
POSIX Lexing with Derivatives of Regular Expressions
(Proof Pearl)

Fahad Ausaf1, Roy Dyckhoff2, and Christian Urban3

1 King’s College London
fahad.ausaf@icloud.com

2 University of St Andrews
roy.dyckhoff@st-andrews.ac.uk

3 King’s College London
christian.urban@kcl.ac.uk

Abstract. Brzozowski introduced the notion of derivatives for regular expres-
sions. They can be used for a very simple regular expression matching algorithm.
Sulzmann and Lu cleverly extended this algorithm in order to deal with POSIX
matching, which is the underlying disambiguation strategy for regular expres-
sions needed in lexers. Sulzmann and Lu have made available on-line what they
call a “rigorous proof” of the correctness of their algorithm w.r.t. their specifica-
tion; regrettably, it appears to us to have unfillable gaps. In the first part of this
paper we give our inductive definition of what a POSIX value is and show (i) that
such a value is unique (for given regular expression and string being matched) and
(ii) that Sulzmann and Lu’s algorithm always generates such a value (provided
that the regular expression matches the string). We also prove the correctness of
an optimised version of the POSIX matching algorithm. Our definitions and proof
are much simpler than those by Sulzmann and Lu and can be easily formalised in
Isabelle/HOL. In the second part we analyse the correctness argument by Sulz-
mann and Lu and explain why it seems hard to turn it into a proof rigorous enough
to be accepted by a system such as Isabelle/HOL.

Keywords: POSIX matching, Derivatives of Regular Expressions, Isabelle/HOL

1 Introduction

Brzozowski [1] introduced the notion of the derivative r\c of a regular expression r
w.r.t. a character c, and showed that it gave a simple solution to the problem of matching
a string s with a regular expression r: if the derivative of r w.r.t. (in succession) all the
characters of the string matches the empty string, then r matches s (and vice versa).
The derivative has the property (which may be regarded as its specification) that, for
every string s and regular expression r and character c, one has cs ∈ L(r) if and only if
s ∈ L(r\c). The beauty of Brzozowski’s derivatives is that they are neatly expressible in
any functional language, and easily definable and reasoned about in theorem provers—
the definitions just consist of inductive datatypes and simple recursive functions. A

2 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

completely formalised correctness proof of this matcher in for example HOL4 has been
given in [4].

One limitation of Brzozowski’s matcher is that it only generates a YES/NO answer
for whether a string is being matched by a regular expression. Sulzmann and Lu [5]
extended this matcher to allow generation not just of a YES/NO answer but of an actual
matching, called a [lexical] value. They give a simple algorithm to calculate a value
that appears to be the value associated with POSIX lexing [3,6]. The challenge then
is to specify that value, in an algorithm-independent fashion, and to show that Sulza-
mann and Lu’s derivative-based algorithm does indeed calculate a value that is correct
according to the specification.

The answer given by Sulzmann and Lu [5] is to define a relation (called an “Order
Relation”) on the set of values of r, and to show that (once a string to be matched is
chosen) there is a maximum element and that it is computed by their derivative-based
algorithm. This proof idea is inspired by work of Frisch and Cardelli [2] on a GREEDY
regular expression matching algorithm. Beginning with our observations that, without
evidence that it is transitive, it cannot be called an “order relation”, and that the relation
is called a “total order” despite being evidently not total4, we identify problems with
this approach (of which some of the proofs are not published in [5]); perhaps more
importantly, we give a simple inductive (and algorithm-independent) definition of what
we call being a POSIX value for a regular expression r and a string s; we show that the
algorithm computes such a value and that such a value is unique. Proofs are both done
by hand and checked in Isabelle/HOL. The experience of doing our proofs has been
that this mechanical checking was absolutely essential: this subject area has hidden
snares. This was also noted by Kuklewitz [3] who found that nearly all POSIX matching
implementations are “buggy” [5, Page 203].

