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Abstract. Whereas Perl-compatible regular expression matchers typ-
ically exhibit some variation of leftmost-greedy semantics, those con-
forming to the posix standard are prescribed leftmost-longest semantics.
However, the posix standard leaves some room for interpretation, and
Fowler and Kuklewicz have done experimental work to confirm di↵er-
ences between various posix matchers. The Boost library has an inter-
esting take on the posix standard, where it maximises the leftmost match
not with respect to subexpressions of the regular expression pattern, but
rather, with respect to capturing groups. In our work, we provide the
first formalisation of Boost semantics, and we analyse the complexity of
regular expression matching when using Boost semantics.
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1 Introduction

In his “casual stroll across the regex landscape”, Friedl [9] identifies two reg-
ular expression flavours with which the typical user must become acquainted,
namely, those that are Perl-compatible, called PCRE [1], and those that follow
the posix standard [4]. PCRE matchers follow a leftmost-greedy disambiguation
policy, but posix matchers favour the leftmost-longest match. These flavours dif-
fer not only in terms of their syntax, but also, more crucially, in terms of their
matching semantics. The latter is particularly noteworthy where ambiguity en-
ters the picture, which is to say, where an input string “can be matched in more
than one way” [24].

Through the standardisation of languages such as Perl, with native support
for regular expressions, and libraries such as those defined by posix, new fea-
tures became available, but initially, without much attention to the theoretic
investigation of issues such as ambiguity. If, after the publication of Thompson’s
famous construction [25] in 1968, regular expressions were viewed as the perfect
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marriage between theory and practice, then by the 1980s, the state of the art and
the state of the theory had parted ways. Since the 1990s, when the growth of the
World Wide Web led to an interest in parsing for markup languages [7], the aca-
demic community has responded with vigour, as various features and flavours of
regular expressions were studied and formalised (for example, see Kearns [12]).

To this, we now add the following contributions: We extend regular expres-
sions to capturing regular expressions, which define forest languages instead of
the usual string languages, in an e↵ort to place the notion of parsing, as found
in implementations, on a secure theoretical footing. We go on to provide a series
of varied instructive examples, highlighting the similarities and di↵erences be-
tween standards, implementations, and our formalisation of matching semantics.
Finally, we formalise the matching semantics and investigate the matching com-
plexity of the Boost variant of posix regular expressions, which has not been
attempted before.

1.1 Related Work

In the documentation to their system regular expression libraries, which claim
posix-compatibility, BSD Unices like OpenBSD [3] point to the implementations
of Henry Spencer [11] as foundation. Recent versions of macOS [2], also in the
BSD family, cite in addition the TRE library [18] by Laurikari, who used the
notion of tagged automata to formalise full matching with submatch addressing
for posix [17, 20]. Subsequently, Kuklewicz took issue with Laurikari’s claims
to e�ciency and correctness [14, 16], resulting in the Regex-TDFA library for
Haskell [13], which passes an extensive test suite [15] based on Fowler’s original
version [8].

Okui and Suzuki [22] formalised leftmost-longest semantics in terms of a strict
order based on the yield lengths of parse tree nodes, ordered lexicographically
by position strings. In contrast, Sulzmann and Lu [23], inspired by Frisch and
Cardelli’s work on the formalisation of greedy matching semantics [10], used
a di↵erent approach, that of viewing regular expressions as types, and then
treating the parse trees as values of some regular expression type, in the process
also establishing a strict order of various parse trees with respect to a particular
regular expression.

1.2 Paper Outline

The paper outline is as follows. In the next section, we state some definitions and
properties of regular expressions and formal languages. Then, in Section 3, we
present detailed examples, which serve to illustrate some of the issues and com-
plexities of posix and Boost matching. In Section 4, we give a formal statement
of Boost matching semantics, and also discuss the complexity of doing regular
expression macthing with Boost. We then present some experimental results,
and we end with concluding remarks.
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2 Preliminaries

Denote by N the set of positive integers, let N0 = N [ {0}, and as usual, let 
(<) be the natural (strict) order on N0. We use ? and > to indicate undefined
values, and assume that ? < n < > for all n 2 N0. Let ⌃ be a finite alphabet,
denote by " the empty string, and let ⌃" be the set ⌃ [ {"}. For any string w

over ⌃ with ⌃
0
✓ ⌃, let ⇡⌃0(w) be the maximal subsequence of w that contains

only symbols from ⌃
0, and let |w| be the length of w, which is to say, the number

of symbols (from ⌃) in w. In particular, |"| = 0.
We denote the empty set by ?. For any set A, let P(A) be power set of A.

If g : A ! B is a function, we also use g to denote the function from P(A) to
P(B) defined by mapping A

0
✓ A to {g(a) | a 2 A

0
} ✓ B.

Next we define the notion of forests, that is, the concatenation of trees. This
is used to formalise the concept of which substring of an input string is matched
(or captured) by which subexpression of a given regular expression.

