We already proved that

If nullable(r) then POSIX (mkeps r) r

holds. This is essentially the "base case" for the correctness proof of the algorithm. For the "induction case" we need the following main theorem, which we are currently after:

If (*)
$$POSIX v (der c r) and \vdash v : der c r$$

then $POSIX (inj r c v) r$

That means a POSIX value v is still *POSIX* after injection. I am not sure whether this theorem is actually true in this full generality. Maybe it requires some restrictions.

If we unfold the POSIX definition in the then-part, we arrive at

$$\forall v'. \text{ if } \vdash v': r \text{ and } |inj r c v| = |v'| \text{ then } |inj r c v| \succ_r v'$$

which is what we need to prove assuming the if-part (*) in the theorem above. Since this is a universally quantified formula, we just need to fix a v'. We can then prove the implication by assuming

(a)
$$\vdash v': r$$
 and (b) $inj \ r \ c \ v = |v'|$

and our goal is

(goal) inj
$$r c v \succ_r v'$$

There are already two lemmas proved that can transform the assumptions (a) and (b) into

(a*)
$$\vdash$$
 proj r c v' : der c r and (b*) c # $|v| = |v'|$

Another lemma shows that

$$|v'| = c \# |proj \ r \ c \ v|$$

Using (b^{*}) we can therefore infer

$$(\mathbf{b^{**}}) |v| = |proj \ r \ c \ v|$$

The main idea of the proof is now a simple instantiation of the assumption $POSIX \ v \ (der \ c \ r)$. If we unfold the POSIX definition, we get

$$\forall v'.$$
 if $\vdash v': der \ c \ r \ and \ |v| = |v'|$ then $v \succ_{der \ c \ r} \ v'$

We can instantiate this v' with $proj \ r \ c \ v'$ and can use (a^*) and (b^{**}) in order to infer

$$v \succ_{der c r} proj r c v'$$

The point of the side-lemma below is that we can "add" an inj to both sides to obtain

$$inj \ r \ c \ v \succ_r \ inj \ r \ c \ v')$$

Finally there is already a lemma proved that shows that an injection and projection is the identity, meaning

$$inj \ r \ c \ (proj \ r \ c \ v') = v'$$

With this we have shown our goal (pending a proof of the side-lemma next).

Side-Lemma

A side-lemma needed for the theorem above which might be true, but can also be false, is as follows:

If (1)
$$v_1 \succ_{der c r} v_2$$
,
(2) $\vdash v_1 : der c r$, and
(3) $\vdash v_2 : der c r$ holds,
then $inj r c v_1 \succ_r inj r c v_2$ also holds.

It essentially states that if one value v_1 is bigger than v_2 then this ordering is preserved under injections. This is proved by induction (on the definition of *der*... this is very similar to an induction on r).

The case that is still unproved is the sequence case where we assume $r = r_1 \cdot r_2$ and also r_1 being nullable. The derivative der c r is then

$$der \ c \ r = ((der \ c \ r_1) \cdot r_2) + (der \ c \ r_2)$$

or without the parentheses

$$der \ c \ r = (der \ c \ r_1) \cdot r_2 + der \ c \ r_2$$

In this case the assumptions are

The induction hypotheses are

The goal is

$$(goal) \qquad inj \ (r_1 \cdot r_2) \ c \ v_1 \succ_{r_1 \cdot r_2} inj \ (r_1 \cdot r_2) \ c \ v_2$$

If we analyse how (a) could have arisen (that is make a case distinction), then we will find four cases:

$$\begin{array}{ll} \text{LL} & v_1 = Left(w_1), \, v_2 = Left(w_2) \\ \text{LR} & v_1 = Left(w_1), \, v_2 = Right(w_2) \\ \text{RL} & v_1 = Right(w_1), \, v_2 = Left(w_2) \\ \text{RR} & v_1 = Right(w_1), \, v_2 = Right(w_2) \end{array}$$

We have to establish our goal in all four cases.

