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Abstract: Lookahead is an extension of regular expressions that has been adopted in many implementations and is
widely used. Lookahead represents what is allowed as the rest of input. Morihata developed a conversion from regular
expressions with lookahead (REwLA) to deterministic finite automata by extending Thompson’s construction. In this
paper, we develop a conversion from REwLA to deterministic finite automata by extending derivatives of regular ex-
pressions. First, we formalize the semantics of REwLA. An REwLA has information about the rest of the input, so the
definition of the semantics of REwLA is not languages but structures different from those of regular expressions. Thus,
we introduce languages with lookahead as sets of pairs of strings with several operations and define the semantics of
REwLA as languages with lookahead. Next, we define two kinds of left quotient for languages with lookahead and
give corresponding derivatives. Then, we show that the types of expressions obtained by repeatedly applying deriva-
tives are finite under some equivalence relation and give a conversion to deterministic finite automata. We also show
that the semantics of REwLA is a finite union of sets of the form A × B, where A and B are regular languages.
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1. Introduction

Regular expression matching is widely used for searching and
replacing strings. In these implementations, standard regular ex-
pressions are extended with several operations. To accommo-
date such extensions, many implementations use backtracking,
and such implementations have the weakness that the matching
takes exponential time in the worst case. A method of matching
without using backtracking is required. For related works, please
refer to Refs. [6], [14], [19], [21].

One of the practically important operations added is lookahead.
For example, the regular expressions representing comments of C
language and passwords can be described concisely and clearly
by using lookahead. Despite its importance, regular expressions
with lookahead (REwLA) have not been studied sufficiently be-
cause of the difficulty of handling lookahead.

Lookahead is also widely used theoretically. For example, in
the theory of parsing, the concept of lookahead has been used
for a long time. Moreover, Refs. [7], [8] studied objects having
lookahead. Because REwLA is the most fundamental object hav-
ing lookahead, it is important to study the properties of REwLA.

Lookahead is a constraint that shows what comes subsequently.
There are positive lookahead and negative lookahead. In many
implementations, (?=e) and (?!e) denote positive lookahead of
e and negative lookahead of e, respectively. In this paper, we
adopt the notation of PEG [8], &e and !e denoting positive looka-
head and negative lookahead, respectively. Positive lookahead
&e represents a constraint that e comes subsequently, while neg-
ative lookahead represents a constraint that e does not come sub-

1 School of Computing, Tokyo Institute of Technology, Meguro, Tokyo
152–855, Japan

a) miyazaki.t.af@m.titech.ac.jp
b) minamide@is.titech.ac.jp

sequently.
As an example, we explain the behavior of REwLA a&b.

input is a =⇒ failure

input is aa =⇒ failure

input is ab =⇒ success (match a, rest b)

input is aba =⇒ success (match a, rest ba)

The former two cases fail because ε or a comes after a, and it is
not a string beginning with b. The latter two cases succeed be-
cause b or ba comes after a, and it is a string beginning with b.
Since the matching string does not contain the part matched with
lookahead, the matching string is a.

Lookahead is mainly used to represent intersection and com-
plement. For example, an REwLA representing the intersection
of languages represented by e1, e2, and e3 can be written as fol-
lows: &(e1$)&(e2$)&(e3$).∗$, where the dot “.” represents an
arbitrary letter, and $ represents the end of a string. Furthermore,
an REwLA representing the complement of the language repre-
sented by e can be written as !(e$).∗$.

As a practical example, an extended regular expression repre-
senting passwords can be written as the following.

&(.∗[a-z]) &(.∗\d) [a-z\d]{8, 100}$

This represents the set of strings of 8 to 100 letters including both
lowercase letters [a-z] and digits \d. Furthermore, by taking ad-
vantage of lookahead, an REwLA representing comments of the
C language, which cannot be nested, can be written as the follow-
ing.

/∗ (!(∗/).)∗ ∗/

Note that ∗ is a letter, and ∗ represents iteration. This REwLA
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represents that a comment starts with /∗, followed by characters
such that each of them is not at the start of ∗/, and finally ends
with ∗/.

A formal discussion about REwLA was initiated by
Morihata [15], and he showed a conversion similar to
Thompson’s construction [22] from REwLA to Boolean au-
tomata [4]. A Boolean automaton is an automaton where the
initial state is a logical formula of states, and the transition func-
tion is a function from states and letters to logical formulas of
states. A similar extension of automata is also called alternating
finite automata [5]. An REwLA can be converted to a deter-
ministic finite automaton (DFA) that accepts the same language
because a Boolean automaton can be converted to a DFA. To
define the language of REwLA L(e), Morihata introduced the
function L′(e, x) from REwLA and input strings to the set of
remaining strings. His definition is operational in the sense that
L′(e∗, x) is defined recursively using L′(e∗, x′). This definition
is different from the standard definition. Moreover, he did not
discuss the properties of L′.

Therefore, in this paper, we call a set of pairs of matching
strings and remaining strings as a language with lookahead and
define several operations on languages with lookahead. We de-
fine the semantics of REwLA B(e) as a function from REwLA to
languages with lookahead, noting that our definition is close to
the standard definition. We discuss the properties of languages
with lookahead and show that languages with lookahead form a
Kleene algebra with tests [12]. Furthermore, we show that the se-
mantics of REwLA is a finite union of sets of the form A×B where
A and B are regular languages. A similar representation appears
also in recognizable relation [2] and ω regular languages [11].

