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KING’S COLLEGE LONDON

Abstract
Chengsong Tan

Department or Informatics

Doctor of Philosophy

POSIX Regular Expression Matching and Lexing

by Chengsong TAN

This work is a combination of functional algorithms and formal methods. Regu-
lar expression matching and lexing has been widely-used and well-implemented in
software industry.

Theoretical results say that regular expression matching should be linear with
respect to the input. Under a certain class of regular expressions and inputs though,
practical implementations suffer from non-linear or even exponential running time,
allowing a ReDoS (regular expression denial-of-service ) attack.

The reason behind is that regex libraries in popular language engines often want
to support richer constructs than the most basic regular expressions, and lexing
rather than matching is needed for sub-match extraction.

This work aims to address the above vulnerability by the combination of Brzo-
zowski’s derivatives and interactive theorem proving. We give an improved version
of Sulzmann and Lu’s bit-coded algorithm using derivatives, which come with a for-
mal guarantee in terms of correctness and running time as an Isabelle/HOL proof.
Then we improve the algorithm with an even stronger version of simplification, and
prove a time bound linear to input and cubic to regular expression size using a tech-
nique by Antimirov.
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Chapter 1

POSIX Lexing With Bit-codes

The main contribution of this thesis is a proven correct lexing algorithm with for-
malized time bounds. To our best knowledge, there is no lexing libraries using Brzo-
zowski derivatives that have a provable time guarantee, and claims about running
time are usually speculative and backed by thin empirical evidence. For example,
Sulzmann and Lu had proposed an algorithm in which they claim a linear running
time. But that was falsified by our experiments and the running time is actually
Ω(2n) in the worst case. A similar claim about a theoretical runtime of O(n2) is made
for the Verbatim lexer, which calculates POSIX matches and is based on derivatives.
They formalized the correctness of the lexer, but not the complexity. In the perfor-
mance evaluation section, they simply analyzed the run time of matching a with the
string a . . . a︸ ︷︷ ︸

n a’s

and concluded that the algorithm is quadratic in terms of input length.

When we tried out their extracted OCaml code with our example (a + aa)∗, the time
it took to lex only 40 a’s was 5 minutes. We therefore believe our results of a proof
of performance on general inputs rather than specific examples a novel contribution.

1.1 Introduction To Regexes

Regular expressions are widely used in modern day programming tasks. Be it IDE
with syntax hightlighting and auto completion, command line tools like grep that
facilitates easy processing of text by search and replace, network intrusion detec-
tion systems that rejects suspicious traffic, or compiler front-ends–there is always
an important phase of the task that involves matching a regular exression with a
string. Given its usefulness and ubiquity, one would imagine that modern regular
expression matching implementations are mature and fully-studied.

If you go to a popular programming language’s regex engine, you can supply it
with regex and strings of your own, and get matching/lexing information such as
how a sub-part of the regex matches a sub-part of the string. These lexing libraries
are on average quite fast. For example, the regex engines some network intrusion
detection systems use are able to process megabytes or even gigabytes of network
traffic per second.

Why do we need to have our version, if the algorithms work well on average?
Take (a∗)∗ b and ask whether strings of the form aa..a match this regular expres-

sion. Obviously this is not the case—the expected b in the last position is missing.
One would expect that modern regular expression matching engines can find this
out very quickly. Alas, if one tries this example in JavaScript, Python or Java 8 with
strings like 28 a’s, one discovers that this decision takes around 30 seconds and takes
considerably longer when adding a few more a’s, as the graphs below show:
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.

This is clearly exponential behaviour, and is triggered by some relatively simple
regex patterns.

The opens up the possibility of a ReDoS (regular expression denial-of-service )
attack.

Theoretical results say that regular expression matching should be linear with
respect to the input. You could construct an NFA via Thompson construction, and
simulate running it. This would be linear. Or you could determinize the NFA into
a DFA, and minimize that DFA. Once you have the DFA, the running time is also
linear, requiring just one scanning pass of the input.

But modern regex libraries in popular language engines often want to support
richer constructs than the most basic regular expressions such as bounded repeti-
tions and back references. These make a DFA construction impossible because of
an exponential states explosion. They also want to support lexing rather than just
matching for tasks that involves text processing.

Existing regex libraries either pose restrictions on the user input, or does not
give linear running time guarantee. For example, the Rust regex engine claims
to be linear, but does not support lookarounds and back-references. The GoLang
regex library does not support over 1000 repetitions. Java and Python both support
back-references, but shows catastrophic backtracking behaviours on inputs without
back-references( when the language is still regular). Another thing about the these
libraries is that there is no correctness guarantee. In some cases they either fails to
generate a lexing result when there is a match, or gives the wrong way of matching.

This superlinear blowup in matching algorithms sometimes causes considerable
grief in real life: for example on 20 July 2016 one evil regular expression brought
the webpage Stack Exchange to its In this instance, a regular expression intended
to just trim white spaces from the beginning and the end of a line actually con-
sumed massive amounts of CPU-resources—causing web servers to grind to a halt.
This happened when a post with 20,000 white spaces was submitted, but impor-
tantly the white spaces were neither at the beginning nor at the end. As a result,
the regular expression matching engine needed to backtrack over many choices. In
this example, the time needed to process the string was O(n2) with respect to the
string length. This quadratic overhead was enough for the homepage of Stack Ex-
change to respond so slowly that the load balancer assumed there must be some at-
tack and therefore stopped the servers from responding to any requests. This made
the whole site become unavailable. Another very recent example is a global outage
of all Cloudflare servers on 2 July 2019. A poorly written regular expression exhib-
ited exponential behaviour and exhausted CPUs that serve HTTP traffic. Although
the outage had several causes, at the heart was a regular expression that was used
to monitor network

http://stackexchange.com
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It turns out that regex libraries not only suffer from exponential backtracking
problems, but also undesired (or even buggy) outputs. xxx commented that most
regex libraries are not correctly implementing the POSIX (maximum-munch) rule of
regular expression matching. A concrete example would be the regex

(((((a*a*)b*)b){20})*)c

and the string

baabaabababaabaaaaaaaaababaa
aababababaaaabaaabaaaaaabaab
aabababaababaaaaaaaaababaaaa
babababaaaaaaaaaaaaac

This seemingly complex regex simply says "some a’s followed by some b’s then
followed by 1 single b, and this iterates 20 times, finally followed by a c. And a
POSIX match would involve the entire string,"eating up" all the b’s in it.

This regex would trigger catastrophic backtracking in languages like Python and
Java, whereas it gives a correct but uninformative (non-POSIX) match in languages
like Go or .NET–The match with only character c.