Definition 1. The set of forests over ⌃ and the index set I, denoted by F(⌃, I),
is defined inductively as follows. We assume ⌃" ✓ F(F, I), and for f1, f2 2

F(⌃, I) and i 2 I, we have that f1f2 (that is, the concatenation of f1 and f2)
and [if ]i are elements in F(⌃, I). A forest language L over ⌃ and I is a subset
of F(⌃, I), whereas a string language over ⌃ is a subset of ⌃⇤.

In the sequel, we shall assume I ✓ N0. Note that F(⌃, I) properly contains
all strings over ⌃ if I is non-empty, and is otherwise precisely equal to the
set of strings over ⌃. A forest can be considered either as being a string over
⌃ [ {[i, ]i | i 2 I} or as a concatenation of ordered unranked trees over ⌃" [ I,
where [if ]i is a tree with root node labelled by i, having the forest f of zero or
more trees as descendants.

Since standard (theoretical) regular expressions do not formalise the parsing
aspects related to regular expression matching, which is essential for our discus-
sion on Boost and posix in general, we next extend the standard definition of
regular expressions in a way suitable for our purpose.

Definition 2. The set of capturing regular expressions over a finite alphabet
⌃ and an index set I, denoted by R(⌃, I), is defined inductively as follows:

1. the empty language expression ?;
2. the empty string expression ";
3. the symbols a 2 ⌃;
4. the concatenation, also known as the product, (r0 · r1) of r0, r1 2 R(⌃, I);
5. the union, also known as the sum or alternation, (r0+r1) of r0, r1 2 R(⌃, I);
6. the (Kleene) closure (r⇤) of r 2 R(⌃, I); and
7. the capture group (ir)i for r 2 R(⌃, I) and i 2 I.

Items 1 to 3 in Definition 2 are called the atoms of regular expressions. We
assume the alphabet ⌃ is disjoint with the symbols used to define the operations
in items 4 to 7. The parentheses around the expressions of items 4 to 6 are
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optional, and if some are left out, the operator precedence, from high to low, is
(i) closure, (ii) concatenation, and (iii) union. In addition, we assume that any
concatenation r0 · r1 may be written by juxtaposition as r0r1.

Remark 1. For a Boost capturing regular expression r, it is assumed that all
opening parentheses are indexed from 1 onward, from left to right, with the cor-
responding closing parenthesis indexed correspondingly. A Boost matcher will
also replace r by (0r)0, before starting the matching procedure. The Boost cap-
turing regular expressions thus form a proper subset of R(⌃, I) (if I 6= ?).

Next we define syntactic shortcuts used in practice and also in some of our
examples.

Definition 3. For r 2 R(⌃, I), define the following additional iterative opera-
tors:

1. the duplication (rm,n) abbreviates
�
r · · · r| {z }
m times

(r + ") · · · (r + ")| {z }
n � m times

�

for m,n 2 N0 with m  n;
2. the option (r?) abbreviates (r + ");
3. the positive closure (r+) abbreviates (rr⇤).

The second parameter of duplication is optional, and here we distinguish
between two cases, namely, rm being equivalent to r

m,m, and r
m, being equiv-

alent to r
m
r
⇤. Again, we assume the set of symbols used to define the shortcut

iteration operators in Definition 3 is disjoint from the underlying alphabet ⌃.

Definition 4. We define the following operations on forest, and thus also on
string languages:

1. the concatenation L0 · L1 = L0L1 = {w0w1 | w0 2 L0 and w1 2 L1} for two
languages L0 and L1;

2. the union L0 [ L1 = {w | w 2 L0 or w 2 L1} for two languages L0 and L1;
3. the nth power of the language L, where n 2 N0, is

L
n =

(
{"} if n = 0,

L · L
n�1 otherwise; and

4. the closure L
⇤ =

S
n2N0

L
n of the language L.

Finally, we are ready to define the forest languages described by the expres-
sions in R(⌃, I).

Definition 5. The forest language described by r 2 R(⌃, I), and denoted by
L(r), is defined inductively as follows: L(?) = ?, L(") = {"}, L(a) = {a},
L(r0 · r1) = L(r0) · L(r1), L(r0 + r1) = L(r0)[L(r1), and L(r⇤) = L(r)⇤, where
r, r0, r1 2 R(⌃, I).
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Definition 6. We define the string language described by r 2 R(⌃, I) to be the
set ⇡⌃(L(r)).

Remark 2. Note if r0 is the regular expression obtained from r 2 R(⌃, I) by re-
placing the capturing parenthesis with normal parenthesis, then L(r0) = ⇡⌃(L(r)).

Definition 7. A forest disambiguation policy D(⌃, I) for R(⌃, I) is a set of
functions {dr : L(r) ! L(r) | r 2 R(⌃, I)}, such that for f, f

0
2 L(r), we have

⇡⌃(dr(f)) = ⇡⌃(f) and ⇡⌃(f) = ⇡⌃(f 0) implies dr(f) = dr(f 0).

If for f 2 L(r), we have ⇡⌃(f) = w, we refer to f as a parse forest for w.
We can intuitively think of a regular expression matcher as not only deciding
if a given string w is in ⇡⌃(L(r)) or not, but also, if w 2 ⇡⌃(L(r)), to have a
specification of which parse forest to associate with w, amongst the potentially
many possible parse forests for w. However, for e�ciency reasons, greedy, Boost,
and other posix matchers do not have a forest disambiguation policy in general,
but rather a disambiguation policy on matching information derived from parsing
forests. In general, the corresponding forests can not uniquely be reconstructed
from this derived information. In Section 4, we provide precise details on the
structure of this derived information for Boost.