In addition, we use derivatives [3] as a method of conversion.
It is known that the conversion by derivatives is relatively easy to
implement in programming languages with pattern matching, and
the number of states of DFA obtained by derivatives is small [17].

We briefly explain derivatives. First, the left quotient is defined
as x−1L = {y | xy ∈ L}. Derivatives compute the left quotient on
regular expressions. The set of states obtained by repeatedly ap-
plying derivatives is finite under some equivalence relation; thus,
a regular expression can be converted to DFA with derivatives.
Moreover, by using partial derivatives [1] of regular expressions,
it has been shown that the number of states of the DFA is bounded
by 2‖e‖ + 1 under some equivalence relation, where ‖e‖ represents
the number of occurrence of letters.

In the case of languages with lookahead, we introduce letters
with tilde ã and define two types of left quotient. Two deriva-
tives corresponding to each left quotient are extensions of deriva-
tives and their auxiliary functions. Then, no auxiliary function
is needed. The set of states obtained by derivatives is not finite
in general, as is the case with regular expressions. However, we
show that the number of states of the DFA is bounded by 22‖e‖ + 1
under some equivalence relation.

In Section 2, we define language with lookahead and REwLA.
In Section 3, we first define the left quotient and derivatives. Next,
we show the upper bound 22‖e‖ + 1 as the size of the states in
the worst case and the lower bound 22Ω(

√
m)

where m is the size of
REwLA. Lastly, we show conversion to DFA, equivalence check-

ing, and that the semantics of an REwLA is a finite union of sets
of the form A × B where A and B are regular languages. In Sec-
tion 4, we briefly describe the implementation.

2. Regular Expressions with Lookahead

In this section, we introduce languages with lookahead and de-
fine REwLA.

2.1 Languages with Lookahead
First, we define languages with lookahead. A language with

lookahead is a subset of Σ∗ × Σ∗. This subset contains what is
accepted and what comes subsequently. For example, {a} × bΣ∗

expresses that the matching string is a, and the remaining string
starts with b.

The concatenation operation · is defined on languages with
lookahead as the following.

R · S = {(xy, z) | (x, yz) ∈ R, (y, z) ∈ S }

By considering only the matching part, if x is matched in R, and
y is matched in S , then xy is matched in R · S . By also consider-
ing the lookahead part, if x is matched in R, yz is allowed as the
remaining string in R, y is matched in S , and z is allowed in S ,
then xy is matched in R · S , and z is allowed in R · S .

Languages with lookahead form a monoid under concatenation
and the unit element I = {ε}×Σ∗. A subset of I is just a constraint
because it is expressed as {ε}×A and only matches ε. For R, S ⊆ I,
we have R · S = R ∩ S . Therefore, the concatenation operation is
commutative and idempotent for R, S ⊆ I. That is, R · S = S · R,
and R · R = R.

The star operation is defined in the same manner as for a usual
language.

R∗ =
∞⋃

i=0

Ri (R0 = I, Rn+1 = Rn · R)

For the star operation, the following lemma holds.
Lemma 2.1.

R∗ = I ∪ (R \ I) · R∗

Proof. Since (I ∪ S )n = I ∪ S ∪ · · · ∪ S n holds, (I ∪ S )∗ = S ∗ is
obtained. By substituting (I ∪ S )∗ for S ∗ in S ∗ = I ∪ S · S ∗, we
obtain (I ∪ S )∗ = I ∪ S · (I ∪ S )∗. By substituting R \ I for S , we
obtain what we wanted. �

We describe the lookahead operations. The positive lookahead

operation & is defined as follows.

&R = {ε} × {xy | (x, y) ∈ R}

The language {xy | (x, y) ∈ R} represents successful input for R.
Thus, positive lookahead &R represents that successful input for
R is allowed. For a positive lookahead operation, &(R ∪ S ) =
&R ∪ &S holds. If R ⊆ I, then &(R · S ) = R · &S holds. These
properties are similar to the linear mapping of vector spaces. In
fact, it can be regarded as a homomorphism of the left semimod-
ule [10], which is a generalization of vector space. Furthermore,
&(&R) = &R holds.
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The negative lookahead operation ! is defined as the following.

!R = {ε} × (Σ∗ \ {xy | (x, y) ∈ R})

The negative lookahead can be written as !R = I \ (&R) by us-
ing positive lookahead and the set difference. Hence, for R ⊆ I,
!R = I \ R holds; thus, (P(I), ∅, I,∪, ·, !) is a Boolean algebra.
The positive lookahead is written as &R = !(!R) by using nega-
tive lookahead. Therefore, positive lookahead can be treated as
an abbreviation. For negative lookahead, !(R∪S ) = !R · !S holds.
If R ⊆ I, then !(R · S ) = !R ∪ !S holds.