Backtracking or depth-first search might give us exponential running time, and
quite a few tools avoid that by determinising the NFA into a DFA and minimizes it.
For example, LEX and JFLEX are tools in C and JAVA that generates DFA-based lex-
ers. However, they do not scale well with bounded repetitions. Bounded repetitions,
usually written in the form r{c} (where c is a constant natural number), denotes a
regular expression accepting strings that can be divided into c substrings, and each
substring is in r. For the regular expression (a|b)∗a(a|b){2}, an NFA describing it
would look like:

q0start q1 q2 q3
a

a,b

a,b

0

a,b

The red states are "counter states" which counts down the number of characters
needed in addition to the current string to make a successful match. For example,
state q1 indicates a match that has gone past the (a|b) part of (a|b)∗a(a|b){2}, and just
consumed the "delimiter" a in the middle, and need to match 2 more iterations of a|b
to complete. State q2 on the other hand, can be viewed as a state after q1 has con-
sumed 1 character, and just waits for 1 more character to complete. Depending on
the actual characters appearing in the input string, the states q1 and q2 may or may
not be active, independent from each other. A DFA for such an NFA would contain at
least 4 non-equivalent states that cannot be merged, because subset states indicating
which of q1 and q2 are active are at least four: φ, {q1}, {q2}, {q1, q2}. Generalizing
this to regular expressions with larger bounded repetitions number, we have r∗ar{n}

in general would require at least 2n states in a DFA. This is to represent all different
configurations of "countdown" states. For those regexes, tools such as JFLEX would
generate gigantic DFA’s or even give out memory errors.

For this reason, regex libraries that support bounded repetitions often choose to
use the NFA approach. One can simulate the NFA running in two ways: one by
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keeping track of all active states after consuming a character, and update that set of
states iteratively. This is a breadth-first-search of the NFA. for a path terminating at
an accepting state. Languages like GO and RUST use this type of NFA simulation,
and guarantees a linear runtime in terms of input string length. The other way to
use NFA for matching is to take a single state in a path each time, and backtrack if
that path fails. This is a depth-first-search that could end up with exponential run
time. The reason behind backtracking algorithms in languages like Java and Python
is that they support back-references.

1.1.1 Back References in Regex–Non-Regular part

If we label sub-expressions by parenthesizing them and give them a number by
the order their opening parenthesis appear, (

1
. . . (

2
. . . (

3
. . . (

4
. . .) . . .) . . .) . . .) We can

use the following syntax to denote that we want a string just matched by a sub-
expression to appear at a certain location again exactly: (.∗)\1 would match the
string like bobo, weewee and etc.

Back-reference is a construct in the "regex" standard that programmers found
quite useful, but not exactly regular any more. In fact, that allows the regex construct
to express languages that cannot be contained in context-free languages–they can
express things like ananan, which is context sensitive.

1.2 Our Solution–Brzozowski Derivatives

Is it possible to have a regex lexing algorithm with proven correctness and time com-
plexity, which allows easy extensions to constructs like bounded repetitions, nega-
tion, lookarounds, and even back-references?

We propose Brzozowski’s derivatives as a solution to this problem.

1.3 Preliminaries about Lexing Using Brzozowski derivatives

In the last fifteen or so years, Brzozowski’s derivatives of regular expressions have
sparked quite a bit of interest in the functional programming and theorem prover
communities. The beauty of Brzozowski’s derivatives (Brzozowski, 1964) is that
they are neatly expressible in any functional language, and easily definable and rea-
soned about in theorem provers—the definitions just consist of inductive datatypes
and simple recursive functions.

Suppose we have an alphabet Σ, the strings whose characters are from Σ can be
expressed as Σ∗.

We use patterns to define a set of strings concisely. Regular expressions are one
of such patterns systems: The basic regular expressions are defined inductively by
the following grammar:

r ::= 0 | 1 | c | r1 · r2 | r1 + r2 | r∗

The language or set of strings defined by regular expressions are defined as

L r1 + r2
def
= L r1 ∪ L r2

L r1 · r2
def
= L r1 ∩ L r2

Which are also called the "language interpretation".
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The Brzozowski derivative w.r.t character c is an operation on the regex, where
the operation transforms the regex to a new one containing strings without the head
character c.

Formally, we define first such a transformation on any string set, which we call
semantic derivative:

Der c StringSet = {s | c :: s ∈ StringSet}

Mathematically, it can be expressed as the
If the StringSet happen to have some structure, for example, if it is regular, then

we have that it
The the derivative of regular expression, denoted as r\c, is a function that takes

parameters r and c, and returns another regular expression r′, which is computed by
the following recursive function:

0\c def
= 0

1\c def
= 0

d\c def
= if c = d then 1 else 0

(r1 + r2)\c
def
= r1\c + r2\c

(r1 · r2)\c
def
= if nullable(r1)

then (r1\c) · r2 + r2\c
else (r1\c) · r2

(r∗)\c def
= (r\c) · r∗

The nullable function tests whether the empty string ”” is in the language of r:

nullable(0) def
= false

nullable(1) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

The empty set does not contain any string and therefore not the empty string, the
empty string regular expression contains the empty string by definition, the char-
acter regular expression is the singleton that contains character only, and therefore
does not contain the empty string, the alternative regular expression(or "or" expres-
sion) might have one of its children regular expressions being nullable and any one
of its children being nullable would suffice. The sequence regular expression would
require both children to have the empty string to compose an empty string and the
Kleene star operation naturally introduced the empty string.

We can give the meaning of regular expressions derivatives by language inter-
pretation:
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0\c def
= 0

1\c def
= 0

d\c def
= if c = d then 1 else 0

(r1 + r2)\c
def
= r1\c + r2\c

(r1 · r2)\c
def
= if nullable(r1)

then (r1\c) · r2 + r2\c
else (r1\c) · r2

(r∗)\c def
= (r\c) · r∗

The function derivative, written \c, defines how a regular expression evolves into a
new regular expression after all the string it contains is chopped off a certain head
character c. The most involved cases are the sequence and star case. The sequence
case says that if the first regular expression contains an empty string then second
component of the sequence might be chosen as the target regular expression to be
chopped off its head character. The star regular expression unwraps the iteration of
regular expression and attack the star regular expression to its back again to make
sure there are 0 or more iterations following this unfolded iteration.

The main property of the derivative operation that enables us to reason about
the correctness of an algorithm using derivatives is

c :: s ∈ L(r) holds if and only if s ∈ L(r\c).

We can generalise the derivative operation shown above for single characters to
strings as follows:

r\(c :: s) def
= (r\c)\s

r\[ ] def
= r

and then define Brzozowski’s regular-expression matching algorithm as:

match s r def
= nullable(r\s)

Assuming the a string is given as a sequence of characters, say c0c1..cn, this algorithm
presented graphically is as follows:

r0 r1 r2 rn YES/NO
\c0 \c1 nullable? (1.1)

where we start with a regular expression r0, build successive derivatives until we
exhaust the string and then use nullable to test whether the result can match the
empty string. It can be relatively easily shown that this matcher is correct (that is
given an s = c0...cn−1 and an r0, it generates YES if and only if s ∈ L(r0)).