Example 1. Consider matching w = “ab” with E = /a?(ab)?b?/. The Okui–
Suzuki disambiguation policy [22], modified here in terms of notation to align
closer with our approach, first replaces E by an (almost) fully parenthesised ex-
pression E

0 = /(1a?)1(2(3(ab)?)3(4b?)4)2/, obtained by assuming concatenation
is right-associative, and by numbering the opening parenthesis, in order, from
left to right in E

0. The following two forests are candidates for a full match:

t0 = [1a]1[2[3]3[4b]4]2 and t1 = [1]1[2[3ab]3[4]4]2.

Using the natural order on N0 for the capture indices, this yields the two vectors
h1, 1, 0, 1i and h0, 2, 2, 0i of lengths of captures for t0 and t1, respectively, by
which t0 is chosen when using a lexicographic order on these two vectors.

3 Examples

At this point, it is instructive to turn to some detailed examples. In particular,
because posix [4] is a software engineering standard, its functional specification
for regular expressions is written in English, without mathematical formalisms.
As such, some parts of the specification might be open to multiple interpreta-
tions. Fowler [8] has argued that the specification is “surprisingly cavalier with
terminology”, and it is the implications of di↵erent readings of the standard that
we now examine in detail.

Remark 3. An additional concern is that posix defines two di↵erent specifica-
tions for regular expressions, namely, Basic Regular Expressions (BREs) and
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Extended Regular Expressions (EREs), which although they share many simi-
larities, especially in the specifications of atoms, are incompatible. For example,
BREs supports backreferences, “operations which bind a substring to a variable,
allowing it to be matched again verbatim”, a feature that is non-regular and that
makes matching NP-complete [6]. EREs do not support backreferences, removes
the need for group and iteration bounds delimiters to be escaped, and supports
the union of subexpressions, which BREs do not. Therefore—and it also bears
mentioning that some implementers of posix regular expressions consider BREs
obsolete [2, 19]—we focus exclusively on EREs.

Remark 4. The specification language for regular expression patterns in posix
di↵ers from our Definitions 2 and 3. In particular, for the union r + s of two
expressions r and s, we would write r|s in posix, and the iterates r

⇤, r
m,

r
m,, and r

m,n are written as r*, r{m}, r{m,}, and r{m,n}, respectively. Until
Section 5, we use the notation established in Section 2 exclusively.

Remark 5. In the posix standard for EREs [4, §9.4], each pair of parentheses,
unless escaped or included in a bracket expression—where the escape sequences
“\(” and “\)” match the literal opening and closing parenthesis characters,
and whereas the bracket expression “[(ab)]” matches any one of the literal
characters “(”, “a”, “b”, or “)”—always automatically defines a group: They
do not match literal occurrences of parentheses in the input string, but serve to
override the default operator precedence, and also, allow the matcher to report
which substring was captured (or matched) by which group. Consistent with
Remark 1, groups are identified by positive integers, and internally, the matcher
automatically numbers the pairs of parentheses from left to right, starting at 1; in
addition, the entire regular expression is numbered as group 0. In our examples,
we write group numbers explicitly, and depending on what is convenient, we
either state group 0 explicitly, or do not indicate it at all.

Example 2. Consider matching the input string w = “aba” with the regular ex-
pression E0 = /(1ab+ ba+ a)⇤1/. Matching w with E0 is ambiguous, because two
di↵erent forests in L(E0) that correspond to a full match, where the entire input
string is matched by the regular expression, are possible, namely, f0 = [1ab]1[1b]1
and f1 = [1a]1[1ba]1. The forest f0 means the matcher used the /ab/ subexpres-
sion of E0 for the first iteration of the star, and the /a/ subexpression for the
second, whereas the forest f1 means the matcher used the /a/ subexpression
of E0 for the first iteration of the star, and the /ba/ subexpression for the
second. The bracketed subforests in f0 and f1 indicate which substrings were
matched by group 1 during consecutive iterations. For E0, both leftmost-greedy
and leftmost-longest matchers will use the forest f0.

However, now consider matching w = “aba” with E1 = /(1a+ ab+ ba)⇤1/,
and note that E1 defines the same language as E0, but that the order of the
subexpressions inside the star has changed. Again, the two forests f0 and f1

correspond to a full match, but now, a leftmost-greedy matcher will use f1,
whereas a leftmost-longest matcher will still use f0. ut
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Remark 6. It should be noted that matchers typically do not report forests, but
only substrings matched (or captured) by some subexpressions, and specifically,
in the case of a subexpression s

⇤, most matchers only report the last capture by
the subexpression s. Thus it is in fact only the simplicity of the previous example
that makes it possible to reverse engineer the parse forests.