Next, we define a Kleene algebra with lookahead.
Definition 2.2. A Kleene algebra with lookahead (K, B, 0,
1,+, ·,∗ , !) satisfies the following.
( 1 ) B ⊆ K

( 2 ) (K, 0, 1,+, ·,∗ ) is Kleene algebra.
( 3 ) (B, 0, 1,+, ·, !) is Boolean algebra.
( 4 ) !(k1 + k2) = !k1 · !k2

( 5 ) !(b · k) = !b + !k
If (K, B, 0, 1,+, ·,∗ , !) satisfies conditions (1), (2), and (3), it is

called a Kleene algebra with tests [12]. Languages with looka-
head (P(Σ∗ × Σ∗),P(I), ∅, I,∪, ·, ∗, !) form a Kleene algebra with
lookahead.

2.2 Regular Expressions with Lookahead
We define REwLA by the following grammars:

e ::= ∅ | ε | a | e|e | ee | e∗ | !e,

where a ∈ Σ.
We define the semantics of REwLA B(e) *1. B is a mapping

from REwLA to languages with lookahead.

B(∅) = ∅
B(ε) = I

B(a) = {a} × Σ∗
B(e1|e2) = B(e1) ∪ B(e2)

B(e1e2) = B(e1) · B(e2)

B(e∗) = B(e)∗

B(!e) = !B(e)

We define the language of REwLA L(e). L is a mapping from
REwLA to languages.

L(e) = {x | (x, ε) ∈ B(e)}

This definition extends that of the language of regular expres-
sions. For a regular expression r, B(r) = L(r) × Σ∗ holds. Be-
cause the lookahead part is Σ∗, an arbitrary string can come sub-
sequently, or there is no constraint.
‖e‖ is the number of occurrence of letters (elements of Σ) in

REwLA e.
We define several abbreviations. First, the dot expression “.”

represents any letter and is an abbreviation for a1| . . . |an when
Σ = {a1, . . . , an}. Thus, B(.) = Σ×Σ∗. The expression $ represents
the end of input and is an abbreviation for “!.”. B($) = {ε} × {ε}.
*1 B derives from behavior.

Moreover, B(e$) = L(e)× {ε}. Positive lookahead &e is an abbre-
viation for !(!e). B(&e) = {ε} × {xy | (x, y) ∈ B(e)}. Moreover,
B(&(e$)) = {ε} × L(e). Let en be the expression in which e is
concatenated n times. B(en) = B(e)n.

REwLA given by the following grammar are called logical ex-

pressions of REwLA.

l ::= ∅ | ε | l|l | ll | !e

The reason these REwLA are called logical expressions is that
concatenation operation behaves similarly to intersection. For
any l, B(l) ⊆ I holds.

3. Construction of DFA by Derivatives

In this section, we first define left quotient and derivatives.
Next, we show that the set of states obtained by repeatedly ap-
plying derivatives is finite under some equivalence relation. Af-
terward, we show the upper bound 22‖e‖ + 1 of the size of the set
of states in the worst case and discuss the lower bound. Lastly,
we show the conversion to DFA and prove several theorems as its
corollaries.

3.1 Left Quotient
Left quotient is defined as follows.

a−1R = {(x, y) | (ax, y) ∈ R}
ã−1R = {(ε, y) | (ε, ay) ∈ R}

Here, a−1R is the left quotient for the matching part, which is the
operation to remove a from the matching part. This operation
is an extension of the left quotient of usual languages without
lookahead.

ã−1R is the left quotient for the remaining part. We write it as
ã−1R using a letter with tilde as ã. Because it is the left quotient
for the remaining part, it is the operation to remove a from the
remaining part of a pair that does not consume any letters. Thus,
it removes a only from a pair where the matching part is ε.

The definition is extended to a string w ∈ (Σ ∪ Σ̃)∗ by the fol-
lowing.

ε−1R = R

(cw)−1R = w−1(c−1R) (c ∈ Σ ∪ Σ̃, w ∈ (Σ ∪ Σ̃)∗)

The following holds from the definition.

(̃ab)−1R = ∅

Therefore, for w ∈ (Σ∪Σ̃)∗\(Σ∗Σ̃∗), w−1R = ∅ holds. Furthermore,
for x̃y ∈ Σ∗Σ̃∗, the following holds.

(x, y) ∈ R ⇐⇒ (ε, ε) ∈ (x̃y)−1R

From the above, in order to decide whether (x, y) is included in R,
it is sufficient to calculate the left quotient of R by x̃y and check
whether it includes the end of input (ε, ε). If it is possible to cal-
culate the left quotient on REwLA and judge whether the end of
input is included, then we can implement matching of REwLA.

For the left quotient by letter a, the following holds.
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Lemma 3.1.

a−1(R ∪ S ) = (a−1R) ∪ (a−1S )

a−1(R · S ) = (a−1R) · S ∪ (̃a−1R) · (a−1S )

a−1(R∗) = (a−1R) · R∗
a−1(!R) = ∅

Proof. This lemma follows from the equational reasoning on
sets. In the case of concatenation, R · S = (R \ I) · S ∪ (R ∩ I) · S
is used. In the case of star, R∗ = I ∪ (R \ I) · R∗ is used. �

For the left quotient by letter ã, the following holds.
Lemma 3.2.