Beautiful and simple definition.
If we implement the above algorithm naively, however, the algorithm can be ex-

cruciatingly slow. For example, when starting with the regular expression (a + aa)∗

and building 12 successive derivatives w.r.t. the character a, one obtains a derivative
regular expression with more than 8000 nodes (when viewed as a tree). Operations
like \ and nullable need to traverse such trees and consequently the bigger the size
of the derivative the slower the algorithm.

Brzozowski was quick in finding that during this process a lot useless 1s and 0s
are generated and therefore not optimal. He also introduced some "similarity rules"



1.3. Preliminaries about Lexing Using Brzozowski derivatives 7

such as P + (Q + R) = (P + Q) + R to merge syntactically different but language-
equivalent sub-regexes to further decrease the size of the intermediate regexes.

More simplifications are possible, such as deleting duplicates and opening up
nested alternatives to trigger even more simplifications. And suppose we apply
simplification after each derivative step, and compose these two operations together

as an atomic one: a\simp c def
= simp(a\c). Then we can build a matcher without having

cumbersome regular expressions.
If we want the size of derivatives in the algorithm to stay even lower, we would

need more aggressive simplifications. Essentially we need to delete useless 0s and
1s, as well as deleting duplicates whenever possible. For example, the parentheses
in (a + b) · c + b · c can be opened up to get a · c + b · c + b · c, and then simplified to
just a · c + b · c. Another example is simplifying (a∗ + a) + (a∗ + 1) + (a + 1) to just
a∗ + a + 1. Adding these more aggressive simplification rules help us to achieve a
very tight size bound, namely, the same size bound as that of the partial derivatives.

Building derivatives and then simplify them. So far so good. But what if we want
to do lexing instead of just a YES/NO answer? This requires us to go back again to
the world without simplification first for a moment. Sulzmann and Lu Sulzmann2014
first came up with a nice and elegant(arguably as beautiful as the original derivatives
definition) solution for this.

Values and the Lexing Algorithm by Sulzmann and Lu

They first defined the datatypes for storing the lexing information called a value or
sometimes also lexical value. These values and regular expressions correspond to
each other as illustrated in the following table:

Regular Expressions

r ::= 0
| 1
| c
| r1 · r2
| r1 + r2

| r∗

Values

v ::=
Empty

| Char(c)
| Seq v1 v2
| Left(v)
| Right(v)
| Stars [v1, . . . vn]

One regular expression can have multiple lexical values. For example for the reg-
ular expression (a + b)∗, it has a infinite list of values corresponding to it: Stars [],
Stars [Left(Char(a))], Stars [Right(Char(b))], Stars [Left(Char(a), Right(Char(b))], . . .,
and vice versa. Even for the regular expression matching a certain string, there
could still be more than one value corresponding to it. Take the example where
r = (a∗ · a∗)∗ and the string s = aa . . . a︸ ︷︷ ︸

n as

. The number of different ways of matching

without allowing any value under a star to be flattened to an empty string can be
given by the following formula:

Cn = (n + 1) + nC1 + . . . + 2Cn−1

and a closed form formula can be calculated to be

Cn =
(2 +

√
2)n − (2−

√
2)n

4
√

2
(1.2)
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which is clearly in exponential order. A lexer aimed at getting all the possible values
has an exponential worst case runtime. Therefore it is impractical to try to gen-
erate all possible matches in a run. In practice, we are usually interested about
POSIX values, which by intuition always match the leftmost regular expression
when there is a choice and always match a sub part as much as possible before
proceeding to the next token. For example, the above example has the POSIX value
Stars [Seq(Stars [Char(a), . . . , Char(a)︸ ︷︷ ︸

n iterations

], Stars [])]. The output of an algorithm we want

would be a POSIX matching encoded as a value. The contribution of Sulzmann and
Lu is an extension of Brzozowski’s algorithm by a second phase (the first phase be-
ing building successive derivatives—see (1.1)). In this second phase, a POSIX value
is generated in case the regular expression matches the string. Pictorially, the Sulz-
mann and Lu algorithm is as follows:

r0 r1 r2 rn

v0 v1 v2 vn

\c0 \c1

mkeps

injr0 c0 injr1 c1

(1.3)

For convenience, we shall employ the following notations: the regular expression
we start with is r0, and the given string s is composed of characters c0c1 . . . cn−1. In
the first phase from the left to right, we build the derivatives r1, r2, . . . according to
the characters c0, c1 until we exhaust the string and obtain the derivative rn. We
test whether this derivative is nullable or not. If not, we know the string does not
match r and no value needs to be generated. If yes, we start building the values
incrementally by injecting back the characters into the earlier values vn, . . . , v0. This
is the second phase of the algorithm from the right to left. For the first value vn, we
call the function mkeps, which builds a POSIX lexical value for how the empty string
has been matched by the (nullable) regular expression rn. This function is defined as

mkeps(1) def
= Empty

mkeps(r1 + r2)
def
= if nullable(r1)

then Left(mkeps(r1))
else Right(mkeps(r2))

mkeps(r1 · r2)
def
= Seq (mkeps r1) (mkeps r2)

mkeps(r∗) def
= Stars []

After the mkeps-call, we inject back the characters one by one in order to build the
lexical value vi for how the regex ri matches the string si (si = ci . . . cn−1 ) from the
previous lexical value vi+1. After injecting back n characters, we get the lexical value
for how r0 matches s. The POSIX value is maintained throught out the process. For
this Sulzmann and Lu defined a function that reverses the “chopping off” of char-
acters during the derivative phase. The corresponding function is called injection,
written inj; it takes three arguments: the first one is a regular expression ri−1, before
the character is chopped off, the second is a character ci−1, the character we want to
inject and the third argument is the value vi, into which one wants to inject the char-
acter (it corresponds to the regular expression after the character has been chopped
off). The result of this function is a new value. The definition of inj is as follows:
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inj (c) c Empty def
= Char c

inj (r1 + r2) c Left(v) def
= Left(inj r1 c v)

inj (r1 + r2) c Right(v) def
= Right(inj r2 c v)

inj (r1 · r2) c Seq(v1, v2)
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c Left(Seq(v1, v2))
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c Right(v) def
= Seq(mkeps(r1), inj r2 c v)

inj (r∗) c Seq(v, Stars vs) def
= Stars((inj r c v) :: vs)

This definition is by recursion on the “shape” of regular expressions and values. The
clauses basically do one thing–identifying the “holes” on value to inject the character
back into. For instance, in the last clause for injecting back to a value that would turn
into a new star value that corresponds to a star, we know it must be a sequence value.
And we know that the first value of that sequence corresponds to the child regex of
the star with the first character being chopped off–an iteration of the star that had
just been unfolded. This value is followed by the already matched star iterations we
collected before. So we inject the character back to the first value and form a new
value with this new iteration being added to the previous list of iterations, all under
the Stars top level.