Intuitively, whenever more than one match is possible for a particular subex-
pression, a greedy matcher will return the first match with respect to the order
in which this subexpression’s subexpressions are written in the regular expres-
sion. This is to say, when a subexpression admits several choices for matching
the same substring of the input string, the leftmost choice will prevail. In con-
trast, a leftmost-longest matcher must seemingly consider all possible matches
for that subexpression, starting as early as possible in the input string, where
“early” means “leftmost”, unless this choice causes the entire match to fail; if
the leftmost policy is not enough to distinguish between two submatches, we
give preference to longer submatches.

Example 3. Again, consider the input string w and the regular expressions E0

and E1 from Example 2, but now let us examine what happens when these ex-
amples are run on Haskell’s Regex-TDFA [13] and Boost [21], which both claim
to be posix-compliant—but see Remark 7 below—and hence, where we expect
both to return [1ab]1[1a]1 for E0 as well as E1. However, whereas Regex-TDFA
returns [1ab]1[1a]1 with E0 and E1, and thus performs as expected, Boost re-
turns [1a]1[1ba]1, again for both E0 and E1. The disparity can be understood by
realising that Regex-TDFA maximises all captures by a starred subexpression,
from left to right, based on first considering the leftmost and secondly the length
criteria, although it only reports the last match, while Boost does the maximi-
sation only on the last submatch. ut

A case can be made that Boost is in fact posix-compliant, albeit with a
di↵erent reading than, for example, Regex-TDFA of the salient points of the
posix matching policy [4, §9.1]:

The search for a matching sequence starts at the beginning of a string and
stops when the first sequence matching the expression is found, where
“first” is defined to mean “begins earliest in the string”. If the pattern
permits a variable number of matching characters and thus there is more
than one such sequence starting at that point, the longest such sequence
is matched. . . . Consistent with the whole match being the longest of the
leftmost matches, each subpattern3 from left to right shall match the
longest possible string.

3 Fowler [8] identifies the terms “subpattern” and “subexpression” as particular targets
of abuse in the posix standard, especially since they are “central to the description
of the matching algorithm”. He goes on to note that, whereas “subpattern” is used
but once, “subexpression” is used 70 times and always appears in the context of
grouping.
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Posix therefore requires full matching with submatch addressing, where “the
position and extent of the substrings matched by given subexpressions must
be provided” [20]. Contrast this with the classic automata-theoretic approach,
where a matcher simply determines whether the entire input string was matched
by the regular expression or not.

Although Boost applies a leftmost-longest policy, it considers what its doc-
umentation calls “marked subexpressions” [21], instead of arbitrary subexpres-
sions, such that we now render the last quoted sentence as: “Consistent with the
whole match being the longest of the leftmost matches, each marked subpattern
from left to right shall match the longest possible string.” Thus Boost applies its
leftmost-longest disambiguation policy not by maximising arbitrary subexpres-
sions of a regular expression, but instead, by maximising marked subexpressions—
those subexpressions surrounded by parentheses.

Remark 7. Boost also supports PCRE syntax and semantics, which is, in fact,
its default mode of operation. (For detail, see the discussion after Remark 9 on
page 11.) When we refer to Boost in this and following sections, we exclusively
mean Boost in its posix mode of operation.

Example 4. Consider matching w = “aa” with E2 = /(0a⇤(1a⇤)1)0/ and E3 =
/(0(1a⇤)1(2a⇤)2)0/. Although both expressions define the same language, the
first /a⇤/ subexpression is a group in E3, but not in E2. For E2, the forests
f2 = [0aa[1]1]0, f3 = [0a[1a]1]0, and f4 = [0[1aa]1]0 correspond to matching
the entire input string w, and for E3, we have the forests f5 = [0[1aa]1[2]2]0,
f6 = [0[1a]1[2a]2]0, and f7 = [0[1]1[2aa]2]0.

We consider matching with E3 first: Boost and Regex-TDFA both prefer
f5, since all non-atomic subexpressions are parenthesised, and both matchers
simply maximise the lengths of the substrings matched by the groups from left
to right. However, for E2, Regex-TDFA uses f2, because this matcher max-
imises the lengths of all subexpressions from left to right, regardless of whether
a subexpression is marked as a group. Boost, on the other hand, maximises
groups—here, first with respect to group 0, and then with respect to group 1
(which is contained in group 0). Hence, Boost prefers f4 to f2. ut

Since unescaped and unbracketed parentheses always define groups, it does
not matter that parentheses might have been necessitated by issues of operator
precedence: Unlike the typical PCRE matcher or the Java regular expression
matcher, which support non-capturing groups—for which parentheses has no
other influence, save possibly changing how that abstract syntax tree of the reg-
ular expression is constructed—the user of posix-compliant matchers, including
Boost, has no choice in the matter of capturing groups. However, in our theoret-
ical model of capturing regular expressions, we do in fact allow both capturing
and non-capturing groups.