ã−1(R ∪ S ) = (̃a−1R) ∪ (̃a−1S )

ã−1(R · S ) = (̃a−1R) · (̃a−1S )

ã−1(R∗) = I

ã−1(!R) = !(a−1R ∪ ã−1R)

Proof. This lemma follows from the equational reasoning on
sets. In the case of star, R∗ = I ∪ (R \ I) · R∗ is used. In the
case of negative lookahead, R = (R \ I) ∪ (R ∩ I) is used. �

3.2 Derivatives
Derivatives calculate the left quotient on REwLA. There are

two types of derivatives, da and dã, both of which are functions
from REwLA to REwLA and are defined by mutual recursion.
Definition 3.3. The derivative of e by a, written dae, is defined
as follows.

da∅ = ∅
daε = ∅

dab =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε (a = b)

∅ (a � b)

da(e1|e2) = dae1|dae2

da(e1e2) = (dae1)e2|(dãe1)(dae2)

da(e∗) = (dae)e∗

da(!e) = ∅

The derivative of e by ã, written dãe, is defined as follows.

dã∅ = ∅
dãε = ε

dãb = ∅
dã(e1|e2) = dãe1|dãe2

dã(e1e2) = (dãe1)(dãe2)

dã(e∗) = ε

dã(!e) = !(dae|dãe)

These derivatives are extensions of derivatives of regular ex-
pressions. Derivatives of regular expressions require an auxiliary
function. In contrast, in REwLA, dã is an extension of the auxil-
iary function, and the two derivatives only require the correspond-
ing functions.

Example. da(a∗), da(a!b), and db̃(!b) are calculated as follows.

da(a∗) = (daa)a∗ = εa∗

da(a!b) = (daa)!b|(dãa)(dab) = ε!b|∅∅
db̃(!b) = !(dbb|db̃b) = !(ε|∅)

The following theorem is obtained from the lemma of the left
quotient.
Theorem 3.4. (Correctness of Derivatives)

B(dae) = a−1B(e)

B(dãe) = ã−1B(e)

Derivatives are also extended to a string w ∈ (Σ ∪ Σ̃)∗.

dεe = e

dcwe = dw(dce) (c ∈ Σ ∪ Σ̃, w ∈ (Σ ∪ Σ̃)∗)

For the extended derivative, the following holds.

B(dwe) = w−1B(e)

In addition, from the definition of derivative, dãe is a logical
expression of REwLA. Therefore, if v ∈ (Σ ∪ Σ̃)∗ \ (Σ∗), then dve

is a logical expression of REwLA.

3.3 Conversion to Automata
It is possible to decide whether an REwLA accepts the end of

input. ν is a function from REwLA to Boolean values and is de-
fined as follows.

ν(∅) = ν(a) = false

ν(ε) = ν(e∗) = true

ν(e1|e2) = ν(e1) ∨ ν(e2)

ν(e1e2) = ν(e1) ∧ ν(e2)

ν(!e) = ¬ ν(e)

ν(e) is true if and only if (ε, ε) ∈ B(e). Therefore, matching is
achieved: ν(dx̃ye) determines whether (x, y) ∈ B(e).

We describe the conversion to DFA. The set of states Q(e) is
defined as follows.

Q(e) = {dwe | w ∈ (Σ ∪ Σ̃)∗}

If Q(e) is finite, then we can convert REwLA to DFA on Σ ∪ Σ̃.
The DFA by derivatives,A(e0), is defined as follows.

A(e0) = 〈Q(e0),Σ ∪ Σ̃, δ, e0, F〉
F = {e ∈ Q(e0) | ν(e)}
δ(e, c) = dce

If Q(e0) is finite, then the following holds.

L(A(e0)) ⊆ Σ∗Σ̃∗
x̃y ∈ L(A(e0)) ⇐⇒ (x, y) ∈ B(e0)

However, Q(e0) is not necessarily finite.
If some equivalence relation ≡ exists such that the following is

true:
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Q(e)/≡ is finite,

e1 ≡ e2 =⇒ δ(e1, c) ≡ δ(e2, c),

e1 ≡ e2 =⇒ (e1 ∈ F ⇐⇒ e2 ∈ F),

then it is possible to construct the DFA on the quotient of A(e)
by the equivalence relation. In the next subsection, we show that
such an equivalence relation exists.

3.4 Finiteness
A congruence on REwLA is an equivalence relation that satis-

fies the following.

e1 ≡ e2, e3 ≡ e4 =⇒ e1|e3 ≡ e2|e4

e1 ≡ e2, e3 ≡ e4 =⇒ e1e3 ≡ e2e4

e1 ≡ e2 =⇒ e∗1 ≡ e∗2
e1 ≡ e2 =⇒ !e1 ≡ !e2

We define an equivalence relation that satisfies the conditions
presented in the previous subsection.
Definition 3.5. Let ≡ be a congruence generated by the following
rule.

e1|(e2|e3) ≡ (e1|e2)|e3 (| assoc) (1)

e1|e2 ≡ e2|e1 (| comm) (2)

e|e ≡ e (| idem) (3)

e|∅ ≡ e, ∅|e ≡ e (∅ unit) (4)

eε ≡ e, εe ≡ e (ε unit) (5)

e∅ ≡ ∅, ∅e ≡ ∅ (∅ zero) (6)

