
KING’S COLLEGE LONDON

DOCTORAL THESIS

POSIX Regular Expression Matching and
Lexing

Author:
Chengsong TAN

Supervisor:
Dr. Christian URBAN

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Software Systems
Department or Informatics

March 18, 2022

https://www.kcl.ac.uk
https://kclpure.kcl.ac.uk/portal/en/persons/chengsong-tan(a63b381b-04bc-4cd7-beea-beb3e96cb153).html
https://www.kcl.ac.uk/people/christian-urban
https://www.kcl.ac.uk/research/ssy
https://www.kcl.ac.uk/informatics

iii

Declaration of Authorship
I, Chengsong TAN, declare that this thesis titled, “POSIX Regular Expression Match-
ing and Lexing” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“Thanks to my solid academic training, today I can write hundreds of words on virtually any
topic without possessing a shred of information, which is how I got a good job in journalism.”

Dave Barry

vii

KING’S COLLEGE LONDON

Abstract
Chengsong Tan

Department or Informatics

Doctor of Philosophy

POSIX Regular Expression Matching and Lexing

by Chengsong TAN

This work is a combination of functional algorithms and formal methods. Regu-
lar expression matching and lexing has been widely-used and well-implemented in
software industry.

Theoretical results say that regular expression matching should be linear with
respect to the input. Under a certain class of regular expressions and inputs though,
practical implementations suffer from non-linear or even exponential running time,
allowing a ReDoS (regular expression denial-of-service) attack.

The reason behind is that regex libraries in popular language engines often want
to support richer constructs than the most basic regular expressions, and lexing
rather than matching is needed for sub-match extraction.

This work aims to address the above vulnerability by the combination of Brzo-
zowski’s derivatives and interactive theorem proving. We give an improved version
of Sulzmann and Lu’s bit-coded algorithm using derivatives, which come with a for-
mal guarantee in terms of correctness and running time as an Isabelle/HOL proof.
Then we improve the algorithm with an even stronger version of simplification, and
prove a time bound linear to input and cubic to regular expression size using a tech-
nique by Antimirov.

HTTPS://WWW.KCL.AC.UK
http://faculty.university.com
https://www.kcl.ac.uk/informatics

ix

Acknowledgements
The acknowledgments and the people to thank go here, don’t forget to include your
project advisor. . .

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Why Brzozowski . 2
1.2 Backgound . 4
1.3 Existing Practical Approaches . 5

1.3.1 DFA Approach . 5
1.3.2 NFA Approach . 5

1.4 Our Approach . 5
1.4.1 Existing Work . 5

1.5 What this Template Includes . 5
1.5.1 Folders . 5
1.5.2 Files . 6

1.6 Filling in Your Information in the main.tex File 7
1.7 The main.tex File Explained . 7
1.8 Thesis Features and Conventions . 8

1.8.1 Printing Format . 8
1.8.2 Using US Letter Paper . 9
1.8.3 References . 9

A Note on bibtex . 9
1.8.4 Tables . 10
1.8.5 Figures . 10
1.8.6 Typesetting mathematics . 11

1.9 Sectioning and Subsectioning . 12
1.10 In Closing . 12

2 Chapter Title Here 13
2.1 Properties of \c . 13

2.1.1 \c is not an injection . 13
2.1.2 Subsection 1 . 13
2.1.3 Subsection 2 . 13

2.2 Main Section 2 . 14

3 Common Identities In Simplification-Related Functions 15
3.1 Idempotency of simp . 15

3.1.1 Syntactic Equivalence Under simp 15
3.1.2 Subsection 2 . 15

3.2 Main Section 2 . 15

xii

A Frequently Asked Questions 17
A.1 How do I change the colors of links? . 17

Bibliography 19

xiii

List of Figures

1.1 An Electron . 11

xv

List of Tables

1.1 The effects of treatments X and Y on the four groups studied. 10

xvii

List of Abbreviations

LAH List Abbreviations Here
WSF What (it) Stands For

xix

Physical Constants

Speed of Light c0 = 2.997 924 58× 108 m s−1 (exact)

xxi

List of Symbols

a distance m
P power W (J s−1)

ω angular frequency rad

xxiii

For/Dedicated to/To my. . .

1

Chapter 1

Introduction

Regular expression matching and lexing has been widely-used and well-implemented
in software industry. If you go to a popular programming language’s regex engine,
you can supply it with regex and strings of your own, and get matching/lexing in-
formation such as how a sub-part of the regex matches a sub-part of the string. These
lexing libraries are on average quite fast. For example, the regex engines some net-
work intrusion detection systems use are able to process megabytes or even giga-
bytes of network traffic per second.