Example 5. Fowler gives the example E4 = /a?(1ab)1?b?/. Arguably, here the
parentheses serve no other purpose except to delimit the subexpression to be
matched by the second option operator. The two forests f8 = [0ab]0 and f9 =
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[0[1ab]1]0 correspond to a full match of the input string w = “ab”. Here, f8
represents the matcher using the first /a/ and the last /b/ subexpressions, and
f9 the case where the second option, of the /ab/ subexpression, is used. As is to
be expected for leftmost-longest semantics, Regex-TDFA returns f8, but Boost,
since it will maximise the only marked subexpression, returns f9. Contrast this
with matching the same input string w with E5 = /(1a?)1(2ab)2?(3b?)3/, where
both Regex-TDFA and Boost will prefer the forest f10 = [0[1a]1[3b]3]0 to the
forest f11 = [0[1]1[2ab]2[3]3]0. ut

Example 6. Consider the regular expression E6 = /(1a+ (2b⇤)2)⇤1/. Since all
non-atomic subexpressions are parenthesised, for a given input string, match-
ing with both Boost and Regex-TDFA succeed on the same forest. For the
input strings w1 = “abb”, w2 = “abba”, and w3 = “abbab”, the respec-
tive forests f12 = [0[1a]1[1[2bb]2]1]0, f13 = [0[1a]1[1[2bb]2]1[1a]1]0, and f14 =
[0[1a]1[1[2bb]2]1[1a]1[1[2b]2]1]0 are preferred.

The way Boost reports the result, however, di↵ers from Regex-TDFA. Using
Fowler’s format of reporting [8], we express the output (with grouping) of running
a matcher as a sequence of pairs, one for each group, starting at 0 for the
entire regular expression. The first element of a pair gives the start index of the
substring of the input that was matched by the group subexpression, and the
second element is the end index plus one of the substring. For f13, Boost reports
(0,4)(3,4)(1,3), but Regex-TDFA reports (0,4),(3,4),(?,?), where (?,?)
means the group subexpression did not participate in the match. ut

How the information is reported depends on the implementer’s reading of
the matching function’s specification [4, “System interfaces—regcomp”], which
we summarise as: (1) If a subexpression is not contained within another subex-
pression, then if the subexpression participated in a match multiple times, the
last such match must be reported, or else, if it did not participate in a match,
then it must be reported as non-participating; (2) if a subexpression is con-
tained within another subexpression, and the outer subexpression participated
in a match, then the match or non-match of the inner subexpression must be
reported according to Rule (1), but with respect to the substring matched by the
outer subexpression and not the entire input string. “Participation” is defined
negatively: A subexpression does not participate in a match when one of the
choices in a union is not taken, or when the empty string is matched with an
iterative operator by matching zero times with the associated subexpression.

Essentially, Boost has elected to ignore Rule 2. Since group 2 is contained in
group 1, and for the last match (by Rule 1) of group 1, group 2 did not participate
in the match (by Rule 2), Regex-TDFA reported group 2 as (?,?) by Rule 2.
This can be seen in the forest f13, where the last subforest for group 1 does not
contain a subforest for group 2. Boost, on the other hand, simply returns the
last match information, regardless of whether one group is contained in another.

Incidentally, from the context in which the unqualified term “subexpression”
is used in the posix specification for reporting submatches, it is clear that this
term actually refers to parenthesised subexpressions, which is to say, groups.
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Elsewhere [4, §9.4], the same term can refer to arbitrary or parenthesised subex-
pressions, the latter of which is sometimes referred to by “grouping”. These
inconsistencies illustrate Fowler’s critical stance on the standard.

Example 7. To see how reporting di↵ers for an empty match as opposed to a
non-participating subexpression, consider E7 = /(0(1a+ (2(3b)⇤3)2)

⇤
1)0/. Both

Boost and Regex-TDFA prefer the forest f15 = [0[1a[2[3b]3[3b]3]2]1[1a[2]2]1]0,
but Regex-TDFA reports (0,4),(3,4),(4,4),(?,?), whereas Boost instead
reports (0,4),(3,4),(4,4),(2,3). Note that both report an empty match for
group 2 (by having the same index for the start and end), since the iterative
star operator is applied to group 3 inside group 2, and therefore, since the last
match for group 2 is empty, group 3 did not participate in this match. Yet, al-
though group 3 is inside group 2, Boost still reports the last participating match
of group 3. ut

4 Boost semantics and matching algorithm

We start this section by first providing three preliminary definitions, which is
then used to formalise, in Definition 11, Boost semantics.

Definition 8. The capture history for forests is the function C : F(⌃, I)⇥I !

N0 ⇥ N0, defined as follows. Let f 2 F(⌃, I), j 2 I, and

f(j) = ⇡⌃[{[j ,]j}(f) = w0[jw1]j · · ·w2i[jw2i+1]jw2(i+1) · · · [jw2k�1]jw2k

where wi 2 ⌃
⇤. Then

C(f, j) =

(
{(|w0 · · ·w2i|, |w2i+1|) | 0  i < k} if [j appears in f ;

? otherwise.

We assume that the tuples in C(f, j) are always sorted by increasing first
index. Also, Clast(f, j) denotes the tuple in C(f, j) with largest first index if
C(f, j) is non-empty, and Clast(f, j) = (>,?) otherwise.

Intuitively, Definition 5 allows us to express how substrings of an input string
are captured by the capture groups of a regular expression, which is accomplished
by decorating the input string with pairs of indexed brackets to delimit the
substrings thus captured as matching proceeds. In turn, Definition 8 allows us
to extract the capture history for a particular group, which yields a (possibly
empty) set of pairs, where each pair gives the start index and the length of the
captured substring. Note that we opted to record starting indices and length for
captures in our formalisation in the previous definition, instead of starting and
ending indices as is done typically by implementations.

