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ABSTRACT 
Regular expression matching is a crucial task in several 

networking applications. Current implementations are based on 

one of two types of finite state machines. Non-deterministic finite 

automata (NFAs) have minimal storage demand but have high 

memory bandwidth requirements. Deterministic finite automata 

(DFAs) exhibit low and deterministic memory bandwidth 

requirements at the cost of increased memory space. It has 

already been shown how the presence of wildcards and 

repetitions of large character classes can render DFAs and NFAs 

impractical. Additionally, recent security-oriented rule-sets 

include patterns with advanced features, namely back-references, 

which add to the expressive power of traditional regular 

expressions and cannot therefore be supported through classical 

finite automata.  

In this work, we propose and evaluate an extended finite 

automaton designed to address these shortcomings. First, the 

automaton provides an alternative approach to handle character 

repetitions that limits memory space and bandwidth requirements. 

Second, it supports back-references without the need for back-

tracking in the input string. In our discussion of this proposal, we 

address practical implementation issues and evaluate the 

automaton on real-world rule-sets. To our knowledge, this is the 

first high-speed automaton that can accommodate all the Perl-

compatible regular expressions present in the Snort network 

intrusion and detection system. 

1. INTRODUCTION 
Finding patterns of interest within large datasets is a central 

task in many applications and has been a well-studied area 

of research for many years. However, there exist contexts 

where the design of high-performance pattern matching 

sub-systems is still challenging. In particular, this is the 

case with the networking domain, which includes several 

applications where packet payloads must be inspected at 

line rates (up to several gigabits per second) against large 

data-sets, sometimes consisting of thousands of patterns. 

Examples include network intrusion detection and 

prevention systems (e.g., Snort [6][7], Bro [8], Cisco 

Security Appliance [10], Citrix Application Firewall [11]), 

email scanning systems (ClamAV [9]), application-level 

filtering and content-based routing [12]. 

 While a substantial amount of work has focused on 

exact-match string search, research interest has recently 

moved toward designing data structures, algorithms and 

architectures to support regular expressions, which are more 

expressive than exact-match strings and therefore able to 

describe a wider variety of pattern signatures [13][14]. The 

basic challenge with high-speed regular expression 

evaluation is to minimize both memory space and memory 

bandwidth. 

Finite automata (FA) are typically used to represent 

regular expressions [2]. Two classic automata are used for 

this purpose, and each has its strengths and weaknesses. 

Non-deterministic finite automata (NFAs) have the benefit 

of a limited memory space requirement, which is dependent 

only on the number of characters present in the set of 

regular expressions. However, in the worst case, the 

matching operation requires up to NNFA state traversals per 

input character processed, where NNFA is the number of 

states in the NFA. Assuming at least one memory access per 

state traversal, this may require an unacceptable amount of 

memory bandwidth in high-speed contexts. On the other 

hand, deterministic finite automata (DFAs) offer the 

advantage of a limited memory bandwidth requirement. In 

particular, they require only a single state traversal for each 

input character processed, independent of the number of 

regular expressions in the data-set. However, the memory 

space required to encode a DFA representing a set of 

regular expressions can increase exponentially as compared 

with an NFA representation, a fact that often renders DFAs 

infeasible for practical rule-sets [16][20].  

Practical rule-sets often include three categories of 

patterns that make FA implementations problematic. The 

first are unbounded repetitions of sub-patterns, particularly 

those involving wildcards and character ranges. These “dot-

star terms” have a less dramatic effect and can be handled 

through proper regular expression clustering [16] (an 

approach that has severe scalability limits). The second are 

bounded repetitions, or “counting constraints,” in which a 

pattern is repeated a specific number of times; these are 

more troublesome and can render DFA and NFA solutions 

impractical, as we will see, due to their unsustainable 

memory storage and bandwidth requirements [20]. 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

CoNEXT 2008, December 9-12, 2008, Madrid, Spain 

Copyright 2008 ACM 978-1-60558-210-8/08/0012 ...$5.00. 



The final problematic type of pattern found in practical 

rule-sets is the back-reference, in which a matching 

substring in the prefix is matched again later in the input 

string. Back-references add to the expressive power of 

regular expressions, because regular languages cannot 

evoke this capability and cannot therefore be handled 

through the classic finite state machines. Therefore, 

implementations based on pure NFAs or DFAs fail to 

support back-references altogether.  

To be concrete, let us consider the rule-set 

characteristics from the popular Snort network intrusion 

and detection system (NIDS) [7]. As of November 2007, 

5,549 of the 8,536 Snort rules contain at least one Perl-

Compatible Regular Expression (PCRE). Among these, 905 

(16.3%) and 2,445 (44%) contain unbounded and bounded 

repetitions of large character classes, respectively, and 338 

(6%) include back-references. 

The practical implications of these observations are 

dramatic. First, none of the existing DFA-based proposals 

for high-speed network regular expression evaluation can 

handle the 44% of the Snort PCREs containing large 

counting constraints (even a single rule with a large 

counting constraint renders these infeasible). Second, DFA-

based designs need to partition the 16.3% of regular 

expressions containing dot-star terms in order to compile 

them into feasible data structures. Note that this is 

independent of the use of efficient DFA compression 

techniques [17][19]. Rule partitioning implies that several 

DFA instances must be created and operated in parallel, 

which requires an increase in memory bandwidth linear in 

the number of DFAs. Therefore, 60.3% of Snort regular 

expressions are not handled in a practical manner with 

DFA-based solutions. As we will see, this has led various 

groups to propose NFA-based architectures. Finally, none 

of the existing solutions based on finite automata, either 

DFAs or NFAs, can handle the 6% of Snort rules 

containing back-references.  

The problem of unconstrained repetitions of large 

character classes has recently been addressed in [20] and 

[21]. However, as we discuss in Section 2, neither of these 

proposals treat counting constraints in an exhaustive way. 

Finally, back-references have been fully omitted from 

previous work. 

In this paper, we propose an extended automaton to 

efficiently handle counting constraints and back-references. 

This allows us to cover all the patterns in the Snort rule-set, 

which is to our knowledge the most popular and expressive 

publicly available NIDS. We focus on a solution that can be 

implemented using a restricted amount of storage and that 

requires as little memory bandwidth as possible. 

Specifically, our contributions are both theoretical and 

practical, and can be summarized as follows: 

• We design a counting-FA that is functionally 

equivalent to a pure finite automaton, requiring a limited 

amount of storage and a finite and deterministic number of 

memory accesses per character processed. The automaton 

is proposed in both deterministic and non-deterministic 

form. 

• We design an extended-automaton that handles back-

references with an NFA-like operation. 