Case LR

The corresponding rule (instantiated) is:

$$\frac{len |w_1| \ge len |w_2|}{Left(w_1) \succ_{(der \ c \ r_1) \cdot r_2 + der \ c \ r_2} Right(w_2)}$$

This means we can also assume in this case

(e)
$$len |w_1| \ge len |w_2|$$

which is the premise of the rule above. Instantiating v_1 and v_2 in the assumptions (b) and (c) gives us

$$\begin{array}{ll} (b^*) & \vdash Left(w_1) : (der \ c \ r_1) \cdot r_2 + der \ c \ r_2 \\ (c^*) & \vdash Right(w_2) : (der \ c \ r_1) \cdot r_2 + der \ c \ r_2 \end{array}$$

Since these are assumptions, we can further analyse how they could have arisen according to the rules of \vdash _: _. This gives us two new assumptions

$$\begin{array}{ll} (\mathbf{b}^{**}) & \vdash w_1 : (der \ c \ r_1) \cdot r_2 \\ (\mathbf{c}^{**}) & \vdash w_2 : der \ c \ r_2 \end{array}$$

Looking at (b^{**}) we can further analyse how this judgement could have arisen. This tells us that w_1 must have been a sequence, say $u_1 \cdot u_2$, with

$$\begin{array}{ll} (\mathbf{b}^{***}) & \vdash u_1 : der \ c \ r_1 \\ & \vdash u_2 : r_2 \end{array}$$

Instantiating the goal means we need to prove

$$inj (r_1 \cdot r_2) c (Left(u_1 \cdot u_2)) \succ_{r_1 \cdot r_2} inj (r_1 \cdot r_2) c (Right(w_2))$$

We can simplify this according to the rules of *inj*:

$$(inj r_1 c u_1) \cdot u_2 \succ_{r_1 \cdot r_2} (mkeps r_1) \cdot (inj r_2 c w_2)$$

This is what we need to prove. There are only two rules that can be used to prove this judgement:

$$\frac{v_1 = v'_1 \quad v_2 \succ_{r_2} v'_2}{v_1 \cdot v_2 \succ_{r_1 \cdot r_2} v'_1 \cdot v'_2} \quad \frac{v_1 \succ_{r_1} v'_1}{v_1 \cdot v_2 \succ_{r_1 \cdot r_2} v'_1 \cdot v'_2}$$

Using the left rule would mean we need to show that

$$inj r_1 c u_1 = mkeps r_1$$

but this can never be the case.¹ Lets assume it would be true, then also if we flat each side, it must hold that

$$|inj r_1 c u_1| = |mkeps r_1|$$

But this leads to a contradiction, because the right-hand side will be equal to the empty list, or empty string. This is because we assumed $nullable(r_1)$ and there is a lemma called **mkeps_flat** which shows this. On the other side we know by assumption (b^{***}) and lemma v4 that the other side needs to be a string starting with c (since we inject c into u_1). The empty string can never be equal to something starting with c...therefore there is a contradiction.

¹Actually Isabelle found this out after analysing its argument. ;o)

That means we can only use the rule on the right-hand side to prove our goal. This implies we need to prove

$$inj r_1 c u_1 \succ_{r_1} mkeps r_1$$

Case RL

The corresponding rule (instantiated) is:

$$\frac{len |w_1| > len |w_2|}{Right(w_1) \succ_{(der \ c \ r_1) \cdot r_2 + der \ c \ r_2} Left(w_2)}$$

Test Proof

We want to prove that

nullable(r) implies POSIX(mkeps r) r

We prove this by induction on r. There are 5 subcases, and only the $r_1 + r_2$ case is interesting. In this case we know the induction hypotheses are

> (IMP1) $nullable(r_1)$ implies $POSIX(mkeps r_1) r_1$ (IMP2) $nullable(r_2)$ implies $POSIX(mkeps r_2) r_2$

and know that $nullable(r_1 + r_2)$ holds. From this we know that either $nullable(r_1)$ holds or $nullable(r_2)$. Let us consider the first case where we know $nullable(r_1)$.

Problems in the paper proof

I cannot verify