Why do we need to have our version, if the algorithms work well on average?
Take (a∗)∗ b and ask whether strings of the form aa..a match this regular expres-

sion. Obviously this is not the case—the expected b in the last position is missing.
One would expect that modern regular expression matching engines can find this
out very quickly. Alas, if one tries this example in JavaScript, Python or Java 8 with
strings like 28 a’s, one discovers that this decision takes around 30 seconds and takes
considerably longer when adding a few more a’s, as the graphs below show:

5 10 15 20 25 30

5
10
15
20
25
30

n

ti
m

e
in

se
cs JavaScript

5 10 15 20 25 30

5
10
15
20
25
30

n

Python

5 10 15 20 25 30
0
5

10
15
20
25
30

n

Java 8

Graphs: Runtime for matching (a∗)∗ b with strings of the form aa..a︸︷︷︸
n

.

This is clearly exponential behaviour, and is triggered by some relatively simple
regex patterns.

The opens up the possibility of a ReDoS (regular expression denial-of-service)
attack.

Theoretical results say that regular expression matching should be linear with
respect to the input. You could construct an NFA via Thompson construction, and
simulate running it. This would be linear. Or you could determinize the NFA into
a DFA, and minimize that DFA. Once you have the DFA, the running time is also
linear, requiring just one scanning pass of the input.

But modern regex libraries in popular language engines often want to support
richer constructs than the most basic regular expressions such as bounded repeti-
tions and back references. These make a DFA construction impossible because of
an exponential states explosion. They also want to support lexing rather than just
matching for tasks that involves text processing.

2 Chapter 1. Introduction

Existing regex libraries either pose restrictions on the user input, or does not
give linear running time guarantee. For example, the Rust regex engine claims
to be linear, but does not support lookarounds and back-references. The GoLang
regex library does not support over 1000 repetitions. Java and Python both support
back-references, but shows catastrophic backtracking behaviours on inputs without
back-references(when the language is still regular). Another thing about the these
libraries is that there is no correctness guarantee. In some cases they either fails to
generate a lexing result when there is a match, or gives the wrong way of matching.

This superlinear blowup in matching algorithms sometimes causes considerable
grief in real life: for example on 20 July 2016 one evil regular expression brought
the webpage Stack Exchange to its In this instance, a regular expression intended
to just trim white spaces from the beginning and the end of a line actually con-
sumed massive amounts of CPU-resources—causing web servers to grind to a halt.
This happened when a post with 20,000 white spaces was submitted, but impor-
tantly the white spaces were neither at the beginning nor at the end. As a result,
the regular expression matching engine needed to backtrack over many choices. In
this example, the time needed to process the string was O(n2) with respect to the
string length. This quadratic overhead was enough for the homepage of Stack Ex-
change to respond so slowly that the load balancer assumed there must be some at-
tack and therefore stopped the servers from responding to any requests. This made
the whole site become unavailable. Another very recent example is a global outage
of all Cloudflare servers on 2 July 2019. A poorly written regular expression exhib-
ited exponential behaviour and exhausted CPUs that serve HTTP traffic. Although
the outage had several causes, at the heart was a regular expression that was used
to monitor network

Is it possible to have a regex lexing algorithm with proven correctness and time
complexity, which allows easy extensions to constructs like bounded repetitions,
negation, lookarounds, and even back-references?

We propose Brzozowski’s derivatives as a solution to this problem.

1.1 Why Brzozowski

In the last fifteen or so years, Brzozowski’s derivatives of regular expressions have
sparked quite a bit of interest in the functional programming and theorem prover
communities. The beauty of Brzozowski’s derivatives (Brzozowski, 1964) is that
they are neatly expressible in any functional language, and easily definable and rea-
soned about in theorem provers—the definitions just consist of inductive datatypes
and simple recursive functions.

Suppose we have an alphabet Σ, the strings whose characters are from Σ can be
expressed as Σ∗.

We use patterns to define a set of strings concisely. Regular expressions are one
of such patterns systems: The basic regular expressions are defined inductively by
the following grammar:

r ::= 0 | 1 | c | r1 · r2 | r1 + r2 | r∗

The language or set of strings defined by regular expressions are defined as

L r1 + r2
def
= L r1 ∪ L r2

L r1 · r2
def
= L r1 ∩ L r2

http://stackexchange.com

1.1. Why Brzozowski 3

Which are also called the "language interpretation".
The Brzozowski derivative w.r.t character c is an operation on the regex, where

the operation transforms the regex to a new one containing strings without the head
character c.