Example 8. To illustrate the capture history, we revisit Example 5. For match-
ing the input string w = “ab” by E5 = /(1a?)1(2ab)2?(3b?)3/, we consider
the forests f10 = [0[1a]1[3b]3]0 and f11 = [0[1]1[2ab]2[3]3]0. They yield, first
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for f10: C(f10, 0) = C([0ab]0) = {(0, 2)}, C(f10, 1) = C([1a]1b, 1) = {(0, 1)},
C(f10, 2) = C(ab, 2) = {(>,?)}, C(f10, 3) = C(a[3b]3, 3) = {(1, 1)}; and then
for f11: C(f11, 0) = C([0ab]0) = {(0, 2)}, C(f11, 1) = C([1]1ab, 1) = {(0, 0)},
C(f11, 2) = C([2ab]2, 2) = {(0, 2)}, and C(f11, 3) = C(ab[3]3, 3) = {(2, 0)}. Note
the di↵erence between the empty captures such as C(f11, 1) and C(f11, 3), and
a capture history in which a particular subexpression did not participate, such
as C(f10, 2). ut

Definition 9. The final capture history for f 2 F(⌃, I), denoted as Cfin(f), is
the set {(j, Clast(f, j)) | j 2 I}.

Remark 8. In the sequel, we abuse notation somewhat, and we write Cfin(f) as
a set of triplets instead of as a set of ordered pairs (of which each second element
is also a pair).

Example 9. To illustrate the final capture history, we use the forest f14 =
[0[1a]1[1[2bb]2]1[1a]1[1[2b]2]1]0 from Example 6. Recall, for this forest, we matched
the input string w3 = “abbab” by the regular expression E6 = /(1a+ (2b⇤)2)⇤1/.
From f14, we extract the capture histories

C(f14, 0) = C([0abbab]0, 0) = {(0, 5)},

C(f14, 1) = C([1a]1[1bb]1[1a]1[1b]1, 1) = {(0, 1), (1, 2), (3, 1), (4, 1)}, and

C(f14, 2) = C(a[2bb]2a[2b]2, 2) = {(1, 2), (4, 1)}.

Therefore, Cfin(f14) = {(0, 0, 5), (1, 4, 1), (2, 4, 1)}. ut

Definition 10. We define the Boost partial order, denoted as �B, on {Cfin(f) |
f 2 F(⌃, I)} as follows. Assume ⇡⌃(f1) = ⇡⌃(f2), then Cfin(f1) �B Cfin(f2) if
for the smallest element j 2 I such that (j, s1, `1) 6= (j, s2, `2), where (j, si, `i) 2
Cfin(fi), we have s2 < s1, or s1 = s2 but `1 < `2.

Definition 11. For r 2 R(⌃, I) and w 2 ⇡⌃(L(r)), the Boost captures of
matching w with r, denoted as B(r, w), is defined to be the largest element in
{Cfin(f) | f 2 L(r),⇡⌃(f) = w} determined by �B.

Remark 9. It should be noted that �B is a total order on the finite set {Cfin(f) |
f 2 L(r),⇡⌃(f) = w} used in the previous definition, and thus B(r, w) is well-
defined.

Example 10. To illustrate Boost partial order and captures, we continue Ex-
ample 5. We match w = “ab” with E4 = /a?(1ab)1?b?/, and we consider the
forests f8 = [0ab]0 and f9 = [0[1ab]1]0. By Definition 8, we have the capture
histories C(f8, 0) = {(0, 2)}, C(f8, 1) = ?, C(f9, 0) = {(0, 2)}, and C(f9, 1) =
{(0, 2)}, whence by Definition 9, Cfin(f8) = {(0, 0, 2), (1,>,?)} and Cfin(f9) =
{(0, 0, 2), (1, 0, 2)}. At j = 1, we find s8 = > and s9 = 0, so that s9 < s8, and
therefore, by Definition 10, f8 �B f9. Finally, by Definition 11,B(E4, “ab”) = f9.
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For matching w with E5 = /(1a?)1(2ab)2?(3b?)3/, and for the forests f10 =
[0[1a]1[3b]3]0 and f11 = [0[1]1[2ab]2[3]3]0, we calculate, by way of Example 8,

Cfin(f10) = {(0, 0, 2), (1, 0, 1), (2,>,?), (3, 1, 1)} and

Cfin(f11) = {(0, 0, 2), (1, 0, 0), (2, 0, 2), (3, 2, 0)}.

At j = 1, we find s10 = s11 = 0, `10 = 1, and `11 = 0, so that `11 < `10.
Therefore, f11 �B f10, and B(E5, w) = f10. ut

The actual implementation of posix matching in Boost is implemented in a
very straightforward way, in that it is a small modification of another matching
engine. Boost contains a very complete implementation of PCRE/Java-style se-
mantics, implemented by depth-first backtracking search on what is in e↵ect an
automaton constructed from the expression. See Berglund and Van der Merwe [5]
for a complete discussion both of these semantics and the details of such search
implementations; this paper applies fully to the PCRE-style mode in Boost, in-
cluding the potential for very poor performance for some regular expressions [26]
in instances where a significant amount of backtracking is necessary. The posix
mode is derived from this engine as follows:

1. Apply the PCRE-style matching engine to the input, and record the resulting
parse tree t. If the engine rejects the string then it is rejected (as the modes
agree on simple membership though not on capturing semantics4).