We have mentioned before that derivatives without simplification can get clumsy,
and this is true for values as well–they reflect the regular expressions size by defini-
tion.

One can introduce simplification on the regex and values, but have to be careful
in not breaking the correctness as the injection function heavily relies on the struc-
ture of the regexes and values being correct and match each other. It can be achieved
by recording some extra rectification functions during the derivatives step, and ap-
plying these rectifications in each run during the injection phase. And we can prove
that the POSIX value of how regular expressions match strings will not be affected—
although is much harder to establish. Some initial results in this regard have been
obtained in AusafDyckhoffUrban2016.

We want to get rid of complex and fragile rectification of values. Can we not
create those intermediate values v1, . . . vn, and get the lexing information that should
be already there while doing derivatives in one pass, without a second phase of
injection? In the meantime, can we make sure that simplifications are easily handled
without breaking the correctness of the algorithm?

Sulzmann and Lu solved this problem by introducing additional informtaion to
the regular expressions called bitcodes.

Bit-coded Algorithm

Bits and bitcodes (lists of bits) are defined as:

b ::= 1 | 0 bs ::= [] | b :: bs

The 1 and 0 are not in bold in order to avoid confusion with the regular expressions
0 and 1. Bitcodes (or bit-lists) can be used to encode values (or potentially incom-
plete values) in a compact form. This can be straightforwardly seen in the following
coding function from values to bitcodes:
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code(Empty) def
= []

code(Char c) def
= []

code(Left v) def
= 0 :: code(v)

code(Right v) def
= 1 :: code(v)

code(Seq v1 v2)
def
= code(v1)@ code(v2)

code(Stars []) def
= [0]

code(Stars (v :: vs)) def
= 1 :: code(v) @ code(Stars vs)

Here code encodes a value into a bitcodes by converting Left into 0, Right into 1, and
marks the start of a non-empty star iteration by 1. The border where a local star
terminates is marked by 0. This coding is lossy, as it throws away the information
about characters, and also does not encode the “boundary” between two sequence
values. Moreover, with only the bitcode we cannot even tell whether the 1s and
0s are for Left/Right or Stars. The reason for choosing this compact way of storing
information is that the relatively small size of bits can be easily manipulated and
“moved around” in a regular expression. In order to recover values, we will need the
corresponding regular expression as an extra information. This means the decoding
function is defined as:

decode′ bs (1) def
= (Empty, bs)

decode′ bs (c) def
= (Char c, bs)

decode′ (0 :: bs) (r1 + r2)
def
= let (v, bs1) = decode′ bs r1 in (Left v, bs1)

decode′ (1 :: bs) (r1 + r2)
def
= let (v, bs1) = decode′ bs r2 in (Right v, bs1)

decode′ bs (r1 · r2)
def
= let (v1, bs1) = decode′ bs r1 in

let (v2, bs2) = decode′ bs1 r2
in (Seq v1 v2, bs2)

decode′ (0 :: bs) (r∗) def
= (Stars [], bs)

decode′ (1 :: bs) (r∗) def
= let (v, bs1) = decode′ bs r in

let (Stars vs, bs2) = decode′ bs1 r∗

in (Stars v :: vs, bs2)

decode bs r def
= let (v, bs′) = decode′ bs r in

if bs′ = [] then Some v else None

Sulzmann and Lu’s integrated the bitcodes into regular expressions to create an-
notated regular expressions Sulzmann2014. Annotated regular expressions are defined
by the following grammar:

a ::= 0
| bs1
| bsc
| bs ∑ as
| bsa1 · a2
| bsa∗

where bs stands for bitcodes, a for annotated regular expressions and as for a list of
annotated regular expressions. The alternative constructor(∑) has been generalized
to accept a list of annotated regular expressions rather than just 2. We will show that
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these bitcodes encode information about the (POSIX) value that should be generated
by the Sulzmann and Lu algorithm.

To do lexing using annotated regular expressions, we shall first transform the
usual (un-annotated) regular expressions into annotated regular expressions. This
operation is called internalisation and defined as follows:

(0)↑ def
= 0

(1)↑ def
= []1

(c)↑ def
= []c

(r1 + r2)↑
def
= [] ∑[fuse [0] r↑1 , fuse [1] r↑2 ]

(r1 · r2)↑
def
= []r

↑
1 · r

↑
2

(r∗)↑ def
= [](r↑)∗

We use up arrows here to indicate that the basic un-annotated regular expressions
are “lifted up” into something slightly more complex. In the fourth clause, fuse is
an auxiliary function that helps to attach bits to the front of an annotated regular
expression. Its definition is as follows:

fuse bs 0 def
= 0

fuse bs bs′1
def
= bs@bs′1

fuse bs bs′c
def
= bs@bs′c

fuse bs bs′ ∑ as def
= bs@bs′ ∑ as

fuse bs bs′a1 · a2
def
= bs@bs′a1 · a2

fuse bs bs′a∗
def
= bs@bs′a∗

After internalising the regular expression, we perform successive derivative oper-
ations on the annotated regular expressions. This derivative operation is the same
as what we had previously for the basic regular expressions, except that we beed to
take care of the bitcodes:

(0) \c def
= 0

(bs1) \c
def
= 0

(bsd) \c
def
= if c = d then bs1 else 0

(bs∑ as) \c def
= bs ∑ (as.map(\c))

(bs a1 · a2) \c
def
= if bnullable a1

then bs ∑ [([] (a1 \c) · a2),
(fuse (bmkeps a1) (a2 \c))]

else bs (a1 \c) · a2

(bsa∗) \c def
= bs(fuse [0] r \c) · ([]r∗))

For instance, when we do derivative of bsa∗ with respect to c, we need to unfold it
into a sequence, and attach an additional bit 0 to the front of r\c to indicate that
there is one more star iteration. Also the sequence clause is more subtle—when
a1 is bnullable (here bnullable is exactly the same as nullable, except that it is for an-
notated regular expressions, therefore we omit the definition). Assume that bmkeps
correctly extracts the bitcode for how a1 matches the string prior to character c (more
on this later), then the right branch of alternative, which is fuse bmkeps a1(a2\c) will
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collapse the regular expression a1(as it has already been fully matched) and store
the parsing information at the head of the regular expression a2\c by fusing to it.
The bitsequence bs, which was initially attached to the first element of the sequence
a1 · a2, has now been elevated to the top-level of ∑, as this information will be needed
whichever way the sequence is matched—no matter whether c belongs to a1 or a2.
After building these derivatives and maintaining all the lexing information, we com-
plete the lexing by collecting the bitcodes using a generalised version of the mkeps
function for annotated regular expressions, called bmkeps:

bmkeps (bs1)
def
= bs

bmkeps (bs∑ a :: as) def
= if bnullable a

then bs @ bmkeps a
else bs @ bmkeps (bs∑ as)

bmkeps (bsa1 · a2)
def
= bs @ bmkeps a1 @ bmkeps a2

bmkeps (bsa∗) def
= bs @ [0]

This function completes the value information by travelling along the path of the
regular expression that corresponds to a POSIX value and collecting all the bitcodes,
and using S to indicate the end of star iterations. If we take the bitcodes produced
by bmkeps and decode them, we get the value we expect. The corresponding lexing
algorithm looks as follows:

blexer r s def
= let a = (r↑)\s in

if bnullable(a)
then decode (bmkeps a) r
else None

In this definition _\s is the generalisation of the derivative operation from characters
to strings (just like the derivatives for un-annotated regular expressions).