If a regular expression matches a string, then in general there are more than one way
of how the string is matched. There are two commonly used disambiguation strategies
to generate a unique answer: one is called GREEDY matching [2] and the other is
POSIX matching [3,5]. For example consider the string xy and the regular expression
(x + y + xy)⋆. Either the string can be matched in two ‘iterations’ by the single letter-
regular expressions x and y, or directly in one iteration by xy. The first case corresponds
to GREEDY matching, which first matches with the left-most symbol and only matches
the next symbol in case of a mismatch (this is greedy in the sense of preferring instant
gratification to delayed repletion). The second case is POSIX matching, which prefers
the longest match.

In the context of lexing, where an input string needs to be separated into a sequence
of tokens, POSIX is the more natural disambiguation strategy for what programmers
consider basic syntactic building blocks in their programs. These building blocks are
often specified by some regular expressions, say rkey and rid for recognising keywords
and identifiers, respectively. There are two underlying rules behind tokenising a string
in a POSIX fashion:

• The Longest Match Rule (or “maximal munch rule”):
The longest initial substring matched by any regular expression is taken as next
token.

4 We should give an argument as footnote

POSIX Lexing with Derivatives of Regular Expressions 3

• Rule Priority:
For a particular longest initial substring, the first regular expression that can match
determines the token.

Consider for example rkey recognising keywords such as if, then and so on; and rid
recognising identifiers (a single character followed by characters or numbers). Then we
can form the regular expression (rkey + rid)

⋆ and use POSIX matching to tokenise
strings, say iffoo and if. In the first case we obtain by the longest match rule a single
identifier token, not a keyword followed by identifier. In the second case we obtain by
rule priority a keyword token, not an identifier token—even if rid matches also.

Not Done Yet

Contributions:
Derivatives as calculated by Brzozowski’s method are usually more complex reg-

ular expressions than the initial one; various optimisations are possible, such as the
simplifications of 0 + r, r + 0, 1 · r and r · 1 to r. One of the advantages of having a
simple specification and correctness proof is that the latter can be refined to allow for
such optimisations and simple correctness proof.

An extended version of [5] is available at the website of its first author; this includes
some “proofs”, claimed in [5] to be “rigorous”. Since these are evidently not in final
form, we make no comment thereon, preferring to give general reasons for our belief
that the approach of [5] is problematic rather than to discuss details of unpublished
work.

2 Preliminaries

Strings in Isabelle/HOL are lists of characters with the empty string being represented
by the empty list, written [], and list-cons being written as :: . Often we use the usual
bracket notation for strings; for example a string consisting of a single character is
written [c]. By using the type char for characters we have a supply of finitely many
characters roughly corresponding to the ASCII character set. Regular expressions are
defined as usual as the following inductive datatype:

r := 0 | 1 | c | r1 + r2 | r1 · r2 | r⋆

where 0 stands for the regular expression that does not match any string and 1 for
the regular expression that matches only the empty string. The language of a regular
expression is again defined routinely by the recursive function L with the clauses:

L(0) def
= ∅

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 · r2)
def
= L(r1) @ L(r2)

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r⋆) def
= (L(r))⋆

4 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

In the fourth clause we use @ for the concatenation of two languages. We use the
star-notation for regular expressions and sets of strings (in the last clause). The star on
sets is defined inductively as usual by two clauses for the empty string being in the star
of a language and is s1 is in a language and s2 and in the star of this language then also
s1 @ s2 is in the star of this language.

Semantic derivatives of sets of strings are defined as

Der c A def
= {s | [c] @ s ∈ A}

where the second definitions lifts the notion of semantic derivatives from characters to
strings.
The nullable function

nullable (0) def
= False

nullable (1) def
= True

nullable (c) def
= False

nullable (r1 + r2)
def
= nullable r1 ∨ nullable r2

nullable (r1 · r2)
def
= nullable r1 ∧ nullable r2

nullable (r⋆) def
= True

The derivative function for characters and strings

0\c def
= 0

1\c def
= 0

c ′\c def
= if c = c ′ then 1 else 0

(r1 + r2)\c def
= (r1\c) + (r2\c)

(r1 · r2)\c def
= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) ·

r2
(r⋆)\c def

= (r\c) · r⋆

It is a relatively easy exercise to prove that

nullable r = ([] ∈ L(r))
L(r\c) = Der c (L(r))

