnt regular expression matcher [4].

The search tree logic (Figure 6) may have independent interest and possible
connections to other substructural logics such as Linear Logic [12,13], Separa-
tion Logic [18,24], Lambek’s syntactic calculus [20], or substructural calculi for
parse trees [29]. Search trees are dual to parse trees in the sense that the nodes
represent a disjunction rather than a conjunction.
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