Formally, we define first such a transformation on any string set, which we call
semantic derivative:

Der c StringSet = {s | c :: s ∈ StringSet}

Mathematically, it can be expressed as the
If the StringSet happen to have some structure, for example, if it is regular, then

we have that it
The the derivative of regular expression, denoted as r\c, is a function that takes

parameters r and c, and returns another regular expression r′, which is computed by
the following recursive function:

0\c def
= 0

1\c def
= 0

d\c def
= if c = d then 1 else 0

(r1 + r2)\c
def
= r1\c + r2\c

(r1 · r2)\c
def
= if nullable(r1)

then (r1\c) · r2 + r2\c
else (r1\c) · r2

(r∗)\c def
= (r\c) · r∗

The nullable function tests whether the empty string ”” is in the language of r:

nullable(0) def
= false

nullable(1) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

The empty set does not contain any string and therefore not the empty string, the
empty string regular expression contains the empty string by definition, the char-
acter regular expression is the singleton that contains character only, and therefore
does not contain the empty string, the alternative regular expression(or "or" expres-
sion) might have one of its children regular expressions being nullable and any one
of its children being nullable would suffice. The sequence regular expression would
require both children to have the empty string to compose an empty string and the
Kleene star operation naturally introduced the empty string.

We can give the meaning of regular expressions derivatives by language inter-
pretation:

Derivatives give a simple solution to the problem of matching a string s with a
regular expression r: if the derivative of r w.r.t. (in succession) all the characters of
the string matches the empty string, then r matches s (and vice versa).

However, there are two difficulties with derivative-based matchers: First, Brzo-
zowski’s original matcher only generates a yes/no answer for whether a regular ex-
pression matches a string or not. This is too little information in the context of lexing

4 Chapter 1. Introduction

where separate tokens must be identified and also classified (for example as key-
words or identifiers). Sulzmann and Lu Sulzmann2014 overcome this difficulty by
cleverly extending Brzozowski’s matching algorithm. Their extended version gener-
ates additional information on how a regular expression matches a string following
the POSIX rules for regular expression matching. They achieve this by adding a sec-
ond “phase” to Brzozowski’s algorithm involving an injection function. In our own
earlier work we provided the formal specification of what POSIX matching means
and proved in Isabelle/HOL the correctness of Sulzmann and Lu’s extended algo-
rithm accordingly AusafDyckhoffUrban2016.

The second difficulty is that Brzozowski’s derivatives can grow to arbitrarily big
sizes. For example if we start with the regular expression (a + aa)∗ and take suc-
cessive derivatives according to the character a, we end up with a sequence of ever-
growing derivatives like

(a + aa)∗
_\a−→ (1 + 1a) · (a + aa)∗
_\a−→ (0 + 0a + 1) · (a + aa)∗ + (1 + 1a) · (a + aa)∗
_\a−→ (0 + 0a + 0) · (a + aa)∗ + (1 + 1a) · (a + aa)∗ +

(0 + 0a + 1) · (a + aa)∗ + (1 + 1a) · (a + aa)∗
_\a−→ . . . (regular expressions of sizes 98, 169, 283, 468, 767, . . .)

where after around 35 steps we run out of memory on a typical computer (we shall
define shortly the precise details of our regular expressions and the derivative opera-
tion). Clearly, the notation involving 0s and 1s already suggests simplification rules
that can be applied to regular regular expressions, for example 0 r ⇒ 0, 1 r ⇒ r,
0 + r ⇒ r and r + r ⇒ r. While such simple-minded simplifications have been
proved in our earlier work to preserve the correctness of Sulzmann and Lu’s algo-
rithm AusafDyckhoffUrban2016, they unfortunately do not help with limiting the
growth of the derivatives shown above: the growth is slowed, but the derivatives
can still grow rather quickly beyond any finite bound.

Sulzmann and Lu overcome this “growth problem” in a second algorithm Sulzmann2014
where they introduce bitcoded regular expressions. In this version, POSIX values are
represented as bitsequences and such sequences are incrementally generated when
derivatives are calculated. The compact representation of bitsequences and regular
expressions allows them to define a more “aggressive” simplification method that
keeps the size of the derivatives finite no matter what the length of the string is.
They make some informal claims about the correctness and linear behaviour of this
version, but do not provide any supporting proof arguments, not even “pencil-and-
paper” arguments. They write about their bitcoded incremental parsing method (that
is the algorithm to be formalised in this paper):

“Correctness Claim: We further claim that the incremental parsing method [..]
in combination with the simplification steps [..] yields POSIX parse trees. We
have tested this claim extensively [..] but yet have to work out all proof details.”
Sulzmann2014

1.2 Backgound

Theoretical results say that regular expression matching should be linear with re-
spect to the input. Under a certain class of regular expressions and inputs though,

1.3. Existing Practical Approaches 5

practical implementations suffer from non-linear or even exponential running time,
allowing a ReDoS (regular expression denial-of-service) attack.