(e1|e2)e3 ≡ (e1e3)|(e2e3) (right dist) (7)

e1(e2|e3) ≡ (e1e2)|(e1e3) (left dist) (8)

e1(e2e3) ≡ (e1e2)e3 (· assoc) (9)

l1l2 ≡ l2l1 (· comm) (10)

ll ≡ l (· idem) (11)

!∅ ≡ ε (!∅ rule) (12)

!ε ≡ ∅ (!ε rule) (13)

!(e1|e2) ≡ !e1!e2 (!| rule) (14)

!(le) ≡ !l|!e (!· rule) (15)

Equations (1)–(9) are the rules of the idempotent semiring.
Equations (10)–(13) are some rules of Boolean algebra. Equa-
tions (14) and (15) are the rules corresponding to Eqs. (4) and (5)
of Kleene algebra with lookahead.

For regular expressions, the sufficient set of rules to prove
finiteness is Eqs. (1)–(6). In Brzozowski’s paper [3], it is shown
that Eqs. (1)–(3) are sufficient. However, unlike our definition,
the derivative of concatenation e1e2 is defined by case analysis
on the auxiliary function. In order to prove the number of states
is bounded by an exponential function, it is sufficient to add right
distributivity (7). For REwLA, the sufficient set of rules to prove
finiteness is Eqs. (1)–(6) and Eqs. (8)–(11). The sufficient set of
rules to prove that the number of states is bounded by a double
exponential function is Eqs. (1)–(15).

For the congruence ≡, the following holds.

e1 ≡ e2 =⇒ B(e1) = B(e2)

e1 ≡ e2 =⇒ ν(e1) = ν(e2)

e1 ≡ e2 =⇒ dce1 ≡ dce2

The proposition for B follows because languages with lookahead
form a Kleene algebra with lookahead. The proposition for ν fol-
lows from the proposition for B and ν(e) ⇐⇒ (ε, ε) ∈ B(e). The
proposition for dc is proved by induction on ≡.

We show that Q(e0)/≡ is finite. First, we find the normal form
of dwe. For ∅, ε, and a, the following holds.

dw∅ = ∅

dwε =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε (w ∈ Σ̃∗)
∅ (otherwise)

dwa =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a (w = ε)

ε (w ∈ aΣ̃∗)

∅ (otherwise)

Moreover, for e1|e2, the following holds.

dw(e1|e2) = dwe1|dwe2

We define the abbreviation
∑

as follows:

n∑
i=1

ei = e1| . . . |en,

where
∑n

i=1 ei = ∅ if n = 0. In addition, we write
∑n

i=1 ei e′i
for
∑n

i=1(ei e′i ). For derivatives, da(
∑n

i=1 ei) =
∑n

i=1(daei) and
dã(
∑n

i=1 ei) =
∑n

i=1(dãei) hold.
In the case of concatenation, we find the following normal form

of dwe.
Lemma 3.6. For any w, there exist some n, vi ∈ (Σ ∪ Σ̃)∗ \ (Σ∗),
and wi � ε such that the following holds.

dw(e1e2) ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(dwe1)e2|∑n
i=1(dvi e1)(dwi e2) (w ∈ Σ∗)∑n

i=1(dvi e1)(dwi e2) (otherwise)

Proof. This lemma is proved by induction on w. In the
case of ε, we use the fact ∅ is the unit element. That is,
dε(e1e2) ≡ (dεe1)e2|∅. In the case of wc, we use the associa-
tivity of |. We show the case where c = a, and dw(e1e2) ≡
(dwe1)e2|∑n

i=1(dvi e1)(dwi e2).

dwa(e1e2) ≡ da((dwe1)e2|∑n
i=1(dvi e1)(dwi e2))

≡ (((dwae1)e2|(dwãe1)(dae2))|∑n
i=1((dviae1)(dwi e2)|(dvi ãe1)(dwiae2)))

≡ (dwae1)e2|∑2n+1
i=1 (dv′i e1)(dw′i e2)

�

In the case of negative lookahead, we find the following normal
form of dwe.
Lemma 3.7. For any w, there exist n and wi � ε such that the

following holds.

dw(!e) ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

!((
∑n

i=1 dwi e)|dwe) (w ∈ Σ̃∗)
∅ (otherwise)
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Proof. This is proved by induction on w. It is proved in a man-
ner similar to the case of concatenation. �

We define the abbreviation
∏

as follows:

n∏
i=1

ei = e1 . . . en,

where
∏n

i=1 ei=ε if n=0. For derivatives, dã(
∏n

i=1 ei)=
∏n

i=1(dãei)
holds. Moreover, we have da(

∏n
j=1 e j) ≡ ∑n

i=1(
∏n

j=1(dwi j e j)),
where wi j=ã (i> j), a (i= j), ε (i< j).