• We describe a practical state representation that is 

compatible with the compression and encoding techniques 

used on standard finite automata. 

• We propose suitable system architecture. 

For large rule-sets, we show how the proposed extended 

automaton can be integrated with the hybrid-FA described 

in [20] and, in fact, how our proposal can be viewed as a 

natural extension of it. Also, our extended deterministic 

finite automata can be used to generalize existing 

techniques based on multiple DFAs [25] in order to handle 

regular expressions with counting constraints. 

The remainder of this paper is organized as follows: In 

Section 2, we provide additional background and describe 

our contributions in the context of previous work. In 

Section 3, we present the counting automaton with a 

motivating example. In Section 4, we discuss the back-

reference problem and describe our solution to it. In Section 

5, we discuss a specific and practical encoding and 

compression technique that can be used to store the 

automaton. In Section 6, we extend the scheme to encode 

multiple regular expressions. In Section 7, we propose a 

system architecture that can use the automaton to 

implement high-speed regular expression evaluation. In 

Section 8, we provide experimental evaluations on real 

data-sets. We conclude in Section 9. 

2. BACKGROUND 
The prior work in the area of regular expression matching at 

line rate can be categorized by distinct implementation 

targets: FPGA-based implementations [22][23][24] 

[25][26] and approaches suitable for deployment on a 

general-purpose processor or on ASIC hardware 

[15][16][17][18][19][20][21]. The extended automaton 

proposed in this paper can be applied to all these 

implementation scenarios. However, we reserve the 

evaluation on FPGAs for future work. 

The two main advantages of FPGAs reside in their 

intrinsic reconfiguration capability and parallelism. The 

first aspect is less significant for the problem at hand 

because, currently, the update frequency in practical rule-

sets is relatively low. Parallelism can be (and is) exploited 

to run several regular expression engines—either in the 

DFA or in the NFA form—at the same time. FPGA-specific 

solutions have the following main disadvantages. First, they 

operate at a lower clock frequency compared with general-

purpose processors and ASIC solutions; and, second, they 

lack in scalability because the number of supportable rules 

is a function of FPGA resources rather than external 

memory. 
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Figure 1: NFA accepting RegEx .*a.{n}bc 

a0 0,1

a

a

a

b

c

a

...

^a

^a

0,1
2

0,1
2,3

0 …
n+1

^a
0,2

^a b c… 0
n+1

^a 0
n+2

0
n+3

0,2…
n+2

0,3, …, 
n+1,n+3

0,2
3

0,2
3,4

0,3
4

0,3
4,5

^a

^a

0,3

…

…

a

a

b0, n
n+1

0, n+1
n+2

^a

^a

^a

^a

a a
… …

…

…

…

…

aa

a a

c

…

 

Figure 2: Sketch of DFA accepting RegEx .*a.{n}bc 

An interesting NFA implementation for FPGAs is 

described by Sidhu and Prasanna [22]. The main idea is to 

encode each state in a flip-flop to allow each character to be 

processed in constant time. However, Franklin et al. [23] 

show how, in practice, the performance of FPGA-based 

NFA designs can decrease rapidly as the character density 

increases. A recent design proposed by Mitra et al. [26] 

shows that up to 250 PCREs from Snort can be 

accommodated on a single FPGA. Clearly, this may make 

the deployment of the whole Snort rule-set costly and 

cumbersome. 

The main advantages of algorithmic approaches 

suitable for implementation on general-purpose processors 

and ASIC hardware are generality, versatility and 

availability of higher clock frequencies. In this context, 

memory storage and bandwidth requirements represent the 

main issues.  

A substantial body of research work has focused on 

compression techniques aimed at reducing the amount of 

memory needed to represent DFAs. In particular, Kumar et 

al. [17] proposed an algorithm to compress a DFA through 

the introduction of default transitions, a generalization of 

the failure pointer concept presented in the classical Aho-

Corasick algorithm for string-matching [1]. Their work is 

based on the idea of trading of memory storage requirement 

with processing time. A more general and less complex 

algorithm to achieve the same goal was recently proposed 

by Becchi et al. [19]. By restricting default transitions to be 

backward directed, they can achieve a better worst case 

bound on the processing time, while offering the same 

compression degree of [17]. Unfortunately, as mentioned in 

the introduction and as detailed in [16][20], pure DFA-

based approaches cannot deal with the complexity of 

regular expressions present in practical rule-sets. In fact, the 

presence of large character class repetitions may make it 

impossible to practically compute a DFA. While the 

problem can be limited in the case of unconstrained 

repetitions through regular expression partitioning [16][25] 

(by sustaining greater memory bandwidth), counting 

constraints still remain an open issue. To get a concrete 

sense of this issue, it can be observed that the above 

compression algorithms have been tested on very limited 

rule-sets: either on large sets of simple patterns or on sets 

containing fewer than ten-to-twenty complex regular 

expressions. 

Two recent works [20][21] aim at overcoming the 

limitations of pure DFA- and NFA-based solutions in the 

context of traditional regular expressions.  

In particular, in [20] Becchi and Crowley propose a 

hybrid-FA with a memory storage requirement comparable 

to that of an NFA and a memory bandwidth requirement 

dependent on the number of regular expressions presenting 

large character class repetitions. The basic idea is to 

perform partial NFA-to-DFA conversion, thus preventing 

state explosion from happening. The outcome is a hybrid 

automaton consisting of a head-DFA (on which the 

compression techniques discussed above can be applied) 

and several tail-automata, either in NFA or in DFA form. 

The work presented in [20], however, does not fully 

elaborate the problem of counting constraints; in this paper 

we show how the proposed extended-automaton can be 

combined with the hybrid-FA proposed in [20].  

In [21] Kumar et al. propose HFA, a history-based 

automaton. Specifically, the proposal uses conditional 

transitions and a “history” data structure to limit the size of 

the underlying state machine. In fact, by these means an 

HFA avoids the duplication of entire groups of DFA states 

that would result from the presence of large character class 

repetitions in the regular expression set. Counters on states 

with auto-transitions are introduced to support counting 

constraints within the HFA. However, because HFAs use a 

single counter instance for each constrained repetition, they 

are not functionally equivalent to the original NFA. In other 

words, HFA may fail to recognize some match situations 

(see Section 3 for more details). Additionally the successful 

application of HFA is subject to constraints on the 

underlying regular expressions. Finally, the need for 

querying and updating the history data structure may affect 

the performance, especially if HFAs are used in the fast 

path.  

To our knowledge, our work is the first to propose an 

automaton addressing the problem of back-references. To 

this end, it is worth mentioning how the problem is faced 

within the string-processing arena, that is, within tools like 

grep, awk, Perl and so on. 