2. Apply the PCRE-style matching engine to the input, and each time it would
accept with a parse tree t

0:
(a) if t �B t

0, set t t
0, with �B defined precisely as in Definition 10,

(b) reject, as if the search had failed, causing the engine to backtrack.
3. Output the final t as the posix-style match result.

In e↵ect the PCRE-style engine is simply made to explore every possible
parse tree by triggering its backtracking. Unfortunately there are some edge
cases where this does not quite work, as the PCRE-style engine fails to explore
some trees which are from the PCRE perspective not useful candidates, but
which are clearly more correct from a posix perspective—more on this follows
in Section 5—but we view these instances as plain bugs rather than as intended
semantics.

The larger issue with this implementation technique is that there may be
exponentially many parse trees, and exploring them all may cause very poor
performance. For example, with default settings, the Boost posix matcher will
refuse to attempt to match the string “aaaaaaaaaaaaa” with /(a⇤)⇤/, issuing a
warning that the expression should be refactored to avoid “eternal” matching;
remove one “a”, however, and the match will succeed. Again, see Weideman
et al. [26] for a full treatment of this type of matching issues.

4 The matching engine should also reject on syntax or operators not permitted, as not
all PCRE-style features make sense in the posix context. The parsing and validation
of the expression is not within the scope of this discussion however.
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Depending on the application, this may be a rather severe issue, but for-
tunately, the problem of computing the correct Boost match does not actually
require exponential time, as we will see next.

Theorem 1. Boost captures B(r, w), where r 2 R(⌃, I) and w 2 ⌃
⇤, can be

computed in time O(k|w||r| log |w|), where k is the number of distinct capturing
indices used in r.

Proof. Without loss of generality, assume I = {1, . . . , k}, and let T (r) be a
transducer, obtained via a modified Thompson construction, which on input w,
outputs all matching forests of w; see Berglund and Van der Merwe [5] for a
detailed description of such a construction. We associate with each i 2 I the
sets of transitions Oi and Ci, from T (r), that outputs (i and )i, respectively.
Next, we determine the capturing information for each i 2 I in order of priority,
so starting with i = 1, we use binary search, in conjunction with a modified
on-the-fly subset construction, on T (r), to first find the leftmost position in w

where we can use a transition, from Oi, for the last time, while matching w

from left to right with T (r). That is, the binary search proceeds by stating “the
last leftmost position is to the right of position p”, then we simulate T on w by
keeping track of all states reachable, verifying this assumption. If we succeed, we
attempt a smaller p; if we fail, we attempt a larger one, until the precise leftmost
last position possible is identified. To make this more precise, the condition is
verified by up to position p simulating T , adding to each state reached a flag
annotating whether it has been reached on a path which used some transition
from O1 at least once (if the same state is reached with and without using
a transition from O1, the flag is kept). When position p is reached, all states
which have not used a transition from O1 are discarded, and the simulation of
T continues, but now no transition from O1 may be used for the remainder of
w.

Once we have this first position for capture i fixed—that is, either every
scan suggested from here on should again verify this condition on the paths they
consider, most easily achieved by a small annotation on w and on T , but as
this only constrains the possible paths in T it has no negative impact on the
matching performance—we again use the same search procedure to determine
the rightmost position in w where we can use a transition from C1, for the last
time, while matching w from left to right with T (r).

Combining this modified on-the-fly subset construction—which is to say,
tracking of reachable states fulfilling the additional conditions placed by the cap-
turing order—with binary search, allows us to determine the starting position of
the capture on index 1 in time O(|w||r| log |w|). This is the case as |T | 2 O(r),
and checking if T matches w can be done in |T ||w|, even with the added mod-
ifications, as the restrictions only remove paths which a full simulation would
have to consider.

We now repeat this search index i = 2, but while doing the search for start-
ing and ending position of this capture, we use the additional restrictions that
transitions from O1 and C1 has to be taken at (and not after) the opening and
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closing positions of the capture on index 1. Repeating this procedure for each
index gives us an O(k|E||w|log|w|) algorithm to compute B(w, r). ut

Remark 10. Theorem 1 does establish that matching consistent with the Boost
semantics can be performed in polynomial time, which improves greatly on the
exponential worst-case of Boost itself. However, this construction is primarily
given for illustrative purposes, and it is clearly not the most e�cient approach
possible: The binary search proposed to optimize the moment when the state
machine last uses the transitions corresponding to the captures can be replaced
by a more complicated but more e�cient linear scan which determines the correct
placement outright. The details of such an algorithm are non-trivial, however,
so we leave the construction and correctness proof details as future work.