In the case of the star, we find the following form of dwe.
Lemma 3.8. For any w, there exist n, mi, vi j ∈ (Σ ∪ Σ̃)∗ \ (Σ∗),
and wi ∈ Σ+ such that the following holds.

dwe∗ ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e∗ (w = ε)∑n
i=1(
∏mi

j=1(dvi j e))(dwi e)e∗ (w ∈ Σ+)∑n
i=1(
∏mi

j=1(dvi j e)) (otherwise)

Proof. This is proved by induction on w. The case of ε is
clear. In the case of wc, we show the case where c = a, and
dwe∗ ≡ (dve)(dw1 e)e∗.

dwae∗

≡ da((dve)(dw1 e)e∗)

≡ (dvae)(dw1 e)e∗|(dṽae)(da((dw1 e)e∗))

≡ (dvae)(dw1 e)e∗|(dṽae)((dw1ae)e∗|(dw1 ãe)(dae)e∗)

≡ (dvae)(dw1 e)e∗|(dṽae)(dw1ae)e∗|(dṽae)(dw1 ãe)(dae)e∗

≡ (dv11 e)(dw1 e)e∗|(dv21 e)(dw2 e)e∗|(dv31 e)(dv32 e)(dw3 e)e∗

�

Theorem 3.9. Q(e)/≡ is finite.

Proof. Let f (e) = |Q(e)/≡|. Because ≡ is idempotent and com-
mutative, the following holds for each normal form of dwe.

f (∅) = 1

f (ε) = 2

f (a) = 3

f (e1|e2) ≤ f (e1) × f (e2)

f (e1e2) ≤ 2 f (e1)× f (e2)

f (e∗) ≤ 222× f (e)
+ 1

f (!e) ≤ 2 f (e) + 1

Hence, Q(e)/≡ is finite.
We explain the case of the star. From Lemma 3.8, there exist

n, mi, vi j ∈ (Σ ∪ Σ̃)∗ \ (Σ∗), wi, and ei ∈ {(dwi e)e∗, ε} such that the
following holds.

dwe∗ ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e∗ (w = ε)∑n
i=1(
∏mi

j=1(dvi j e))ei (otherwise)

Then, dvi j e is a logical expression of REwLA. Thus, the num-
ber of equivalence classes of

∏mi

j=1(dvi j e) is less than or equal to
2 f (e). Because the number of equivalence classes of ei is less than
or equal to f (e) + 1 ≤ 2 f (e), the number of equivalence classes

of (
∏mi

j=1(dvi j e))ei is less than or equal to 2 f (e) × 2 f (e) = 22× f (e).
Therefore, the number of equivalence classes of dwe∗ is less than
or equal to 222× f (e)

+ 1. �

We have proved that Q(e)/≡ is finite; thus, we obtained a con-
version to DFA by derivatives. In the next two subsections, we
discuss the number of states of the DFA. In the subsection of
application, we show several theorems as corollaries of the con-
version to DFA.

3.5 Upper Bound
We have proved Q(e)/≡ is finite. Although it is sufficient for

DFA construction, we show a stronger result that

|Q(e)/≡| ≤ 22‖e‖ + 1.

This is shown in the following manner. First, for w � ε, we rep-
resent dwe in the form

∑n
i=1(
∏mi

j=1 li j)ei. Next, we identify the sets
of expressions Vm(e) and Vl(e) that appear as ei, li j. Lastly, we
show |Q(e)/≡| ≤ 22‖e‖ + 1 because |Vm(e)| + |Vl(e)| ≤ ‖e‖.

We generalize concatenation and negative lookahead. For a set
E1 of REwLA and an REwLA e2, E1e2 = {e1e2 | e1 ∈ E1}. For a
set E of REwLA, !E = {!e | e ∈ E}.

The set of REwLA, Vm(e), is defined as follows.

Vm(∅) = ∅
Vm(ε) = ∅
Vm(a) = {ε}
Vm(e1|e2) = Vm(e1) ∪ Vm(e2)

Vm(e1e2) = Vm(e1)e2 ∪ Vm(e2)

Vm(e∗) = Vm(e)e∗

Vm(!e) = ∅
If r is a regular expression, Vm(r)∪{r} is the set of regular expres-
sions obtained by repeatedly applying partial derivatives [1].

The set of REwLA, Vl(e), is defined as follows.

Vl(∅) = ∅
Vl(ε) = ∅
Vl(a) = ∅
Vl(e1|e2) = Vl(e1) ∪ Vl(e2)

Vl(e1e2) = Vl(e1) ∪ Vl(e2)

Vl(e
∗) = Vl(e)

Vl(!e) = !(Vm(e) ∪ Vl(e))

Vl(e) is a concept unique to REwLA because Vl(r) = ∅ for a reg-
ular expression r.

Vm(e) and Vl(e) satisfy |Vm(e)| + |Vl(e)| ≤ ‖e‖. We confirm this
in the case of concatenation.

|Vm(e1e2)| + |Vl(e1e2)|
= |Vm(e1)e2 ∪ Vm(e2)| + |Vl(e1) ∪ Vl(e2)|
≤ |Vm(e1)e2| + |Vm(e2)| + |Vl(e1)| + |Vl(e2)|
≤ ‖e1‖ + ‖e2‖ = ‖e1e2‖

Lemma 3.10. For any w, there exist n, mi, li j ∈ Vl(e), and
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ei ∈ Vm(e) such that the following holds.

dwe ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e (w = ε)∑n
i=1(
∏mi

j=1 li j)ei (w ∈ Σ+)∑n
i=1(
∏mi

j=1 li j) (otherwise)

Proof. This is proved by induction on e. We use associativity
and distributivity. We show a part of the case of concatenation.
From Lemma 3.6, there exist N, vi ∈ (Σ ∪ Σ̃)∗ \ (Σ∗), and wi � ε
such that the following holds.

dw(e1e2) ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(dwe1)e2|∑N
i=1(dvi e1)(dwi e2) (w ∈ Σ∗)∑N

i=1(dvi e1)(dwi e2) (otherwise)

We prove the case of w ∈ Σ∗ and N = 1. For the first half part
(dwe1)e2, from induction hypothesis, the following holds.