As explained in [3], string-processing tools are based 

on either a text-directed or a regex-directed engine. In 

either case, the regular expression under consideration is 
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Figure 3: Counting-NFA accepting RegEx .*a.{n}bc 

represented with a tree-like data structure. Text-directed 

engines have basically an NFA-like operation: they process 

each input character only once, traverse the tree-like data 

structure in breadth-first fashion and keep all ongoing 

matches active. Regex-directed engines, on the other hand, 

perform a depth-first traversal of the tree-like data structure 

and back-track in the input text when the end of a branch is 

reached without detecting a match. The way back-tracking 

is performed depends on the engine and on the way the 

regular expression is written. Because a character may be 

processed an undefined number of times, the performance 

of regex-directed engines are non-deterministic. Extensions 

to the regular expression language (lazy and greedy 

quantifiers, atomic groups, positive and negative look-

around, and others) are introduced to speed up the matching 

operation of regex-directed engines. 

Back-references are the only feature that extends the 

expressive power of regular expressions, and are not simply 

introduced to speed up regex-directed engines. Handling 

back-references implies remembering already processed 

portions of the input text. Therefore, back-references cannot 

be directly supported through finite automata, which are 

intrinsically memory-less. As a consequence, back-

references currently are not supported through any text-

directed engine. The implications of this fact are the 

following: First, within string-processing tools, back-

references are always handled by back-tracking in the input 

text. Second, since regex-directed engines are meant to 

process a single regular expression at a time, if several 

regular expressions must be matched, the input text will be 

reprocessed for each pattern under consideration. 

3. HANDLING COUNTING 
CONSTRAINTS 
In this section, we present the extension to finite automata 

introduced to handle constrained repetitions in an effective 

way.  

As a motivating example, let us consider the regular 

expression .*a.{n}bc. The initial .* sub-pattern tells us that 

pattern a.{n}bc can occur at any position of the input text. 

Thus, the input text will be inspected for the occurrence of 

character a followed by n characters and by the bc 

substring.  There are no restrictions on the characters 

separating a from bc, provided that they be exactly n. 

In this section, we first show the NFA and the DFA 

that accept the considered regular expression, and discuss 

their benefits and limitations. Second, we propose the 

counting counterparts, focusing on the need for maintaining 

functional equivalence. In other words, the proposed 

counting automata must accept all the input strings accepted 

by traditional solutions and no others. 

The NFA accepting .*a.{n}bc is represented in Figure 

1. As can be seen, when the cardinality of the counting 

constraint n is large, the size of the NFA (in terms of 

number of states) is linear in n. The basic problem of an 

NFA representation resides in the fact that, during 

operation, many states can be active in parallel, leading to a 

high memory bandwidth requirement and/or processing 

time. In fact, the behavior of NFAs representing regular 

expressions with counting constraints may approach the 

worst-case complexity O(n) per input character, a worst-

case bound never achieved otherwise.  

As an example, let us assume to process an input string 

of the form aaaaaaaaaaaa...aaaabc. Because state 0 is 

always active, transition 0→1 is triggered upon receiving 

symbol a, and all transitions up to state n+1 happen on any 

character, so eventually all states from 0 to n+1 will be 

active in parallel. In the general case, the number of parallel 

activations can approach the ratio between the number of 

NFA states and the length of the prefix preceding the 

counting constraint. This may result in unacceptable 

memory bandwidth requirements and processing time. 

As is well-known from theory [2], a DFA 

representation can be used to keep the processing time 

complexity down to one state traversal per input character. 

A DFA can be built from an NFA through the subset 

construction operation, which associates a DFA state to 

each set of NFA states reached in parallel upon processing 

a given character. Because there can be 2N distinct subsets 

for a set of N elements, there may be exponential state 

blowup when transforming an NFA into the corresponding 

DFA. In practice, this does happen only in some situations, 

most notably with counting constraints. 

Figure 2, showing part of the DFA for regular expression 

.*a.{n}bc, exemplifies this fact. State numbering reflects 

subset construction on the NFA in Figure 1. As should be 

evident, state explosion is due to the need for representing 

all possible occurrences of the prefix (in this case pattern a) 

at any position of the counting constraint. Notice that a 

similar blowup would have occurred even if the counting 

constraint was on a range of characters including a, such as 

[a-z]{n}. Conversely, this problem does not occur when the 

repetition does not involve characters in the prefix. The 

situation becomes more complicated when different regular 

expressions are compiled into a single DFA. In this case, 

explosion is also due to accounting for occurrences of the 

remaining regular expressions within the counting 

constraint. 

As a result, the memory storage requirement can become a 

bottleneck when representing regular expressions with 

counting constraints in DFA form. For high numbers of 

repetitions of n, DFAs may even be an infeasible solution. 

To solve the issues described above, we now introduce the 

concept of the counting automaton. Specifically, we first 

create a counting-NFA and then show how to extend the 

subset construction operation to build the corresponding 



Table 1: Example of counting-NFA/DFA traversal. 

Char Active states Counter instances Condition (n=3) 

a 0,1   

x 0,2 cnt1=1 cnt ≠ n 

a 0,1,2 cnt1=2 cnt ≠ n 

y 0,2 cnt1=3, cnt2=1 cnt = ⊥ 

b 0,2,3 cnt2=2 cnt ≠ n 

z 0,2 cnt2=3 cnt = n  

b 0,3   

c 0,4   
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Figure 4: Counting-DFA accepting RegEx .*a{n}bc. Dashed 

states contain the cnt++ action; dashed transitions trigger a 

counter instantiation; transitions not shown lead to state 0. 

counting-DFA. The basic idea is to replace the chain of 

counting states (states from 2 to n+1 in Figure 1) with a 

single state incrementing a counter, and make the 

transitions out of this state conditional on the value of the 

counter.  

This basic concept is complicated by observing that, to 

preserve functional equivalence between the original and 

the counting-NFA, one instance of the counter is not 

enough. To understand this fact, let us consider the above 

regular expression with n=3, and assume to process the 

input text axaybzbc. As can be observed, this string matches 

the given regular expression starting from the second 

occurrence of character a. If we assume a single counter 

instance, it will be set to 1 after processing x, to 2 after the 

second occurrence of a, and to 3 after considering character 

y. The match operation will proceed on b but fail on z. 

Finally, characters b and c will leave the automaton on state 

0, incorrectly reporting a mismatch.  

The above behavior can be avoided by allowing 

multiple instances of the same counter. To this end, beside 

the increment operation, we need an allocation and a de-

allocation action. While the increment operation acts in 

parallel on all active instances of the counter, allocation and 

de-allocation are instance-specific actions. 