1.3 Existing Practical Approaches

The reason behind is that regex libraries in popular language engines often want to
support richer constructs than the most basic regular expressions, and lexing rather
than matching is needed for sub-match extraction.

1.3.1 DFA Approach

Exponential states.

1.3.2 NFA Approach

Backtracking.

1.4 Our Approach

In the last fifteen or so years, Brzozowski’s derivatives of regular expressions have
sparked quite a bit of interest in the functional programming and theorem prover
communities. The beauty of Brzozowski’s derivatives (Brzozowski, 1964) is that
they are neatly expressible in any functional language, and easily definable and rea-
soned about in theorem provers—the definitions just consist of inductive datatypes
and simple recursive functions. Derivatives of a regular expression, written r\c, give
a simple solution to the problem of matching a string s with a regular expression r:
if the derivative of r w.r.t. (in succession) all the characters of the string matches the
empty string, then r matches s (and vice versa).

This work aims to address the above vulnerability by the combination of Brzo-
zowski’s derivatives and interactive theorem proving. We give an improved version
of Sulzmann and Lu’s bit-coded algorithm using derivatives, which come with a for-
mal guarantee in terms of correctness and running time as an Isabelle/HOL proof.
Then we improve the algorithm with an even stronger version of simplification, and
prove a time bound linear to input and cubic to regular expression size using a tech-
nique by Antimirov.

1.4.1 Existing Work

We are aware of a mechanised correctness proof of Brzozowski’s derivative-based
matcher in HOL4 by Owens and Slind (Owens and Slind, 2008). Another one in Is-
abelle/HOL is part of the work by Krauss and Nipkow (Krauss and Nipkow, 2012).
And another one in Coq is given by Coquand and Siles (Coquand and Siles, 2011).
Also Ribeiro and Du Bois give one in Agda (Ribeiro and Bois, 2017).

1.5 What this Template Includes

1.5.1 Folders

This template comes as a single zip file that expands out to several files and folders.
The folder names are mostly self-explanatory:

6 Chapter 1. Introduction

Appendices – this is the folder where you put the appendices. Each appendix
should go into its own separate .tex file. An example and template are included in
the directory.

Chapters – this is the folder where you put the thesis chapters. A thesis usually
has about six chapters, though there is no hard rule on this. Each chapter should go
in its own separate .tex file and they can be split as:

• Chapter 1: Introduction to the thesis topic

• Chapter 2: Background information and theory

• Chapter 3: (Laboratory) experimental setup

• Chapter 4: Details of experiment 1

• Chapter 5: Details of experiment 2

• Chapter 6: Discussion of the experimental results

• Chapter 7: Conclusion and future directions

This chapter layout is specialised for the experimental sciences, your discipline may
be different.

Figures – this folder contains all figures for the thesis. These are the final images
that will go into the thesis document.

1.5.2 Files

Included are also several files, most of them are plain text and you can see their
contents in a text editor. After initial compilation, you will see that more auxiliary
files are created by LATEX or BibTeX and which you don’t need to delete or worry
about:

example.bib – this is an important file that contains all the bibliographic infor-
mation and references that you will be citing in the thesis for use with BibTeX. You
can write it manually, but there are reference manager programs available that will
create and manage it for you. Bibliographies in LATEX are a large subject and you
may need to read about BibTeX before starting with this. Many modern reference
managers will allow you to export your references in BibTeX format which greatly
eases the amount of work you have to do.

MastersDoctoralThesis.cls – this is an important file. It is the class file that tells
LATEX how to format the thesis.

main.pdf – this is your beautifully typeset thesis (in the PDF file format) created
by LATEX. It is supplied in the PDF with the template and after you compile the
template you should get an identical version.

main.tex – this is an important file. This is the file that you tell LATEX to compile
to produce your thesis as a PDF file. It contains the framework and constructs that
tell LATEX how to layout the thesis. It is heavily commented so you can read exactly
what each line of code does and why it is there. After you put your own information
into the THESIS INFORMATION block – you have now started your thesis!