(dwe1)e2 ≡ (
∑n

i=1(
∏mi

j=1li j)e′i )e2

≡ ∑n
i=1(
∏mi

j=1li j)(e′i e2)

For the latter half part (dv1 e1)(dw1 e2), we use the following equal-
ity.

(dv1 e1)(dw1 e2) ≡ (
∑n

i=1(
∏mi

j=1li j))(
∑n′

k=1(
∏m′k

j=1l′k j)e
′
k)

≡ ∑n
i=1(
∑n′

k=1(
∏mi

j=1li j)(
∏m′k

j=1l′k j)e
′
k)

The other cases are the same except for the negative lookahead.
For the case of negative lookahead, the following holds from the
rule of congruence for negative lookahead.

!(dw1 e) ≡ !(
∑n

i=1(
∏mi

j=1li j)ei)

≡∏n
i=1!((

∏mi

j=1li j)ei) (rules (12), (14))

≡∏n
i=1((
∑mi

j=1!li j)|!ei) (rules (13), (15))

Then, this case is shown by using associativity and distributiv-
ity. �

Theorem 3.11. |Q(e)/≡| ≤ 22‖e‖ + 1

Proof. From the above lemma, for any w, there exist n, mi,
li j ∈ Vl(e), and ei ∈ (Vm(e) ∪ {ε}) such that the following holds.

dwe ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e (w = ε)∑n
i=1(
∏mi

j=1 li j)ei (otherwise)

Therefore, we have the following.

|Q(e)/≡| ≤ 22|Vl (e)|(|Vm(e)+1|) + 1

≤ 22|Vl (e)|+|Vm (e)|
+ 1

≤ 22‖e‖ + 1

This completes the proof of the theorem. �

In the proof of the upper bound, the form
∑n

i=1(
∏mi

j=1 li j)ei is
essential. As a result, it is expected that the double exponential
size is essential, and the number of states cannot be bounded by
an exponential. In the next section, we show that this intuition is
correct.

3.6 Lower Bound
When we convert an REwLA to a DFA, we estimate a lower

bound of the number of states of the DFA in the worst case. We
give a lower bound of 22Ω(

√
m)

where m is the size of REwLA.
Let pi be an i th prime number; we consider the following

REwLA.

Tn = .
∗a&((.p1 )∗$) . . .&((.pn )∗$).∗$

B(Tn) is Σ∗a(Σp1×···×pn )∗ × {ε}. The language of the corresponding
DFA L(A) is Σ∗a(Σp1×···×pn )∗.

For the size of Tn, the following holds.
Lemma 3.12. The size of REwLA Tn is O(p2

n).

Proof. The size of Tn is O(
∑n

i=1 pi). If i < j then pi < p j. Hence,∑n
i=1 pi ≤ ∑pn

i=1 i ≤ p2
n. �

For the size of DFA, the following holds.
Lemma 3.13. The number of states of the minimum DFA on

(Σ ∪ Σ̃)∗ that satisfies L(A) = Σ∗a(ΣN)∗ is 2N + 1.

Proof. 2N states are needed to memorize whether a came at the
i+ (multiple of N) th position for 1 ≤ i ≤ N. In addition, the state
of the empty set is necessary because the automaton does not ac-
cept strings containing ã. Thus, 2N + 1 states are necessary. �

We use the following lemma proved in Ref. [18].
Lemma 3.14.

∏n
i=1 pi = 2Ω(pn)

From the presented lemmas, the following theorem is obtained.
Theorem 3.15. The lower bound of the number of states of DFA

in the worst case is 22Ω(
√

m)
, where m is the size of an REwLA.

Proof. From Lemma 3.12, the size of Tn is O(p2
n). The number

of states corresponding to the minimum DFA is 2
∏n

i=1 pi + 1. It is
22Ω(pn )

. �

As a result, we have given a lower bound 22Ω(
√

m)
.

Morihata pointed out that a better lower bound is ob-
tained by the application of research on XPath [16]. The
lower bound is 22Ω(m)

if the dot expression “.” is introduced
as a primitive. For Σ = {a, b, c, x1, . . . , xm}, he analyzed
.∗a(b|.&(.∗x1)) . . . (b|.&(.∗xm)).∗$.

The following results were shown in related work. The lower
bound 22Ω(m)

is shown for semi-extended regular expressions that
are extended by intersection [9]. The lower bound is not bounded
by an elementary function for extended regular expressions that
are extended by complement [20].

As pointed out by Morihata [15], it is worth noting that despite
REwLA have negative lookahead, the size of the corresponding
DFA can still be bounded by a double exponential.