The resulting counting-NFA is represented in Figure 3. 

The dashed (red) transition 1→2 represents the allocation 

operation (which sets the value of the newly created 

instance of cnt to 0). The dashed (red) state is the counting 

state: its increment action is performed on all active counter 

instances when the state is entered. The conditions 

following “|” make the corresponding transition conditional. 

In this example, we assume that de-allocation happens when 

the corresponding instance assumes value n (this aspect can 

be generalized). Hence, the instance with value n will be 

de-allocated after traversing transition 2→3. 

The demonstration of the counting-NFA traversal with 

the above input text is represented in Table 1 (columns 1-

3). Counter instances are numbered in order of creation. As 

can be observed, a second instance is initiated upon 

processing character y. The next b will trigger transition 

2→3 because on the condition of instance cnt1, as well as 

2→2 because cnt2 is not equal to n. The presence of cnt2 

leads to correct operation (a match is eventually reported as 

accepting state 4 is entered). 

In the case of a counting constraint of cardinality n, up 

to n counter instances may be active in parallel. This could 

potentially affect the memory bandwidth 

requirement/processing time, again leading to an 

unacceptable worst case behavior. However, we observe 

that the number of memory operations to be performed 

upon processing a character can be made independent of 

the number of active counter instances. Specifically: i) 

using a differential representation, each counter update 

may effectively involve just two instances (the oldest and 

the new one); ii) the evaluation of the condition can be 

performed using at most two instance values. Let us 

describe these two points in detail. 

i) Differential representation - Since the increment 

operation acts in parallel on all the counter instances, the 

difference between them will remain constant over 

execution. At each step, it will be sufficient to store the 

value of the largest instance (the oldest one), whereas the 

others can be recorded as a delta between their value and 

the one of the previously created instance. When a counter 

instance gets de-allocated, the value of the one which 

follows can be restored from the delta information. 

ii) Condition evaluation – It is known that the oldest 

instance (say cnt’) is the largest, and that all instances differ 

in value. Therefore, if cnt’ differs from n, then all instances 

are different from n and cnt≠n is verified. If cnt’ is equal to 

n, then cnt=n is true. If, in the latter case, (at least) an 

additional instance of the counter exists, then it is 

necessarily different from n, and the condition cnt≠n is also 

verified. Therefore, knowing the value of cnt’ and whether 

it is single instance is enough to evaluate the conditions and 

determine the transitions to be taken. 

By generalizing the subset construction operation it is 

possible to derive the counting-DFA represented in Figure 

4 from the counting-NFA shown in Figure 3. For 

readability, counter instantiation and increment are just 

represented by dashing (and red coloring) the transitions 

and states where these actions take place.  

 It can be noted that, in both cases, the number of states 

is independent of n. This makes counting automata 
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Figure 6: Extended-FA for RegEx .*a([a-z]+)a\1y 

 
Figure 5: Extended-FA for RegEx .*(abc|bcd).\1y 

attractive particularly for high values of n, for which a pure 

DFA would not be a feasible solution. 

Subset construction is generalized as follows: First, if 

an NFA state S triggers an action act (in the example, state 

2 triggers action cnt++), then all DFA states whose subset 

contains S are assigned act. Second, if a counter is 

instantiated upon NFA transition S1→S2 (1→2 in the 

example), the same happens for all DFA transitions 

connecting a state containing S1 to a state containing S2 in 

their subset. Finally, transitions can possibly be conditional 

upon the value of the counters.  

Being deterministic, the automaton must be built to 

trigger one and only one transition for each (state, 

character) pair. To this end, three conditions on the counter 

will be considered: i) cnt ≠n, ii) cnt=n and iii) cnt=⊥. The 

first means that the oldest (active) instance cnt’ is different 

from n, the second that cnt’ is single instance equal to n, 

and the third that cnt’ is equal to n but at least a second 

instance of the counter exists. In other words, cnt=⊥ 

whenever both cnt=n and cnt ≠n hold at the same time in 

the corresponding counting-NFA. The condition is 

represented in the last column in Table 1; notice that the 

represented traversal holds also for the counting-DFA. 

The concepts above can be easily generalized to 

character range repetitions, sub-expression repetitions and 

{n,m}, {n,+}-like counting constraint.  

4. HANDLING BACK-REFERENCES  
In this section we introduce back-references and show how 

to extend an NFA to handle them. We intend to modify the 

NFA operation as little as possible. 

A back-reference in a regular expression refers to some 

sub-expression enclosed within capturing parentheses, and 

indicates that the referred sub-expression can be matched 

later within the regular expression itself. By convention, 

capturing parentheses are numbered by numbering their 

open parentheses from left to right. The back-reference to 

the j-th captured sub-expression is indicated by a back-slash 

(\) follow by j (\j). Back-references add expressive power to 

regular expressions when the referred sub-expressions are 

not exact match strings. 

As an example, let us consider the extended regular 

expression a(bc|d)e([a-z])\1([1-9])f (from now on, let us 

imply the initial .* sub-pattern). 

( ) ( ) ( ) fzaedbca
4342143421321

3\2\1\

]91[1\][| +−−  

As shown above, the order of the capturing parentheses 

implies the sub-expression numbering, which is then used to 

perform back-references. It can be observed that each sub-

expression contains an alternative. Moreover, the length of 

the substring matching the captured sub-expression is not 

necessarily fixed or known a priori (see sub-expressions 1 

and 3).  

Once encountered, the back-reference refers to the 

specific substring in the input text which first matched the 

given sub-expression. As an example, the above regular 

expression will match text abceabc123f, but won’t match 

abcead123f. In fact, in the second case, when the back-

reference \1 is encountered the current input (d) does not 

match the input text captured when the referenced sub-

expression was first matched (bc). 

From this example it should be clear that a machine 

processing back-references needs to record matched 

portions of the input string. This cannot be performed 

through a finite state machine, which is intrinsically 

memory-less.  

One could consider augmenting a NFA with tags 

capturing the beginning (and the end) of a match as 

proposed by Laurikari [5] to solve the problem of 

determining the position of a match or of a sub-match in 

linear time. However, the problem is more complicated. In 

fact, there exist situations where the start and the end of a 

sub-match are not unequivocally defined: for example, a 

captured sub-expression may have a variable length or may 

overlap with the preceding/following characters in the 

pattern. 