Files that are not included, but are created by LATEX as auxiliary files include:
main.aux – this is an auxiliary file generated by LATEX, if it is deleted LATEX simply

regenerates it when you run the main .tex file.
main.bbl – this is an auxiliary file generated by BibTeX, if it is deleted, BibTeX

simply regenerates it when you run the main.aux file. Whereas the .bib file contains

1.6. Filling in Your Information in the main.tex File 7

all the references you have, this .bbl file contains the references you have actually
cited in the thesis and is used to build the bibliography section of the thesis.

main.blg – this is an auxiliary file generated by BibTeX, if it is deleted BibTeX
simply regenerates it when you run the main .aux file.

main.lof – this is an auxiliary file generated by LATEX, if it is deleted LATEX simply
regenerates it when you run the main .tex file. It tells LATEX how to build the List of
Figures section.

main.log – this is an auxiliary file generated by LATEX, if it is deleted LATEX simply
regenerates it when you run the main .tex file. It contains messages from LATEX, if
you receive errors and warnings from LATEX, they will be in this .log file.

main.lot – this is an auxiliary file generated by LATEX, if it is deleted LATEX simply
regenerates it when you run the main .tex file. It tells LATEX how to build the List of
Tables section.

main.out – this is an auxiliary file generated by LATEX, if it is deleted LATEX simply
regenerates it when you run the main .tex file.

So from this long list, only the files with the .bib, .cls and .tex extensions are
the most important ones. The other auxiliary files can be ignored or deleted as LATEX
and BibTeX will regenerate them.

1.6 Filling in Your Information in the main.tex File

You will need to personalise the thesis template and make it your own by filling in
your own information. This is done by editing the main.tex file in a text editor or
your favourite LaTeX environment.

Open the file and scroll down to the third large block titled THESIS INFORMA-
TION where you can see the entries for University Name, Department Name, etc . . .

Fill out the information about yourself, your group and institution. You can also
insert web links, if you do, make sure you use the full URL, including the http://
for this. If you don’t want these to be linked, simply remove the \href{url}{name}
and only leave the name.

When you have done this, save the file and recompile main.tex. All the informa-
tion you filled in should now be in the PDF, complete with web links. You can now
begin your thesis proper!

1.7 The main.tex File Explained

The main.tex file contains the structure of the thesis. There are plenty of written
comments that explain what pages, sections and formatting the LATEX code is creat-
ing. Each major document element is divided into commented blocks with titles in
all capitals to make it obvious what the following bit of code is doing. Initially there
seems to be a lot of LATEX code, but this is all formatting, and it has all been taken
care of so you don’t have to do it.

Begin by checking that your information on the title page is correct. For the
thesis declaration, your institution may insist on something different than the text
given. If this is the case, just replace what you see with what is required in the
DECLARATION PAGE block.

Then comes a page which contains a funny quote. You can put your own, or
quote your favourite scientist, author, person, and so on. Make sure to put the name
of the person who you took the quote from.

8 Chapter 1. Introduction

Following this is the abstract page which summarises your work in a condensed
way and can almost be used as a standalone document to describe what you have
done. The text you write will cause the heading to move up so don’t worry about
running out of space.

Next come the acknowledgements. On this page, write about all the people who
you wish to thank (not forgetting parents, partners and your advisor/supervisor).

The contents pages, list of figures and tables are all taken care of for you and do
not need to be manually created or edited. The next set of pages are more likely to
be optional and can be deleted since they are for a more technical thesis: insert a
list of abbreviations you have used in the thesis, then a list of the physical constants
and numbers you refer to and finally, a list of mathematical symbols used in any
formulae. Making the effort to fill these tables means the reader has a one-stop place
to refer to instead of searching the internet and references to try and find out what
you meant by certain abbreviations or symbols.

The list of symbols is split into the Roman and Greek alphabets. Whereas the
abbreviations and symbols ought to be listed in alphabetical order (and this is not
done automatically for you) the list of physical constants should be grouped into
similar themes.

The next page contains a one line dedication. Who will you dedicate your thesis
to?

Finally, there is the block where the chapters are included. Uncomment the lines
(delete the % character) as you write the chapters. Each chapter should be writ-
ten in its own file and put into the Chapters folder and named Chapter1, Chapter2,
etc. . . Similarly for the appendices, uncomment the lines as you need them. Each
appendix should go into its own file and placed in the Appendices folder.