3.7 Applications
We convert the REwLA e0 to DFAA(e0)/≡ on Σ∪ Σ̃. A(e0)/≡

is defined as follows:

A(e0)/≡ = 〈Q(e0)/≡,Σ ∪ Σ̃, δ, [e0], F〉,
F = {[e] ∈ Q(e0)/≡ | ν(e)},
δ([e], c) = [dce],

where [e] is equivalence classes defined as [e] = {e′ | e ≡ e′}.
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Fig. 1 DFA for a&b.

Q(e0)/≡ is a finite set by Theorem 3.9. In addition, F and δ are
well-defined. Thus,A(e0)/≡ is a DFA.
Theorem 3.16. (Correctness of DFA)

L(A(e0)/≡) ⊆ Σ∗Σ̃∗
x̃y ∈ L(A(e0)/≡) ⇐⇒ (x, y) ∈ B(e0)

Example. When Σ = {a, b, c}, the DFA converted from a&b is
shown in Fig. 1.

Several theorems are obtained as corollaries.
Corollary 3.17. (Matching) Let A be the DFA converted from

the REwLA e, n be the length of x, and m be the number of states.

It is decidable whether x ∈ L(e) in O(n) time, and it is possible to

calculate {(x1, x2) ∈ B(e) | x = x1x2} in O(nm) time.

Proof. In order to determine whether x ∈ L(e), it is sufficient
to run A with input x. Since A is DFA, it is determined in O(n)
time. In order to calculate {(x1, x2) ∈ B(e) | x = x1x2}, when
x = a1 . . . an, for 0 ≤ i ≤ n, it is sufficient to run A with in-
put a1 . . . aiãi+1 . . . ãn. These can run in parallel, which is similar
to the behavior of a nondeterministic automaton. The number of
states at each step is bounded by the number of states m. Thus, it
is calculated in O(nm) time. �

Corollary 3.18 (Backward Movement of Lookahead). For any

REwLA e, there exist regular expressions r0, . . . , rn, s0, . . . , sn

such that B(e) = B(r0&(s0$)| . . . |rn&(sn$)).

Proof. Let A be the DFA converted from REwLA e, A =

〈Q,Σ ∪ Σ̃, δ, q0, F〉, and Q = {q0, . . . , qn}. Let Ai =

〈Q,Σ, δ|Q×Σ, q0, {qi}〉, and Bi = 〈Q, Σ̃, δ|Q×Σ̃, qi, F〉. L(A) =⋃n
i=0 L(Ai)L(Bi) holds because L(A) ⊆ Σ∗Σ̃∗. Therefore,

L(A) = L(r0 s̃0| . . . |rn s̃n) where ri and s̃i are the regular ex-
pressions converted from DFA Ai and Bi. Thus, B(e) =
B(r0&(s0$)| . . . |rn&(sn$)) from Theorem 3.16. �

Corollary 3.19 (Regularity). For any REwLA e, there exist regu-

lar languages A1, . . . , An, B1, . . . , Bn such that B(e) =
⋃n

i=1(Ai ×
Bi). Therefore, L(e) is a regular language.

Proof. This follows from Corollary 3.18. �

Corollary 3.20 (Equivalence Checking). Given REwLA e1, e2, it

is decidable whether B(e1) = B(e2).

Proof. This can be determined by converting to DFA, minimiz-
ing, and comparing. �

Table 1 Experimental result.

REwLA letters states
a∗ 1 3
a&b 2 4
(!(ab).)∗ 3 4
ba(!(ab).)∗ab 7 6
&(.∗a)&(.∗b)(.8).∗$ 13 33
.∗a&((.3)∗$)&((.5)∗$).∗$ 11 32769

4. Implementation

We implemented the conversion from REwLA to DFA in the
programming language Scala. It is easy to implement derivatives
in programming languages having pattern matching, as indicated
in Ref. [17].

In the previous section, states are equivalence classes, and each
equivalence class is a possibly infinite set. Therefore, the imple-
mentation calculates representatives and makes them states. The
computation of representatives is based on the implementation of
derivatives of regular expressions in Isabelle/HOL [13].

Some examples were converted to DFA. Table 1 shows the
number of states of obtained DFA. The fourth from the top is an
expression for comments of C languages, the fifth is an expres-
sion similar to passwords, and the sixth is an example of state
explosion. The number of letters of “.” is counted as 1, and the
number of letters of $ is counted as 0.

We describe one scheme used in our implementation. The ex-
pression (a|b)(a|b) expands to aa|ab|ba|bb by distributivity. We
use literal classes rather than letters as primitives, and we repre-
sent the expression as [ab][ab], preventing excessive expansion
by the distributive law. Furthermore, we can handle letters and
the dot expression uniformly as a special case of literal class.

5. Conclusion

We have given conversion from REwLA to DFA by deriva-
tives. We have also given an upper bound on the number of states,
which is doubly exponential in the size of the REwLA. As a corol-
lary of conversion to DFA, we show that the semantics of REwLA
is a finite union of sets of the form A × B where A and B are reg-
ular languages. In addition, we have implemented the conversion
and confirmed it works as expected for some examples.
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