Remember tha one of the important reasons we introduced bitcodes is that they
can make simplification more structured and therefore guaranteeing the correctness.

Our Simplification Rules

In this section we introduce aggressive (in terms of size) simplification rules on an-
notated regular expressions in order to keep derivatives small. Such simplifications
are promising as we have generated test data that show that a good tight bound can
be achieved. Obviously we could only partially cover the search space as there are
infinitely many regular expressions and strings.

One modification we introduced is to allow a list of annotated regular expres-
sions in the ∑ constructor. This allows us to not just delete unnecessary 0s and 1s
from regular expressions, but also unnecessary “copies” of regular expressions (very
similar to simplifying r + r to just r, but in a more general setting). Another modi-
fication is that we use simplification rules inspired by Antimirov’s work on partial
derivatives. They maintain the idea that only the first “copy” of a regular expres-
sion in an alternative contributes to the calculation of a POSIX value. All subsequent
copies can be pruned away from the regular expression. A recursive definition of
our simplification function that looks somewhat similar to our Scala code is given
below:
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simp (bsa1 · a2)
def
= (simp a1, simp a2) match

case (0, _)⇒ 0
case (_, 0)⇒ 0
case (1, a′2)⇒ fuse bs a′2
case (a′1, 1)⇒ fuse bs a′1
case (a′1, a′2)⇒bs a′1 · a′2

simp (bs∑ as) def
= distinct(flatten(as.map(simp))) match

case []⇒ 0
case a :: []⇒ fuse bs a
case as′ ⇒bs ∑ as’

simp a def
= a otherwise

The simplification does a pattern matching on the regular expression. When it de-
tected that the regular expression is an alternative or sequence, it will try to sim-
plify its children regular expressions recursively and then see if one of the children
turn into 0 or 1, which might trigger further simplification at the current level. The
most involved part is the ∑ clause, where we use two auxiliary functions flatten and
distinct to open up nested alternatives and reduce as many duplicates as possible.
Function distinct keeps the first occurring copy only and remove all later ones when
detected duplicates. Function flatten opens up nested ∑s. Its recursive definition is
given below:

flatten (bs∑ as) :: as’ def
= (map (fuse bs) as) @ flatten as′

flatten 0 :: as′ def
= flatten as’

flatten a :: as′ def
= a :: flatten as’ (otherwise)

Here flatten behaves like the traditional functional programming flatten function,
except that it also removes 0s. Or in terms of regular expressions, it removes paren-
theses, for example changing a + (b + c) into a + b + c.

Having defined the simp function, we can use the previous notation of natural
extension from derivative w.r.t. character to derivative w.r.t. string:

r\simp(c :: s) def
= (r\simp c)\simp s

r\simp[ ]
def
= r

to obtain an optimised version of the algorithm:

blexer_simp r s def
= let a = (r↑)\simp s in

if bnullable(a)
then decode (bmkeps a) r
else None

This algorithm keeps the regular expression size small, for example, with this sim-
plification our previous (a + aa)∗ example’s 8000 nodes will be reduced to just 6 and
stays constant, no matter how long the input string is.

Derivatives give a simple solution to the problem of matching a string s with a
regular expression r: if the derivative of r w.r.t. (in succession) all the characters of
the string matches the empty string, then r matches s (and vice versa).

However, there are two difficulties with derivative-based matchers: First, Brzo-
zowski’s original matcher only generates a yes/no answer for whether a regular ex-
pression matches a string or not. This is too little information in the context of lexing
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where separate tokens must be identified and also classified (for example as key-
words or identifiers). Sulzmann and Lu Sulzmann2014 overcome this difficulty by
cleverly extending Brzozowski’s matching algorithm. Their extended version gener-
ates additional information on how a regular expression matches a string following
the POSIX rules for regular expression matching. They achieve this by adding a sec-
ond “phase” to Brzozowski’s algorithm involving an injection function. In our own
earlier work we provided the formal specification of what POSIX matching means
and proved in Isabelle/HOL the correctness of Sulzmann and Lu’s extended algo-
rithm accordingly AusafDyckhoffUrban2016.

The second difficulty is that Brzozowski’s derivatives can grow to arbitrarily big
sizes. For example if we start with the regular expression (a + aa)∗ and take suc-
cessive derivatives according to the character a, we end up with a sequence of ever-
growing derivatives like

(a + aa)∗
_\a−→ (1 + 1a) · (a + aa)∗
_\a−→ (0 + 0a + 1) · (a + aa)∗ + (1 + 1a) · (a + aa)∗
_\a−→ (0 + 0a + 0) · (a + aa)∗ + (1 + 1a) · (a + aa)∗ +

(0 + 0a + 1) · (a + aa)∗ + (1 + 1a) · (a + aa)∗
_\a−→ . . . (regular expressions of sizes 98, 169, 283, 468, 767, . . . )

where after around 35 steps we run out of memory on a typical computer (we shall
define shortly the precise details of our regular expressions and the derivative opera-
tion). Clearly, the notation involving 0s and 1s already suggests simplification rules
that can be applied to regular regular expressions, for example 0 r ⇒ 0, 1 r ⇒ r,
0 + r ⇒ r and r + r ⇒ r. While such simple-minded simplifications have been
proved in our earlier work to preserve the correctness of Sulzmann and Lu’s algo-
rithm AusafDyckhoffUrban2016, they unfortunately do not help with limiting the
growth of the derivatives shown above: the growth is slowed, but the derivatives
can still grow rather quickly beyond any finite bound.

Sulzmann and Lu overcome this “growth problem” in a second algorithm Sulzmann2014
where they introduce bitcoded regular expressions. In this version, POSIX values are
represented as bitsequences and such sequences are incrementally generated when
derivatives are calculated. The compact representation of bitsequences and regular
expressions allows them to define a more “aggressive” simplification method that
keeps the size of the derivatives finite no matter what the length of the string is.
They make some informal claims about the correctness and linear behaviour of this
version, but do not provide any supporting proof arguments, not even “pencil-and-
paper” arguments. They write about their bitcoded incremental parsing method (that
is the algorithm to be formalised in this paper):

“Correctness Claim: We further claim that the incremental parsing method [..]
in combination with the simplification steps [..] yields POSIX parse trees. We
have tested this claim extensively [..] but yet have to work out all proof details.”
Sulzmann2014

1.4 Backgound

Theoretical results say that regular expression matching should be linear with re-
spect to the input. Under a certain class of regular expressions and inputs though,
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practical implementations suffer from non-linear or even exponential running time,
allowing a ReDoS (regular expression denial-of-service ) attack.