After the preamble, chapters and appendices finally comes the bibliography. The
bibliography style (called authoryear) is used for the bibliography and is a fully fea-
tured style that will even include links to where the referenced paper can be found
online. Do not underestimate how grateful your reader will be to find that a refer-
ence to a paper is just a click away. Of course, this relies on you putting the URL
information into the BibTeX file in the first place.

1.8 Thesis Features and Conventions

To get the best out of this template, there are a few conventions that you may want
to follow.

One of the most important (and most difficult) things to keep track of in such
a long document as a thesis is consistency. Using certain conventions and ways of
doing things (such as using a Todo list) makes the job easier. Of course, all of these
are optional and you can adopt your own method.

1.8.1 Printing Format

This thesis template is designed for double sided printing (i.e. content on the front
and back of pages) as most theses are printed and bound this way. Switching to one
sided printing is as simple as uncommenting the oneside option of the documentclass
command at the top of the main.tex file. You may then wish to adjust the margins
to suit specifications from your institution.

The headers for the pages contain the page number on the outer side (so it is easy
to flick through to the page you want) and the chapter name on the inner side.

1.8. Thesis Features and Conventions 9

The text is set to 11 point by default with single line spacing, again, you can
tune the text size and spacing should you want or need to using the options at
the very start of main.tex. The spacing can be changed similarly by replacing the
singlespacing with onehalfspacing or doublespacing.

1.8.2 Using US Letter Paper

The paper size used in the template is A4, which is the standard size in Europe. If
you are using this thesis template elsewhere and particularly in the United States,
then you may have to change the A4 paper size to the US Letter size. This can be
done in the margins settings section in main.tex.

Due to the differences in the paper size, the resulting margins may be different
to what you like or require (as it is common for institutions to dictate certain margin
sizes). If this is the case, then the margin sizes can be tweaked by modifying the
values in the same block as where you set the paper size. Now your document
should be set up for US Letter paper size with suitable margins.

1.8.3 References

The biblatex package is used to format the bibliography and inserts references such
as this one (Reference1). The options used in the main.tex file mean that the in-
text citations of references are formatted with the author(s) listed with the date of
the publication. Multiple references are separated by semicolons (e.g. (Reference2;
Reference1)) and references with more than three authors only show the first author
with et al. indicating there are more authors (e.g. (Reference3)). This is done auto-
matically for you. To see how you use references, have a look at the Chapter1.tex
source file. Many reference managers allow you to simply drag the reference into
the document as you type.

Scientific references should come before the punctuation mark if there is one (such
as a comma or period). The same goes for footnotes1. You can change this but the
most important thing is to keep the convention consistent throughout the thesis.
Footnotes themselves should be full, descriptive sentences (beginning with a capital
letter and ending with a full stop). The APA6 states: “Footnote numbers should be
superscripted, [...], following any punctuation mark except a dash.” The Chicago
manual of style states: “A note number should be placed at the end of a sentence
or clause. The number follows any punctuation mark except the dash, which it pre-
cedes. It follows a closing parenthesis.”

The bibliography is typeset with references listed in alphabetical order by the
first author’s last name. This is similar to the APA referencing style. To see how
LATEX typesets the bibliography, have a look at the very end of this document (or just
click on the reference number links in in-text citations).

A Note on bibtex

The bibtex backend used in the template by default does not correctly handle uni-
code character encoding (i.e. "international" characters). You may see a warning
about this in the compilation log and, if your references contain unicode characters,
they may not show up correctly or at all. The solution to this is to use the biber back-
end instead of the outdated bibtex backend. This is done by finding this in main.tex:
backend=bibtex and changing it to backend=biber. You will then need to delete all

1Such as this footnote, here down at the bottom of the page.

10 Chapter 1. Introduction

TABLE 1.1: The effects of treatments X and Y on the four groups stud-
ied.

Groups Treatment X Treatment Y

1 0.2 0.8
2 0.17 0.7
3 0.24 0.75
4 0.68 0.3

auxiliary BibTeX files and navigate to the template directory in your terminal (com-
mand prompt). Once there, simply type biber main and biber will compile your
bibliography. You can then compile main.tex as normal and your bibliography will
be updated. An alternative is to set up your LaTeX editor to compile with biber
instead of bibtex, see here for how to do this for various editors.

1.8.4 Tables

Tables are an important way of displaying your results, below is an example table
which was generated with this code:

\begin{table}
\caption{The effects of treatments X and Y on the four groups studied.}
\label{tab:treatments}
\centering
\begin{tabular}{l l l}
\toprule
\tabhead{Groups} & \tabhead{Treatment X} & \tabhead{Treatment Y} \\
\midrule
1 & 0.2 & 0.8\\
2 & 0.17 & 0.7\\
3 & 0.24 & 0.75\\
4 & 0.68 & 0.3\\
\bottomrule\\
\end{tabular}
\end{table}

You can reference tables with \ref{<label>} where the label is defined within
the table environment. See Chapter1.tex for an example of the label and citation
(e.g. Table 1.1).