3 POSIX Regular Expression Matching

4 The Argument by Sulzmmann and Lu

5 Conclusion

Nipkow lexer from 2000

Values

POSIX Lexing with Derivatives of Regular Expressions 5

v := Void | Char c | Left v | Right v | Seq v1 v2 | Stars vs

The language of a regular expression

L(0) def
= ∅

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 · r2)
def
= L(r1) @ L(r2)

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r⋆) def
= (L(r))⋆

The flat function for values

|Void| def
= []

|Char c| def
= [c]

|Left v| def
= |v|

|Right v| def
= |v|

|Seq v1 v2|
def
= |v1| @ |v2|

|Stars []| def
= []

|Stars (v :: vs)| def
= |v| @ |Stars vs|

The mkeps function

mkeps (1) def
= Void

mkeps (r1 · r2)
def
= Seq (mkeps r1) (mkeps r2)

mkeps (r1 + r2)
def
= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)

mkeps (r⋆) def
= Stars []

The inj function

inj (d) c Void def
= Char d

inj (r1 + r2) c (Left v1)
def
= Left (inj r1 c v1)

inj (r1 + r2) c (Right v2)
def
= Right (inj r2 c v2)

inj (r1 · r2) c (Seq v1 v2)
def
= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Left (Seq v1 v2))
def
= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Right v2)
def
= Seq (mkeps r1) (inj r2 c v2)

inj (r⋆) c (Seq v (Stars vs)) def
= Stars ((inj r c v) :: vs)

The inhabitation relation:

6 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

⊢ v1 : r1 ⊢ v2 : r2
⊢ Seq v1 v2 : (r1 · r2)

⊢ v1 : r1
⊢ (Left v1) : (r1 + r2)

⊢ v2 : r1
⊢ (Right v2) : (r2 + r1)

⊢ Void : (1) ⊢ (Char c) : (c)

⊢ Stars [] : (r⋆)
⊢ v : r ⊢ Stars vs : (r⋆)

⊢ Stars (v :: vs) : (r⋆)

We have also introduced a slightly restricted version of this relation where the last rule
is restricted so that |v| ̸= []. This relation for non-problematic is written |= v : r.

Our Posix relation s ∈ r → v

[] ∈ (1) → Void [c] ∈ (c) → (Char c)

s ∈ r1 → v
s ∈ (r1 + r2) → (Left v)

s ∈ r2 → v s /∈ L(r1)
s ∈ (r1 + r2) → (Right v)

s1 ∈ r1 → v1 s2 ∈ r2 → v2
∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

(s1 @ s2) ∈ (r1 · r2) → Seq v1 v2

s1 ∈ r → v s2 ∈ (r⋆) → Stars vs
|v| ̸= [] ∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r) ∧ s4 ∈ L(r⋆)

(s1 @ s2) ∈ (r⋆) → Stars (v :: vs)

[] ∈ (r⋆) → Stars []

Our version of Sulzmann’s ordering relation

POSIX Lexing with Derivatives of Regular Expressions 7

v1 ≻r1 v1 ′ v1 ̸= v1 ′

Seq v1 v2 ≻(r1 · r2) Seq v1 ′ v2 ′
v2 ≻r2 v2 ′

Seq v1 v2 ≻(r1 · r2) Seq v1 v2 ′

len (|v1|) ≤ len (|v2|)
(Left v2) ≻(r1 + r2) (Right v1)

len (|v2|) < len (|v1|)
(Right v1) ≻(r1 + r2) (Left v2)

v2 ≻r2 v2 ′

(Right v2) ≻(r1 + r2) (Right v2 ′)

v1 ≻r1 v1 ′

(Left v1) ≻(r1 + r2) (Left v1 ′)

Void ≻(1) Void (Char c) ≻(c) (Char c)

|Stars (v :: vs)| = []

Stars [] ≻(r⋆) Stars (v :: vs)
|Stars (v :: vs)| ̸= []

Stars (v :: vs) ≻(r⋆) Stars []

v1 ≻r v2 v1 ̸= v2
Stars (v1 :: vs1) ≻(r⋆) Stars (v2 :: vs2)

Stars vs1 ≻(r⋆) Stars vs2
Stars (v :: vs1) ≻(r⋆) Stars (v :: vs2) Stars [] ≻(r⋆) Stars []

A prefix of a string s

s1 ⊑ s2
def
= ∃ s3. s1 @ s3 = s2

Values and non-problematic values

Values r s
def
= {v | ⊢ v : r ∧ (|v|) ⊑ s}

The point is that for a given s and r there are only finitely many non-problematic values.