1.5 Engineering and Academic Approaches to Deal with Catas-
trophic Backtracking

The reason behind is that regex libraries in popular language engines often want to
support richer constructs than the most basic regular expressions, and lexing rather
than matching is needed for sub-match extraction.

There is also static analysis work on regular expression that have potential ex-
poential behavious. Rathnayake and Thielecke (Rathnayake2014StaticAF) proposed
an algorithm that detects regular expressions triggering exponential behavious on
backtracking matchers. People also developed static analysis methods for generat-
ing non-linear polynomial worst-time estimates for regexes, attack string that exploit
the worst-time scenario, and "attack automata" that generates attack strings. For a
comprehensive analysis, please refer to Weideman’s thesis (Weideman2017Static).

1.5.1 DFA Approach

Exponential states.

1.5.2 NFA Approach

Backtracking.

1.6 Our Approach

In the last fifteen or so years, Brzozowski’s derivatives of regular expressions have
sparked quite a bit of interest in the functional programming and theorem prover
communities. The beauty of Brzozowski’s derivatives (Brzozowski, 1964) is that
they are neatly expressible in any functional language, and easily definable and rea-
soned about in theorem provers—the definitions just consist of inductive datatypes
and simple recursive functions. Derivatives of a regular expression, written r\c, give
a simple solution to the problem of matching a string s with a regular expression r:
if the derivative of r w.r.t. (in succession) all the characters of the string matches the
empty string, then r matches s (and vice versa).

This work aims to address the above vulnerability by the combination of Brzo-
zowski’s derivatives and interactive theorem proving. We give an improved version
of Sulzmann and Lu’s bit-coded algorithm using derivatives, which come with a for-
mal guarantee in terms of correctness and running time as an Isabelle/HOL proof.
Then we improve the algorithm with an even stronger version of simplification, and
prove a time bound linear to input and cubic to regular expression size using a tech-
nique by Antimirov.

1.6.1 Existing Work

We are aware of a mechanised correctness proof of Brzozowski’s derivative-based
matcher in HOL4 by Owens and Slind (Owens and Slind, 2008). Another one in Is-
abelle/HOL is part of the work by Krauss and Nipkow (Krauss and Nipkow, 2012).
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And another one in Coq is given by Coquand and Siles (Coquand and Siles, 2011).
Also Ribeiro and Du Bois give one in Agda (Ribeiro and Bois, 2017).

1.7 What this Template Includes

1.7.1 Folders

This template comes as a single zip file that expands out to several files and folders.
The folder names are mostly self-explanatory:

Appendices – this is the folder where you put the appendices. Each appendix
should go into its own separate .tex file. An example and template are included in
the directory.

Chapters – this is the folder where you put the thesis chapters. A thesis usually
has about six chapters, though there is no hard rule on this. Each chapter should go
in its own separate .tex file and they can be split as:

• Chapter 1: Introduction to the thesis topic

• Chapter 2: Background information and theory

• Chapter 3: (Laboratory) experimental setup

• Chapter 4: Details of experiment 1

• Chapter 5: Details of experiment 2

• Chapter 6: Discussion of the experimental results

• Chapter 7: Conclusion and future directions

This chapter layout is specialised for the experimental sciences, your discipline may
be different.

Figures – this folder contains all figures for the thesis. These are the final images
that will go into the thesis document.

1.7.2 Files

Included are also several files, most of them are plain text and you can see their
contents in a text editor. After initial compilation, you will see that more auxiliary
files are created by LATEX or BibTeX and which you don’t need to delete or worry
about:

example.bib – this is an important file that contains all the bibliographic infor-
mation and references that you will be citing in the thesis for use with BibTeX. You
can write it manually, but there are reference manager programs available that will
create and manage it for you. Bibliographies in LATEX are a large subject and you
may need to read about BibTeX before starting with this. Many modern reference
managers will allow you to export your references in BibTeX format which greatly
eases the amount of work you have to do.

MastersDoctoralThesis.cls – this is an important file. It is the class file that tells
LATEX how to format the thesis.

main.pdf – this is your beautifully typeset thesis (in the PDF file format) created
by LATEX. It is supplied in the PDF with the template and after you compile the
template you should get an identical version.
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main.tex – this is an important file. This is the file that you tell LATEX to compile
to produce your thesis as a PDF file. It contains the framework and constructs that
tell LATEX how to layout the thesis. It is heavily commented so you can read exactly
what each line of code does and why it is there. After you put your own information
into the THESIS INFORMATION block – you have now started your thesis!

Files that are not included, but are created by LATEX as auxiliary files include:
main.aux – this is an auxiliary file generated by LATEX, if it is deleted LATEX simply

regenerates it when you run the main .tex file.
main.bbl – this is an auxiliary file generated by BibTeX, if it is deleted, BibTeX

simply regenerates it when you run the main.aux file. Whereas the .bib file contains
all the references you have, this .bbl file contains the references you have actually
cited in the thesis and is used to build the bibliography section of the thesis.

main.blg – this is an auxiliary file generated by BibTeX, if it is deleted BibTeX
simply regenerates it when you run the main .aux file.

main.lof – this is an auxiliary file generated by LATEX, if it is deleted LATEX simply
regenerates it when you run the main .tex file. It tells LATEX how to build the List of
Figures section.

main.log – this is an auxiliary file generated by LATEX, if it is deleted LATEX simply
regenerates it when you run the main .tex file. It contains messages from LATEX, if
you receive errors and warnings from LATEX, they will be in this .log file.

main.lot – this is an auxiliary file generated by LATEX, if it is deleted LATEX simply
regenerates it when you run the main .tex file. It tells LATEX how to build the List of
Tables section.

main.out – this is an auxiliary file generated by LATEX, if it is deleted LATEX simply
regenerates it when you run the main .tex file.

So from this long list, only the files with the .bib, .cls and .tex extensions are
the most important ones. The other auxiliary files can be ignored or deleted as LATEX
and BibTeX will regenerate them.

1.8 Filling in Your Information in the main.tex File

You will need to personalise the thesis template and make it your own by filling in
your own information. This is done by editing the main.tex file in a text editor or
your favourite LaTeX environment.

Open the file and scroll down to the third large block titled THESIS INFORMA-
TION where you can see the entries for University Name, Department Name, etc . . .