1.8.5 Figures

There will hopefully be many figures in your thesis (that should be placed in the
Figures folder). The way to insert figures into your thesis is to use a code template
like this:

\begin{figure}
\centering
\includegraphics{Figures/Electron}
\decoRule
\caption[An Electron]{An electron (artist’s impression).}
\label{fig:Electron}
\end{figure}

http://tex.stackexchange.com/questions/154751/biblatex-with-biber-configuring-my-editor-to-avoid-undefined-citations/

1.8. Thesis Features and Conventions 11

Also look in the source file. Putting this code into the source file produces the picture
of the electron that you can see in the figure below.

e e
FIGURE 1.1: An electron (artist’s impression).

Sometimes figures don’t always appear where you write them in the source. The
placement depends on how much space there is on the page for the figure. Some-
times there is not enough room to fit a figure directly where it should go (in relation
to the text) and so LATEX puts it at the top of the next page. Positioning figures is the
job of LATEX and so you should only worry about making them look good!

Figures usually should have captions just in case you need to refer to them (such
as in Figure 1.1). The \caption command contains two parts, the first part, inside
the square brackets is the title that will appear in the List of Figures, and so should
be short. The second part in the curly brackets should contain the longer and more
descriptive caption text.

The \decoRule command is optional and simply puts an aesthetic horizontal line
below the image. If you do this for one image, do it for all of them.

LATEX is capable of using images in pdf, jpg and png format.

1.8.6 Typesetting mathematics

If your thesis is going to contain heavy mathematical content, be sure that LATEX will
make it look beautiful, even though it won’t be able to solve the equations for you.

The “Not So Short Introduction to LATEX” (available on CTAN) should tell you
everything you need to know for most cases of typesetting mathematics. If you need
more information, a much more thorough mathematical guide is available from the
AMS called, “A Short Math Guide to LATEX” and can be downloaded from: ftp:
//ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf

http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf
ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf
ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf

12 Chapter 1. Introduction

There are many different LATEX symbols to remember, luckily you can find the
most common symbols in The Comprehensive LATEX Symbol List.

You can write an equation, which is automatically given an equation number by
LATEX like this:

\begin{equation}
E = mc^{2}
\label{eqn:Einstein}
\end{equation}

This will produce Einstein’s famous energy-matter equivalence equation:

E = mc2 (1.1)

All equations you write (which are not in the middle of paragraph text) are auto-
matically given equation numbers by LATEX. If you don’t want a particular equation
numbered, use the unnumbered form:

\[a^{2}=4 \]

1.9 Sectioning and Subsectioning

You should break your thesis up into nice, bite-sized sections and subsections. LATEX
automatically builds a table of Contents by looking at all the \chapter{}, \section{}
and \subsection{} commands you write in the source.

The Table of Contents should only list the sections to three (3) levels. A chapter{}
is level zero (0). A \section{} is level one (1) and so a \subsection{} is level two
(2). In your thesis it is likely that you will even use a subsubsection{}, which is
level three (3). The depth to which the Table of Contents is formatted is set within
MastersDoctoralThesis.cls. If you need this changed, you can do it in main.tex.

1.10 In Closing

You have reached the end of this mini-guide. You can now rename or overwrite this
pdf file and begin writing your own Chapter1.tex and the rest of your thesis. The
easy work of setting up the structure and framework has been taken care of for you.
It’s now your job to fill it out!

Good luck and have lots of fun!

Guide written by —
Sunil Patel: www.sunilpatel.co.uk

Vel: LaTeXTemplates.com

http://ctan.org/pkg/comprehensive
http://www.sunilpatel.co.uk
http://www.LaTeXTemplates.com

13

Chapter 2

Chapter Title Here

2.1 Properties of \c
To have a clear idea of what we can and need to prove about the algorithms involv-
ing Brzozowski’s derivatives, there are a few properties we need to be clear about
it.