5 Experimental Results

To test our formalism experimentally, we developed two applications in Python:
(1) a small testing framework for existing matchers, and (2) a larger, extensible
framework that allows us, given a regular expression r 2 R(⌃, I) and an input
string w 2 ⌃

⇤, to generate the forests f 2 L(r), and then to apply the Boost or
posix disambiguation policy, for the latter of which we used the Okui–Suzuki
approach as proxy. For the sake of simplicity, we limited ⌃ to alphabetic char-
acters, we did not implement the more involved posix regular expression atoms
such as bracket expressions and collating elements, and beyond the barest min-
imum, we did not attempt to make forest generation and matching e�cient in
any way.

Our main source for test cases was the 93 examples Fowler [8] designed specif-
ically to tease out posix compliance: We retained the 49 ERE examples from
interpretation.dat, removing a further three for containing bracket expres-
sions. Of these, Boost was able to return matches, without resorting to partial
matching, for 37 test cases; see Remark 11 for a discussion. We also wrote 19
additional test cases, designed to show the di↵erence between Boost and posix
disambiguation.

The implementation of our Boost formalism passed all of our own test cases
with respect to what the Boost matcher returns. For the 37 test cases, our Boost
formalism failed two, which we now discuss.

Example 11. Our formalism disagrees with the Boost matcher on Fowler’s test
case 10, matching “x” with the regular expression (.?){2}, where the dot op-
erator indicates a match with any character. Here, we get the forests f16 =
[0[1]1[1x]1]0 and f17 = [0[1x]1[1]1]0. From Definitions 8 and 9, we get Cfin(f16) =
{(0, 0, 1), (1, 0, 1)} and Cfin(f17) = {(0, 0, 1), (1, 1, 0)}, and hence, by Defini-
tion 10, we have f17 �B f16, so that our formalism selects f16. However, the
Boost matcher prefers f17, which is to say, it returns (0,1)(1,1) instead of the
expected (0,1)(0,1).

Running Regex-TDFA on the same example also returns (0,1)(1,1). There-
fore, we refer to the posix standard, which specifies that duplication “shall
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match what repeated consecutive occurrences” [emphasis added] would match [4,
§9.4.6]. This would seem to suggest that (.?){2} is equivalent to the literal ex-
pansion (.?)(.?). Both Boost and Regex-TDFA now return (0,1)(0,1)(1,1)
as expected, but note that we had no choice in the second pair of parentheses
automatically defining a new group. We might now posit that (1) Boost has
the internal forest representations [0[1x]1[2]2]0 and [0[1]1[2x]2]0, (2) it selects the
former by our Boost formalism, but then (3) reports this choice as [0[1x]1[1]1]0.

This postulation does not extend to Fowler’s test case 17, matching “xxx”
with (.?.?){3}, where Boost returns (0,3)(2,3), capturing the last “x” with
group 1—unlike Regex-TDFA, which returns (0,3)(3,3); when expanded to
(.?.?)(.?.?)(.?.?), both return (0,3)(0,2)(2,3)(3,3). Our point is this:
For sensible options of internal representation—non-capturing groups, group
number reuse and reordering—we can cook up counterexamples, so that the same
proposed representation does not work over all test cases. We believe this to be
a bug in the Boost matcher: During code inspection, we found code that limits
the forests to be explored, an optimisation that short-circuits a duplication when
it first matches an empty string, which is fine for PCRE semantics—recall that
Boost’s posix matcher is a modified PCRE engine—but prevents all possibilities
from being considered for posix semantics. ut

Remark 11. In our test setup, Boost only looks for full matches, that is, where
the entire input string is matched by the regular expression. Partial matching
allows a matcher to match a substring of the input string with a regular expres-
sion. Because Boost maximises groups (as opposed to subexpressions) from left
to right, it is possible to simulate partial matching by prepending and appending
.* to the regular expressions involved (and if necessary, surrounding the orig-
inal expression with parentheses). For example, to allow Fowler’s test case 28,
matching “ababa” by (aba|a*b), to succeed, we rewrite the regular expression
as .*(aba|a*b).*. Doing so allows Boost to return the partial match for the
nine Fowler test cases that failed originally, and the results correspond to those
returned by our own Boost ordering.

The same construction does not in general return correct results for a classic
posix matcher set up to return full matches. It will match the first and last “a”
in “aba” with the first and last .* of .*(aba|a*b).*, respectively, and “b” with
group 1. A lazy star, which consumes as few symbols as possible, is necessary
for the construction to work for posix matchers [5], but is not supported by the
standard.

6 Future Work and Conclusion

Although we focused in this paper mostly on Boost semantics of regular ex-
pression matching, the overarching theme of this research is the more general
notion of providing users of matching libraries the freedom to specify their own
orders (or disambiguating policies) that can be used by more generic regular
expression matching libraries. Thus, instead of being locked into the unclear
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semantics provided by current greedy and posix implementations, users can
then specify their own policies, such as for example longest-leftmost, instead of
the current leftmost-longest policy. Certainly, it might often be of more interest
to find a longest submatch rather than a leftmost one. Given that comparators
made generic sorting algorithms widely applicable, why not by analogy provide a
generic way to specify classes of disambiguating policies to be used by a matcher,
while still keeping the matching procedure e�cient?
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