Fill out the information about yourself, your group and institution. You can also
insert web links, if you do, make sure you use the full URL, including the http://
for this. If you don’t want these to be linked, simply remove the \href{url}{name}
and only leave the name.

When you have done this, save the file and recompile main.tex. All the informa-
tion you filled in should now be in the PDF, complete with web links. You can now
begin your thesis proper!

1.9 The main.tex File Explained

The main.tex file contains the structure of the thesis. There are plenty of written
comments that explain what pages, sections and formatting the LATEX code is creat-
ing. Each major document element is divided into commented blocks with titles in
all capitals to make it obvious what the following bit of code is doing. Initially there
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seems to be a lot of LATEX code, but this is all formatting, and it has all been taken
care of so you don’t have to do it.

Begin by checking that your information on the title page is correct. For the
thesis declaration, your institution may insist on something different than the text
given. If this is the case, just replace what you see with what is required in the
DECLARATION PAGE block.

Then comes a page which contains a funny quote. You can put your own, or
quote your favourite scientist, author, person, and so on. Make sure to put the name
of the person who you took the quote from.

Following this is the abstract page which summarises your work in a condensed
way and can almost be used as a standalone document to describe what you have
done. The text you write will cause the heading to move up so don’t worry about
running out of space.

Next come the acknowledgements. On this page, write about all the people who
you wish to thank (not forgetting parents, partners and your advisor/supervisor).

The contents pages, list of figures and tables are all taken care of for you and do
not need to be manually created or edited. The next set of pages are more likely to
be optional and can be deleted since they are for a more technical thesis: insert a
list of abbreviations you have used in the thesis, then a list of the physical constants
and numbers you refer to and finally, a list of mathematical symbols used in any
formulae. Making the effort to fill these tables means the reader has a one-stop place
to refer to instead of searching the internet and references to try and find out what
you meant by certain abbreviations or symbols.

The list of symbols is split into the Roman and Greek alphabets. Whereas the
abbreviations and symbols ought to be listed in alphabetical order (and this is not
done automatically for you) the list of physical constants should be grouped into
similar themes.

The next page contains a one line dedication. Who will you dedicate your thesis
to?

Finally, there is the block where the chapters are included. Uncomment the lines
(delete the % character) as you write the chapters. Each chapter should be writ-
ten in its own file and put into the Chapters folder and named Chapter1, Chapter2,
etc. . . Similarly for the appendices, uncomment the lines as you need them. Each
appendix should go into its own file and placed in the Appendices folder.

After the preamble, chapters and appendices finally comes the bibliography. The
bibliography style (called authoryear ) is used for the bibliography and is a fully fea-
tured style that will even include links to where the referenced paper can be found
online. Do not underestimate how grateful your reader will be to find that a refer-
ence to a paper is just a click away. Of course, this relies on you putting the URL
information into the BibTeX file in the first place.

1.10 Thesis Features and Conventions

To get the best out of this template, there are a few conventions that you may want
to follow.

One of the most important (and most difficult) things to keep track of in such
a long document as a thesis is consistency. Using certain conventions and ways of
doing things (such as using a Todo list) makes the job easier. Of course, all of these
are optional and you can adopt your own method.



1.10. Thesis Features and Conventions 19

1.10.1 Printing Format

This thesis template is designed for double sided printing (i.e. content on the front
and back of pages) as most theses are printed and bound this way. Switching to one
sided printing is as simple as uncommenting the oneside option of the documentclass
command at the top of the main.tex file. You may then wish to adjust the margins
to suit specifications from your institution.

The headers for the pages contain the page number on the outer side (so it is easy
to flick through to the page you want) and the chapter name on the inner side.

The text is set to 11 point by default with single line spacing, again, you can
tune the text size and spacing should you want or need to using the options at
the very start of main.tex. The spacing can be changed similarly by replacing the
singlespacing with onehalfspacing or doublespacing.

1.10.2 Using US Letter Paper

The paper size used in the template is A4, which is the standard size in Europe. If
you are using this thesis template elsewhere and particularly in the United States,
then you may have to change the A4 paper size to the US Letter size. This can be
done in the margins settings section in main.tex.

Due to the differences in the paper size, the resulting margins may be different
to what you like or require (as it is common for institutions to dictate certain margin
sizes). If this is the case, then the margin sizes can be tweaked by modifying the
values in the same block as where you set the paper size. Now your document
should be set up for US Letter paper size with suitable margins.

1.10.3 References

The biblatex package is used to format the bibliography and inserts references such
as this one (Reference1). The options used in the main.tex file mean that the in-
text citations of references are formatted with the author(s) listed with the date of
the publication. Multiple references are separated by semicolons (e.g. (Reference2;
Reference1)) and references with more than three authors only show the first author
with et al. indicating there are more authors (e.g. (Reference3)). This is done auto-
matically for you. To see how you use references, have a look at the Chapter1.tex
source file. Many reference managers allow you to simply drag the reference into
the document as you type.

Scientific references should come before the punctuation mark if there is one (such
as a comma or period). The same goes for footnotes1. You can change this but the
most important thing is to keep the convention consistent throughout the thesis.
Footnotes themselves should be full, descriptive sentences (beginning with a capital
letter and ending with a full stop). The APA6 states: “Footnote numbers should be
superscripted, [...], following any punctuation mark except a dash.” The Chicago
manual of style states: “A note number should be placed at the end of a sentence
or clause. The number follows any punctuation mark except the dash, which it pre-
cedes. It follows a closing parenthesis.”

The bibliography is typeset with references listed in alphabetical order by the
first author’s last name. This is similar to the APA referencing style. To see how
LATEX typesets the bibliography, have a look at the very end of this document (or just
click on the reference number links in in-text citations).

1Such as this footnote, here down at the bottom of the page.
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TABLE 1.1: The effects of treatments X and Y on the four groups stud-
ied.

Groups Treatment X Treatment Y

1 0.2 0.8
2 0.17 0.7
3 0.24 0.75
4 0.68 0.3

A Note on bibtex

The bibtex backend used in the template by default does not correctly handle uni-
code character encoding (i.e. "international" characters). You may see a warning
about this in the compilation log and, if your references contain unicode characters,
they may not show up correctly or at all. The solution to this is to use the biber back-
end instead of the outdated bibtex backend. This is done by finding this in main.tex:
backend=bibtex and changing it to backend=biber. You will then need to delete all
auxiliary BibTeX files and navigate to the template directory in your terminal (com-
mand prompt). Once there, simply type biber main and biber will compile your
bibliography. You can then compile main.tex as normal and your bibliography will
be updated. An alternative is to set up your LaTeX editor to compile with biber
instead of bibtex, see here for how to do this for various editors.