As an example, let us consider the two following 

regular expressions with back-references: (1) (abc|bcd).\1y 

and (2) a([a-z]+)a\1y. Pattern (1) matches either abc or bcd 

followed by any character, followed by the previously 

matched sub-pattern, followed by character y. Pattern (2) 

matches a, followed by a substring of any length composed 

by [a-z] characters, followed by a,  followed by the 

previously matched sub-string and finally by character y. In 

the first case, the complexity arises by two facts: first, the 

two alternatives in the referenced sub-expression (abc and 

bcd) overlap; second, the captured sub-expression overlaps 

with the following character, which is a wildcard. In the 

second case, the complexity is due to the overlapping of the 

back-referenced sub-expression with both the preceding and 

the following characters (a), and by the fact that its length is 

variable.  

The text abcdabcdy matches regular expression (1) 

starting from the second character, and not from the first. In 

fact, even if abc is matched and correctly back-referenced, 

its second occurrence is not followed by y. The text 

babacabacy matches regular expression 2 from the second 

character, and the matched sub-text contains one a. 

Our solution aims at preserving the NFA operational 

model. In other words: (i) both finding all possible 



subsequent matches as well as stopping at the first match 

should be allowed; (ii) each input character should be 

processed only once (possibly against a set of active states); 

and (iii) the parallel processing of different regular 

expressions should be permitted. 

To this end, we extend the NFA as follows: 

• Each back-reference in the regular expression set is 

associated with a unique identifier. Thus, it is irrelevant 

whether two back-references belong to the same or to 

different patterns. 

• The transitions implementing back-referenced sub-

expressions are augmented with a tag indicating that, during 

traversal, the input text must be recorded. Each tag is 

associated with the corresponding back-reference identifier. 

• Each active state can be associated with a set of 

matched substrings MSk for each back-reference \k. This is 

performed as follows. (i) When a transition Sx → Sy is 

taken, the set MSk associated to Sx gets moved to Sy.  (ii) If 

the taken transition is tagged k, the current input character 

is appended to the strings in MSk. 

• If a back-reference \k originates from state Sj, Sj is 

consuming: when active, all the strings in its MSk are 

processed and shortened (one character at a time)  

• Two special conditional transitions representing the 

back-reference are created. If the input character matches 

some string in MSk then: (i) transition Sj → Sj+1 is taken if 

the corresponding string is consumed completely; (ii) 

transition Sj → Sj is taken otherwise. 

To clearly understand, let us consider the described 

scheme in practice. For the sake of example, Figure 5 and 

Figure 6 show the extended-FA corresponding to the 

regular expressions considered above. Tagged transitions as 

well as consuming states are dashed (and red); transitions 

on back-references are represented (in blue) along with the 

corresponding condition. 

Let us first assume to traverse the extended-FA in 

Figure 5 with the input text abcdabcdy. The corresponding 

sequence of {state(MS1)} activations is the following: 
a: 0 – 1(a) 

b: 0 – 3(b) – 2 (ab) 

c: 0 – 4(bc) – 5 (abc) 

d: 0 – 5 (bcd) – 6(abc) 

a: 0 – 1(a) – 6 (bcd,bc) 

b: 0 - 3(b) – 2(ab) – 6(cd, c)  

c: 0 – 4(bc) – 5(abc) – 6(d) - 7 

d: 0 – 5(bcd) – 6(abc) - 7  

y: 0 – 6(bcd) – 8 

Similarly, traversing the extended-FA in Figure 6 with the 

input text babacabacy will lead to the following operation: 
b: 0 

a: 0 - 1 

b: 0 – 2(b) 

a: 0 – 1 – 2(ba) – 3(b) 

c: 0 – 2(c, bac)  

a: 0 – 1 – 2(ca,baca) – 3(c,bac) 

b: 0 – 2(b, cab, bacab) – 3(ac) 

a: 0 – 1 – 2(ba, caba, bacaba) – 3(b, c, cab, bacab) 

c: 0 – 2(c,bac,cabac, bacabac) – 3(ab) – 4 

y: 0 – 2(cy, bacy, cabacy, bacabacy) - 5 

As can be observed, the scheme ensures correct operation. 

This is essentially due to the correct and full propagation of 

the partial match information among states.  

Note that storing all the matched substrings as shown in 

the example leads to conspicuous information replication. 

In practice, the MSk contains a set of pairs (starting 

position, ending position) pointing to the matched 

substrings in the input text. Even so, the worst-case bound 

in the number of pointers needed for each back-reference is 

O(m2
NNFA), where m is the length of the input text. It must 

be mentioned that this worst-case bound applies when the 

referenced substring has variable length (as in the second 

example). Similar patterns must be advised against since 

they may open the way to algorithmic attacks also if back-

tracking (i.e., a regex-directed engine) is used. 

A way to control the size of the MSk (and thus, to keep 

the memory required to store partial matching information 

under a given bound) can be derived from the following 

observation. The active states of an NFA can in principle be 

processed independently and at different times. Therefore, 

the processing of particular NFA state activations can be 

deferred, while waiting for other activations to terminate 

and free memory. Let us consider processing the 7th input 

character (that is, the third b) in the second example. It is 

possible to postpone the consideration of states 0 and 1 and 

to evaluate only the activations in states 2 and 3. States 0 

and 1 can be processed on the 7th character of the input text 

at a later time (that is, when the other activations die or 

enough memory is released). Note that this corresponds to 

combining a breadth-first with a depth-first NFA traversal, 

effectively introducing some back-tracking. A full depth-

first traversal would correspond to a pure back-tracking 

approach. 

Finally, it is worth highlighting the similarities in our 

handling of counting constraints and back-references. In 

both cases, the NFA has been augmented with some state 

information. The basic semantics of the NFA operation is 

unmodified. Transitions activating counters are 

conceptually equivalent to tagged transitions recording text: 

they trigger an action on a particular counter/back-reference 

(typically leading to the storing of state information). 

Conditional transitions are also semantically equivalent in 

the two scenarios: they depend on whether the stored data 

(a counter or a matched substring) have been “consumed.” 

Counting states are similar to consuming states, in that both 

modify the state information associated to them. The 

procedure to transform an extended NFA with back-

references into its deterministic counterpart is equivalent to 

that seen for counting constraints. More important, the two 

mechanisms can be combined and unified into a single 

extended-FA having: (i) tagged transitions on counters and 

back-references, (ii) conditional transitions on counters and 

back-references, (iii) counting and consuming states.  
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Figure 7: NFA and DFA for RegEx .*ab.*cd 

5. COMPACTING AN EXTENDED-FA  
The methodology presented above allows limiting the 

number of states necessary to represent regular expressions 

containing counting constraints and handling back-

references. However, this comes at the cost of the 

introduction of conditional transitions, which must be 

represented in an efficient way.  In particular, we aim at an 

encoding scheme that allows applying compression 

techniques proposed in the context of pure DFAs, naming 

default transitions [17][19] and character classes [19]. 