Some lemmas we have proved:

L(r) = {|v| | ⊢ v : r}
L(r) = {|v| | |= v : r}
If nullable r then ⊢ mkeps r : r.
If nullable r then |mkeps r| = [].
If ⊢ v : (r\c) then ⊢ (inj r c v) : r.
If ⊢ v : (r\c) then |inj r c v| = c :: (|v|).
If nullable r then [] ∈ r → mkeps r.
If s ∈ r → v then |v| = s.
If s ∈ r → v then |= v : r.
If s ∈ r → v1 and s ∈ r → v2 then v1 = v2.

This is the main theorem that lets us prove that the algorithm is correct according to s
∈ r → v:

If s ∈ (r\c)→ v then (c :: s) ∈ r → (inj r c v).

8 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

Proof The proof is by induction on the definition of der. Other inductions would go
through as well. The interesting case is for r1 · r2. First we analyse the case where
nullable r1. We have by induction hypothesis

(IH1) ∀ s v. if s ∈ (r1\c) → v then (c :: s) ∈ r1 → (inj r1 c v)
(IH2) ∀ s v. if s ∈ (r2\c) → v then (c :: s) ∈ r2 → (inj r2 c v)

and have

s ∈ ((r1\c) · r2 + (r2\c)) → v

There are two cases what v can be: (1) Left v ′ and (2) Right v ′.

(1) We know s ∈ ((r1\c) · r2) → v ′ holds, from which we can infer that there are s1,
s2, v1, v2 with

s1 ∈ (r1\c) → v1 and s2 ∈ r2 → v2
and also

∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1\c) ∧ s4 ∈ L(r2)

and have to prove

(c :: s1 @ s2) ∈ (r1 · r2) → Seq (inj r1 c v1) v2
The two requirements (c :: s1) ∈ r1 → (inj r1 c v1) and s2 ∈ r2 → v2 can be proved
by the induction hypothese (IH1) and the fact above.
This leaves to prove

∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ c :: s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

which holds because c :: s1 @ s3 ∈ L(r1) implies s1 @ s3 ∈ L(r1\c)
(2) This case is similar.

The final case is that ¬ nullable r1 holds. This case again similar to the cases above.

References

1. J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481–494,
1964.

2. A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In Proc. of the 31st Inter-
national Conference on Automata, Languages and Programming (ICALP), volume 3142 of
LNCS, pages 618–629, 2004.

3. C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex Posix.
4. S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order

and Symbolic Computation, 21(4):377–409, 2008.
5. M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of

the 12th International Conference on Functional and Logic Programming (FLOPS), volume
8475 of LNCS, pages 203–220, 2014.

6. S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on Pro-
gramming Languages and Systems, 28(3):389–428, 2006.

https://wiki.haskell.org/Regex_Posix

POSIX Lexing with Derivatives of Regular Expressions 9

6 Roy’s Rules

V oid ◁ ϵ Char c ◁ Lit c

v1 ◁ r1

Left v1 ◁ r1 + r2

v2 ◁ r2 |v2| ̸∈ L(r1)

Right v2 ◁ r1 + r2

v1 ◁ r1 v2 ◁ r2 s ∈ L(r1\|v1|) ∧ |v2|\s ϵ L(r2) ⇒ s = []

(v1, v2) ◁ r1 · r2

v ◁ r vs ◁ r∗ |v| ̸= []

(v :: vs) ◁ r∗
[] ◁ r∗

	Introduction
	Preliminaries
	POSIX Regular Expression Matching
	The Argument by Sulzmmann and Lu
	Conclusion
	Roy's Rules