1.10.4 Tables

Tables are an important way of displaying your results, below is an example table
which was generated with this code:

\begin{table}
\caption{The effects of treatments X and Y on the four groups studied.}
\label{tab:treatments}
\centering
\begin{tabular}{l l l}
\toprule
\tabhead{Groups} & \tabhead{Treatment X} & \tabhead{Treatment Y} \\
\midrule
1 & 0.2 & 0.8\\
2 & 0.17 & 0.7\\
3 & 0.24 & 0.75\\
4 & 0.68 & 0.3\\
\bottomrule\\
\end{tabular}
\end{table}

You can reference tables with \ref{<label>} where the label is defined within
the table environment. See Chapter1.tex for an example of the label and citation
(e.g. Table 1.1).

1.10.5 Figures

There will hopefully be many figures in your thesis (that should be placed in the
Figures folder). The way to insert figures into your thesis is to use a code template
like this:

http://tex.stackexchange.com/questions/154751/biblatex-with-biber-configuring-my-editor-to-avoid-undefined-citations/
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\begin{figure}
\centering
\includegraphics{Figures/Electron}
\decoRule
\caption[An Electron]{An electron (artist’s impression).}
\label{fig:Electron}
\end{figure}

Also look in the source file. Putting this code into the source file produces the picture
of the electron that you can see in the figure below.

 

e e 
FIGURE 1.1: An electron (artist’s impression).

Sometimes figures don’t always appear where you write them in the source. The
placement depends on how much space there is on the page for the figure. Some-
times there is not enough room to fit a figure directly where it should go (in relation
to the text) and so LATEX puts it at the top of the next page. Positioning figures is the
job of LATEX and so you should only worry about making them look good!

Figures usually should have captions just in case you need to refer to them (such
as in Figure 1.1). The \caption command contains two parts, the first part, inside
the square brackets is the title that will appear in the List of Figures, and so should
be short. The second part in the curly brackets should contain the longer and more
descriptive caption text.

The \decoRule command is optional and simply puts an aesthetic horizontal line
below the image. If you do this for one image, do it for all of them.

LATEX is capable of using images in pdf, jpg and png format.
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1.10.6 Typesetting mathematics

If your thesis is going to contain heavy mathematical content, be sure that LATEX will
make it look beautiful, even though it won’t be able to solve the equations for you.

The “Not So Short Introduction to LATEX” (available on CTAN) should tell you
everything you need to know for most cases of typesetting mathematics. If you need
more information, a much more thorough mathematical guide is available from the
AMS called, “A Short Math Guide to LATEX” and can be downloaded from: ftp:
//ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf

There are many different LATEX symbols to remember, luckily you can find the
most common symbols in The Comprehensive LATEX Symbol List.

You can write an equation, which is automatically given an equation number by
LATEX like this:

\begin{equation}
E = mc^{2}
\label{eqn:Einstein}
\end{equation}

This will produce Einstein’s famous energy-matter equivalence equation:

E = mc2 (1.4)

All equations you write (which are not in the middle of paragraph text) are auto-
matically given equation numbers by LATEX. If you don’t want a particular equation
numbered, use the unnumbered form:

\[ a^{2}=4 \]

1.11 Sectioning and Subsectioning

You should break your thesis up into nice, bite-sized sections and subsections. LATEX
automatically builds a table of Contents by looking at all the \chapter{}, \section{}
and \subsection{} commands you write in the source.

The Table of Contents should only list the sections to three (3) levels. A chapter{}
is level zero (0). A \section{} is level one (1) and so a \subsection{} is level two
(2). In your thesis it is likely that you will even use a subsubsection{}, which is
level three (3). The depth to which the Table of Contents is formatted is set within
MastersDoctoralThesis.cls. If you need this changed, you can do it in main.tex.

1.12 In Closing

You have reached the end of this mini-guide. You can now rename or overwrite this
pdf file and begin writing your own Chapter1.tex and the rest of your thesis. The
easy work of setting up the structure and framework has been taken care of for you.
It’s now your job to fill it out!

Good luck and have lots of fun!

Guide written by —
Sunil Patel: www.sunilpatel.co.uk

Vel: LaTeXTemplates.com

http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf
ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf
ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf
http://ctan.org/pkg/comprehensive
http://www.sunilpatel.co.uk
http://www.LaTeXTemplates.com
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Chapter 2

Chapter Title Here

2.1 Properties of \c
To have a clear idea of what we can and need to prove about the algorithms involv-
ing Brzozowski’s derivatives, there are a few properties we need to be clear about
it.

2.1.1 function \c is not 1-to-1

The derivative w.r.t character c is not one-to-one. Formally,
∃r1 r2.r1 6= r2andr1\c = r2\c

This property is trivially true for the character regex example:

r1 = e; r2 = d; r1\c = 0 = r2\c

But apart from the cases where the derivative output is 0, are there non-trivial results
of derivatives which contain strings? The answer is yes. For example,

Let r1 = a∗b r2 = (a · a∗) · b + b.
where a is not nullable.

r1\c = ((a\c) · a∗) · c + b\c
r2\c = ((a\c) · a∗) · c + b\c

We start with two syntactically different regexes, and end up with the same deriva-
tive result, which is a "meaningful" regex because it contains strings. We have redis-
covered Arden’s lemma:

A∗B = A · A∗ · B + B

2.1.2 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante
ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat
volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcor-
per. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse
platea dictumst.

2.1.3 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pel-
lentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus
venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla
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auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor.
Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pel-
lentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum
nisi lobortis velit, a malesuada dolor lorem eu neque.

2.2 Main Section 2

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat
justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie
gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec
pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum
in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volut-
pat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in.
Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimen-
tum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi
tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tin-
cidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.
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Chapter 3

Common Identities In
Simplification-Related Functions

3.1 Idempotency of simp

simp r = simp simp r (3.1)

This property means we do not have to repeatedly apply simplification in each step,
which justifies our definition of blexer_simp. It will also be useful in future proofs
where properties such as closed forms are needed. The proof is by structural induc-
tion on r.

3.1.1 Syntactic Equivalence Under simp

We prove that minor differences can be annhilated by simp. For example,

simp (simp_ALTs (map (_\ x) (distinct rs φ))) =
simp (simp_ALTs (distinct (map (_\ x) rs) φ))

3.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pel-
lentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus
venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla
auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor.
Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pel-
lentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum
nisi lobortis velit, a malesuada dolor lorem eu neque.

3.2 Main Section 2

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat
justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie
gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec
pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum
in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volut-
pat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in.
Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimen-
tum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi
tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tin-
cidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.
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Appendix A

Frequently Asked Questions

A.1 How do I change the colors of links?

The color of links can be changed to your liking using:
\hypersetup{urlcolor=red}, or
\hypersetup{citecolor=green}, or
\hypersetup{allcolor=blue}.

If you want to completely hide the links, you can use:
\hypersetup{allcolors=.}, or even better:
\hypersetup{hidelinks}.

If you want to have obvious links in the PDF but not the printed text, use:
\hypersetup{colorlinks=false}.
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