A simple technique to represent conditional transitions 

consists of using a character translation unit, which 

operates as follows: (i) every character c never appearing in 

a conditional transition is associated a single symbol, (ii) 

every character appearing in a conditional transition is 

associated multiple symbols, one for each possible 

condition of the counter. Notice that, in case of a single 

counting constraint, this corresponds to expanding the 

alphabet ∑ of cardinality |∑| to an alphabet ∑’ of cardinality 

k|∑|, k being equal to 3 or 5 depending on the nature of the 

counting constraint ({n} versus {n,m}).  

Once this preliminary character translation has been 

performed, the resulting DFA can be compressed by 

standard techniques. In particular, character classes can be 

used to reduce the size of the alphabet. Specifically, a set of 

symbols c1, c2,…, ck can be merged into a single class if, for 

any state s, they lead to the same next state, that is, δ (s, 

c1)= δ (s, c2)=…= δ (s, ck), δ(state,char) being the state 

transition function. Notice that the next state can vary 

across the different s in the DFA. At the end of this 

operation, each character class will be represented by a 

single symbol in a new, reduced alphabet ∑’’. This 

technique is especially effective in compressing sets of 

characters that do not appear in the compiled regular 

expressions or that are treated in homogeneous ways across 

the DFA (e.g., case insensitive regular expressions). In [19] 

an algorithm to perform character class translation in O(n
2
) 

time, n being the number of states in the DFA, is presented. 

A second technique proposed in [17] and refined in 

[19] consists of using default transitions to eliminate the 

transition redundancy typically present in DFAs. 

Specifically, if two states sx and sy have k outgoing 

transitions in common (that is, δ(sx, ci)= δ(sy, ci) for k 

different characters ci), then those k transitions can be 

removed from one of the two states, say sy, by introducing a 

default transition from sy to sx. After performing this 

compression, only |∑|-k labeled and a default (unlabeled) 

transition will be needed to fully specify the behavior of the 

automaton in state sy. When processing an input text, the 

default transition will be taken if the current state does not 

contain a labeled transition on the input character. 

Moreover, the traversal of a default transition won’t cause 

input character consumption. Clearly, this technique can be 

applied to an extended-DFA after the described character 

translation (possibly incorporating character classes) has 

been performed. 

Two observations—one about character translation and 

the other about default transitions—suggest how the two 

above techniques can be particularly suitable to extended-

DFAs. 

First, as can be observed in Figure 4, extended-DFAs 

consist of two categories of states: standard and 

counting/consuming states. The former do not have the 

NFA counting/consuming-state (state 2 in the example of 

Figure 3) in their subset; the latter do. As a consequence, 

standard states do not present any conditional transitions. 

This fact suggests that compression can be more efficient if 

two distinct character translations—one for standard and 

one for counting states—are used. To efficiently determine 

which translation to perform during operation, the two 

groups of states can be laid out in two distinct memory 

regions. 

Second, let us assume to have a counting constraint 

with a limited number of repetitions, such to allow a DFA 

of reasonable size. As can be observed in Figure 2, the 

counting constraint originates a high number of states with 

limited redundancy. In fact, each of them tends to transition 

“forward” to a distinct set of states. Conversely, the 

corresponding extended-DFA, besides being smaller, 

exhibits more redundancy. In fact, the counter eliminates 

the need for all the distinct forward transitions present in 

the pure DFA counterpart. To get an intuition of this fact, 

observe the incoming transitions to the counting states in 

Figure 2, and compare them with the DFA states having 

NFA-state 2 in their subset in Figure 4. 

6. COMPILING SEVERAL REGULAR 

EXPRESSIONS INTO AN AUTOMATON 
The methodology described above can be applied to any 

number of counting constraints/back-references, whether 

they appear in a single regular expression or in different 

regular expressions compiled into a single automaton.  

However, as the number of counting constraints and back-

references increases, two problems arise: first, the induced 

alphabet gets larger; second, the size of the DFA (in terms 

of number of states) can prohibitively increase. These two 

problems are related; we first analyze their cause (Section 

6.1) and then propose an algorithmic solution with 

important architectural implications (Section 6.2). 
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Figure 8: Exemplification of DFA obtained by compiling 

RegEx RE1=.*RE1a.*RE1b and RE2=.*RE2a.*RE2b 

6.1 The problem 
To understand the issues above, let us consider a simpler 

problem: the compilation of different regular expressions 

containing dot-star conditions (i.e., “.*” sub-patterns) into a 

single DFA. 

Figure 7 represents the NFA and the DFA accepting 

regular expression .*ab.*cd. As can be seen, the DFA can 

be divided into two sub-DFAs: the first accepting .*ab and 

the second accepting .*cd. The NFA state representing the 

second .* sub-pattern (state 2) is transformed into DFA 

state 0-2, which represents the match of the first sub-

expression and the beginning of the match of the second 

one. No transition from the second sub-DFA falls beyond 

state 0-2.  

States representing dot-star conditions, which we will 

call special states, have an important implication when 

compiling multiple regular expressions. Specifically, if a 

regular expression RE1 containing a dot-star is compiled 

with a regular expression RE2, the sub-DFA representing 

the match of RE2 is duplicated: one instance will start at 

state 0 and one instance will start at the special state. 

If many regular expressions containing dot-star sub-

patterns are compiled, the situation gets more complex. In 

Figure 8 we assume to have two regular expressions of this 

kind, say RE1 (.*RE1a.* RE1b) and RE2 (.*RE2a.* RE2b). 

Special states are represented with (red) shaded filling. As 

can be seen, beside the special states representing the match 

of .*RE1a  and .*RE2a, we will have an additional special 

state representing the parallel match of both those sub-

expressions, with a consequent additional complexity in 

terms of sub-DFA replication. Clearly, when more regular 

expressions containing dot-star conditions are compiled, the 

number of possible special state combinations will affect 

the complexity and the size of the resulting DFA. Note that 

this concept applies also to patterns containing repetitions 

of large character ranges, of the form [^c1c2...ck]*. 

The same considerations hold for extended automata. 

In fact, counting/consuming states behave like special states 

(they have an auto-loop on a large character class). This 

fact has two implications. First, compiling different regular 

expressions with counting constraints/back-references can 

lead to sub-DFA replication, with consequent increase in 

the extended-DFA size. Second, the combination of 

multiple NFA counting/consuming states into a single DFA 

state implies outgoing transitions conditional on multiple 

distinct counters/back-references. This, in turns, translates 

into an added alphabet translation complexity and, 

ultimately, into a larger alphabet. 