2.1.1 function \c is not 1-to-1

The derivative w.r.t character c is not one-to-one. Formally,
∃r1r2.r1 6= r2andr1\c = r2\c

This property is trivially true for the character regex example:

r1 = e; r2 = d; r1\c = 0 = r2\c

But apart from the cases where the derivative output is 0, are there non-trivial results
of derivatives which contain strings? The answer is yes. For example,

Let r1 = a∗b r2 = (a · a∗) · b + b.
where a is not nullable.

r1\c = ((a\c) · a∗) · c + b\c
r2\c = ((a\c) · a∗) · c + b\c

We start with two syntactically different regexes, and end up with the same deriva-
tive result, which is a "meaningful" regex because it contains strings. We have redis-
covered Arden’s lemma:

A∗B = A · A∗ · B + B

2.1.2 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante
ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat
volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcor-
per. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse
platea dictumst.

2.1.3 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pel-
lentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus
venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla

14 Chapter 2. Chapter Title Here

auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor.
Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pel-
lentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum
nisi lobortis velit, a malesuada dolor lorem eu neque.

2.2 Main Section 2

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat
justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie
gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec
pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum
in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volut-
pat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in.
Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimen-
tum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi
tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tin-
cidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

15

Chapter 3

Common Identities In
Simplification-Related Functions

3.1 Idempotency of simp

simp r = simp simp r (3.1)

This property means we do not have to repeatedly apply simplification in each step,
which justifies our definition of blexer_simp. It will also be useful in future proofs
where properties such as closed forms are needed. The proof is by structural induc-
tion on r.

3.1.1 Syntactic Equivalence Under simp

We prove that minor differences can be annhilated by simp. For example,

simp (simp_ALTs (map (_\ x) (distinct rs φ))) =
simp (simp_ALTs (distinct (map (_\ x) rs) φ))

3.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pel-
lentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus
venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla
auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor.
Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pel-
lentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum
nisi lobortis velit, a malesuada dolor lorem eu neque.

3.2 Main Section 2

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat
justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie
gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec
pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum
in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volut-
pat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in.
Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimen-
tum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi
tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tin-
cidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

17

Appendix A

Frequently Asked Questions

A.1 How do I change the colors of links?

The color of links can be changed to your liking using:
\hypersetup{urlcolor=red}, or
\hypersetup{citecolor=green}, or
\hypersetup{allcolor=blue}.

If you want to completely hide the links, you can use:
\hypersetup{allcolors=.}, or even better:
\hypersetup{hidelinks}.

If you want to have obvious links in the PDF but not the printed text, use:
\hypersetup{colorlinks=false}.

19

Bibliography

Brzozowski, J. A. (1964). “Derivatives of Regular Expressions”. In: Journal of the ACM
11.4, pp. 481–494.

Coquand, T. and V. Siles (2011). “A Decision Procedure for Regular Expression Equiv-
alence in Type Theory”. In: Proc. of the 1st International Conference on Certified Pro-
grams and Proofs (CPP). Vol. 7086. LNCS, pp. 119–134.

Krauss, A. and T. Nipkow (2012). “Proof Pearl: Regular Expression Equivalence and
Relation Algebra”. In: Journal of Automated Reasoning 49, pp. 95–106.

Owens, S. and K. Slind (2008). “Adapting Functional Programs to Higher Order
Logic”. In: Higher-Order and Symbolic Computation 21.4, pp. 377–409.

Ribeiro, Rodrigo and André Du Bois (2017). “Certified Bit-Coded Regular Expres-
sion Parsing”. In: Proceedings of the 21st Brazilian Symposium on Programming Lan-
guages. SBLP 2017. Fortaleza, CE, Brazil: Association for Computing Machinery.
ISBN: 9781450353892. DOI: 10.1145/3125374.3125381. URL: https://doi.org/
10.1145/3125374.3125381.

https://doi.org/10.1145/3125374.3125381
https://doi.org/10.1145/3125374.3125381
https://doi.org/10.1145/3125374.3125381

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Why Brzozowski
	Backgound
	Existing Practical Approaches
	DFA Approach
	NFA Approach

	Our Approach
	Existing Work

	What this Template Includes
	Folders
	Files

	Filling in Your Information in the main.tex File
	The main.tex File Explained
	Thesis Features and Conventions
	Printing Format
	Using US Letter Paper
	References
	A Note on bibtex

	Tables
	Figures
	Typesetting mathematics

	Sectioning and Subsectioning
	In Closing

	Chapter Title Here
	Properties of "026E30F c
	"026E30F c is not an injection
	Subsection 1
	Subsection 2

	Main Section 2

	Common Identities In Simplification-Related Functions
	Idempotency of simp
	Syntactic Equivalence Under simp
	Subsection 2

	Main Section 2

	Frequently Asked Questions
	How do I change the colors of links?

	Bibliography