6.2 The solution 
One way to avoid this effect is to isolate each counting 

constraint/back-reference/dot-star condition from the other. 

This can be accomplished by using a hybrid-FA, as 

described in [20]. Specifically, the hybrid-FA can be built 

as follows. The subset construction operation (that is, NFA 

to DFA transformation [2]), started at the entry state s0 

should be interrupted on each special state. Second, each 

NFA special state should be treated as an entry state to a 

separate tail-DFA: that is, a distinct subset construction 

operation should be initiated on every special state. The 

outcome of this procedure will be: (i) a single head-DFA 

not containing any counting operation/back-references, 

except for counter instantiation and initialization and 

substring recording; (ii) a set of tail-DFAs, one for each 

counting constraint/back-reference/dot-star condition. 

Notice that dot-star condition expansion is less critical 

because it can increase the size of the head-DFA but not the 

one of the alphabet. Also, it is possible to keep the tail-

automata in NFA format, and interrupt subset construction 

before special states. In this case, tagged transitions can be 

also kept entirely in the NFA part. 

 Figure 9 represents this operation on a simple example 

containing a single counting constraint. In particular, Figure 

9(1) shows the counting-NFA, Figure 9(2a) the head-DFA 

and Figure 9(2b) the counting tail-DFA for regular 

expressions .*ab.{n}cd and .*de. When creating the head-

DFA, subset construction is interrupted upon encountering 

the counting state 3. At this point, state 0-3 is created. 

However, sub-state 3 is ignored to the end of computing the 

outgoing transitions from state 0-3; its label is used only to 

distinguish the newly created state from state 0 and to link 

the tail-DFA. Separately, subset construction is performed 

starting from state 3, thus creating the represented tail-DFA. 

When processing the input text, the head-DFA is 

always active: each input character will trigger a state 

transition on it. The tail-DFA will be activated every time 

the head-state 0-3 is traversed. Its deactivation will take 

place upon entering state Ø or an accepting state (we 

assume that multiple matches of the same regular 

expression are not of interest). 

The operation of distinct tail-DFA machines is, in 

principle, independent. Furthermore, once the head-DFA 

has activated a tail-DFA, the two can execute in sequence 

or in parallel threads. Whatever execution model is 

assumed, the number of parallel activations of a given tail-

DFA needed to ensure correct operation should be kept 

minimal to reduce memory bandwidth requirements.  

In the case of Figure 9 (2b), a distinct activation of the 

tail-DFA is required each time head-state 1-3 is reached. 

Therefore, at any given time, the tail-DFA may be active in 

parallel on different states, which affects the number of 
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Figure 10: Transformed tail-DFA to allow single activation. 
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Figure 9:  (1) counting-NFA, (2a) head-DFA, (2b) counting 

tail-DFA for regular expressions: (1) .*ab.{n}cd, (2) .*de. In 

the tail-NFA state Ø is a dead state. Transitions exiting the 

accepting state are omitted.  

memory operations needed to process an input character. 

This can be avoided by transforming the tail-DFA as shown 

in Figure 10. Namely, the counting sub-state 3 is added to 

all states (except Ø) and equivalent states are reduced. 

Because a new activation of the tail-DFA always begins 

from the counting state 3, this ensures that, if the tail-DFA 

is already active, the new activation will be covered by the 

current active state. At the same time, the condition on the 

counter will prevent invalid transitions from being 

performed. This transformation can be applied to any 

counting tail-DFA to allow a single activation to preserve 

correct operation. Moreover, a similar concept can be 

applied to tail-DFAs built on dot-star sub-patterns. 

7. MAPPING ON AN ARCHITECTURE 
In this section we present a regular expression-matching 

architecture suitable for implementing the above scheme. In 

particular, we refer to the hybrid extended-FA proposed in 

Section 6 to deal with data-sets presenting a high number of 

regular expressions containing counting constraints, back-

references and dot-star conditions. As mentioned above, the 

head-DFA and the tail-DFAs/NFAs can be processed in 

sequence within the same thread of execution or can be 

assigned to separate threads. In this architectural proposal 

we opt for the second alternative, and we assume to 

separate the head-DFA from the tail-DFAs/NFAs 

processing. All the active tail-DFAs, however, are handled 

by a single thread (even though the architecture can be 

easily modified to split them across multiple threads). 

Several facts motivate this choice. First, and most 

important, the head-DFA engine is supposed to be always 

active, whereas the tail-DFAs/NFAs are triggered only upon 

traversal of a special state and can be deactivated later on. 

As a consequence, regular expressions not containing 

counting constraints, back-references and dot-star 

conditions will be entirely matched within the head-DFA. 

Thus, the head-DFA can be considered the common case to 

be implemented on the fast path, whereas the tail-FAs the 

exception to be offloaded. To this end, it can be observed 

that the head-DFA does not have to deal with counters and 

back-references and its tasks are therefore simpler and 

faster. Finally, notice that the next state information 

concerning head- and tail-FAs can be stored on different 

memory regions, and, in general, on different memory 

banks. The use of two threads allows greater parallelism in 

the memory accesses. 

Figure 11 presents the logical view of the proposed 

architecture. Three memory banks are used: two for the 

head- and the tail-FA next state information, and one for the 

counters and the back-reference information. All DFAs are 

compressed through the techniques detailed in Section 5 

[19] and are encoded using indirect addressing [27]. State 

identifiers carry the information about which labeled 

outgoing transitions are present, thus allowing one memory 

access per state traversal. As we will detail in Section 8, 32-

bit state identifiers can be used, leading to 32-bit wide 

memory accesses to determine the next state. Counters 

present in common data-sets typically consist of less than 

200 and can span till 1,024 repetitions. This suggests that 

two counter values can be stored in 20 bits and therefore be 

accessed through a single 32-bit wide memory access. 

The operation of the head-DFA engine is 

straightforward. It translates the current state identifier and 

translated input character into a memory address, and 

queries the head-DFA memory for the next state. If a 

labeled transition (as opposed to the default transition) is 

taken, the input character is consumed. If the current state is 

accepting, a match is reported. Finally, if a special state is 

encountered, an entry is inserted in the activation FIFO, 

which represents the interface between the head- and the 

tail-engine. This entry carries the information about the 

special state and the character position within the input 

stream the transition refers to. This information is necessary 

because the two engines may proceed out of phase. 

The operation of the tail-engine is more complex. All 

active tail-DFAs operate in lock-step: for each input 

character, the tail-engine must perform one consuming state 

transition on each active tail-DFA. To this end, the 

following operations must be performed. First, the counter 

data are extracted from memory. Such information is sent to 

the character translation unit along with the input character 

to determine the translated symbol. Second, the current 

state identifier, recorded in the active tail-DFAs table 

(stored in scratch memory), is decoded and the memory 

address of the next state extracted. Finally, this information 

is used to query the state memory. Additionally, if the first 



Table 2: Characteristics and size of NFA, Extended-NFA and Extended-hybrid-FA for different data-sets. All sizes are 

computed using indirect addressing and 32-bit wide state identifiers. 

Data-set 

 

Characteristics NFA Extended-NFA Extended-Hybrid-FA 

# 

counters 

# 

back-ref 

# 

states 

size 

(KB) 

# 

states 

size 

(KB) 

# 

tails 

head tail 

# states size (KB) # states size (KB) 

bro43 10 0 1,107 635 564 93 23 30,286 2,450 449 65 

clamav440 90 0 26,940 9,042 18,281 349 76 20,614 156 4,188 126 

snort20 4 0 1,508 1,013 498 82 30 30,438 3,312 491 76 

snort76 46 0 54,135 53,303 2,395 2,045 495 30,607 16,268 2,267 1,933 

snort676 37 181 62,812 21,684 47,870 7,133 251 32,261 15,917 47,683 6,949 

snort702 48 172 65,043 23,406 48,270 7,381 261 33,285 8,551 47,954 7,070 

character position stored in the activation FIFO corresponds 

to the current one, the corresponding FIFO entry is 

processed, the counter table updated and, if necessary, a 

new entry is added into the active tail-DFAs table.  

The tail- and head-engine use distinct data buffers. To 

prevent the tail-engine from running ahead of the head-

engine (which may cause counter inconsistencies), 

characters are transferred from the head to the tail data 

buffer upon consumption (that is, when a labeled transition 

is taken). An empty data buffer will stall the tail-engine. 

Additionally, a full activation FIFO will cause a back-

pressure signal to be sent to the head-DFA, making it stall. 

Notice that no deadlock can take place in this condition. 

Finally, because each tail-DFA can have only a single 

activation at any given time, the size of the active tail-DFA 

table is bounded to the number of counting constraints/dot-

star conditions/back-references in the rule-set. 

8. EXPERIMENTAL EVALUATION 
In this section, we briefly present the results of an 

experimental evaluation conducted on rule-sets extracted 

from Bro v0.9 [8], ClamAV r.0.91 [9] and Snort (snapshot 

from November 2007) [7]. Snort rules having common 

packet headers have been grouped together. Specifically we 

considered headers: (i) tcp $EXTERNAL_NET any 

$HOME_NET $HTTP_PORTS/8080/80 (snort20), (ii) tcp 

$EXTERNAL_NET any $HOME_NET 7777:7778/ 

10202:10203/143/any (snort76), (iii) tcp $EXTERNAL_ 

NET $HTTP_PORTS/8080/80 $HOME_NET any 

(snort676), and (iv) tcp $EXTERNAL_NET * $HOME_ 

NET any (snort702). As far as Bro is concerned, we 

considered all payload patterns in the sig-addendum set. 

The characteristics of these rule-sets, the size (number 

of states) of the corresponding automata, and their memory 

footprint are reported in Table 2. 

The number of patterns in each set is reported in the 

data-set name. Note that these data-sets contain a significant 

number of counting constraints. Additionally, snort676 and 

snort702 present many back-references. In fact, most of 

them are complex (the back-referenced pattern is, for 

instance, [a-zA-Z0-9]+) and cannot therefore be resolved 

through enumeration. 

Three kinds of automata are computed: the basic NFA 

(columns 4-5), the extended-NFA (columns 6-7) and its 

hybrid counterpart (columns 8-12). The rules with back-

references could not be represented in a traditional NFA. 

For the sake of comparison, we extended the NFAs 

represented in columns 4-5 through our back-reference 

mechanism (extended-NFAs in columns 6-7 also use our 

counting constraints scheme). 

The algorithm for hybrid-FA creation [20] was 

modified to move counting and consuming states to the tail-

automata, and configured to keep the head-DFA size on the 

order of 30K states. NFAs have been reduced by collapsing 

common prefixes and DFAs have been compressed through 

the default transition creation algorithm described in [19]. 

As far as memory encoding is concerned, we used 

indirect addressing [27], which, as mentioned, allows one 

memory access per state traversal. States with many 

outgoing transitions cannot benefit from indirect addressing 

and are fully represented. We tested 32-bit and 64-bit wide 

state identifiers and obtained better results with the former 

(which we report). In NFAs, we split states with multiple 

transitions on the same character into multiple states 

connected through epsilon transitions as described in [27]. 

First, it can be observed that we were able to compile a 

large number of complex regular expressions, containing 

simple and repeated character ranges, disjunctions of sub-

patterns, dot-star terms, counting constraints and back-

references. 

Second, using our extended-automata, the size of the 

NFA decreases. The effect is remarkable in terms of 

memory footprint. In fact, most of the reduced states have 

many outgoing transitions and would have therefore needed 
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a full representation. 

Third, converting to a hybrid-FA representation 

decreases the memory bandwidth at the cost of an 

additional 156KB-16MB needed to hold the head-DFAs. 

As detailed in [20] and using default transitions as in [19], 

the total number of memory accesses per input character is 

2*#head-DFAs in the average case and 2*#head-DFAs + 

2*#counters + 2*#tail-DFAs in the worst case. The factor 2 

on the DFAs is due to default transitions. These numbers 

are by far smaller than their NFA counterpart (number of 

NFA states). Note that the limited reported memory 

footprints make it possible to deploy the automata with 

SRAM in an ASIC implementation, allowing memory 

access rates in excess of 500MHz. 

Finally, back-references are handled in the automaton 

without the need for invoking a PCRE engine on each 

partially matched pattern.  

9. CONCLUSION 
In conclusion, we propose an extended finite automaton 

suitable for representing regular expressions containing 

counting constraints and back-references.  

When addressing counting constraints, the design aims 

to minimize memory storage and bandwidth requirements. 

Specifically, the size of an extended-FA is independent of 

the number of repetitions, and the number of memory 

accesses needed for each counter is independent of the 

number of active counter instances. When addressing back-

references, the design aims to preserve the original NFA 

operating semantics while retaining efficient support for 

repeated substrings and counting constraints. Also, we 

showed how standard compression techniques can be 

applied to an extended-DFA. As a practical consideration, 

we analyzed the problem of compiling several regular 

expressions with problematic sub-patterns into a single 

automaton, and proposed a hybrid, comprehensive solution. 

To the best of our knowledge, we have described the 

first high-speed automaton that can accommodate all the 

Perl-Compatible Regular Expressions present in the Snort 

network intrusion and detection system. 
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