
POSIX Lexing with Derivatives of Regular Expressions
(Proof Pearl)

Fahad Ausaf1, Roy Dyckhoff2, and Christian Urban3

1 King’s College London
fahad.ausaf@icloud.com

2 University of St Andrews
roy.dyckhoff@st-andrews.ac.uk

3 King’s College London
christian.urban@kcl.ac.uk

Abstract. Brzozowski introduced the notion of derivatives for regular expres-
sions. They can be used for a very simple regular expression matching algorithm.
Sulzmann and Lu cleverly extended this algorithm in order to deal with POSIX
matching, which is the underlying disambiguation strategy for regular expres-
sions needed in lexers. Sulzmann and Lu have made available on-line what they
call a “rigorous proof” of the correctness of their algorithm w.r.t. their specifica-
tion; regrettably, it appears to us to have unfillable gaps. In the first part of this
paper we give our inductive definition of what a POSIX value is and show (i) that
such a value is unique (for given regular expression and string being matched) and
(ii) that Sulzmann and Lu’s algorithm always generates such a value (provided
that the regular expression matches the string). We also prove the correctness of
an optimised version of the POSIX matching algorithm. Our definitions and proof
are much simpler than those by Sulzmann and Lu and can be easily formalised in
Isabelle/HOL. In the second part we analyse the correctness argument by Sulz-
mann and Lu and explain why it seems hard to turn it into a proof rigorous enough
to be accepted by a system such as Isabelle/HOL.

Keywords: POSIX matching, Derivatives of Regular Expressions, Isabelle/HOL

1 Introduction

Brzozowski [1] introduced the notion of the derivative r\c of a regular expression r
w.r.t. a character c, and showed that it gave a simple solution to the problem of matching
a string s with a regular expression r: if the derivative of r w.r.t. (in succession) all the
characters of the string matches the empty string, then r matches s (and vice versa). The
derivative has the property (which may almost be regarded as its specification) that, for
every string s and regular expression r and character c, one has cs ∈ L(r) if and only if
s ∈ L(r\c). The beauty of Brzozowski’s derivatives is that they are neatly expressible in
any functional language, and easily definable and reasoned about in theorem provers—
the definitions just consist of inductive datatypes and simple recursive functions. A

2 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

completely formalised correctness proof of this matcher in for example HOL4 has been
mentioned in [5]. Another one in Isabelle/HOL is part of the work in [3].

One limitation of Brzozowski’s matcher is that it only generates a YES/NO answer
for whether a string is being matched by a regular expression. Sulzmann and Lu [6]
extended this matcher to allow generation not just of a YES/NO answer but of an actual
matching, called a [lexical] value. They give a simple algorithm to calculate a value that
appears to be the value associated with POSIX matching [4,8]. The challenge then is to
specify that value, in an algorithm-independent fashion, and to show that Sulzmann and
Lu’s derivative-based algorithm does indeed calculate a value that is correct according
to the specification.

The answer given by Sulzmann and Lu [6] is to define a relation (called an “order
relation”) on the set of values of r, and to show that (once a string to be matched is
chosen) there is a maximum element and that it is computed by their derivative-based
algorithm. This proof idea is inspired by work of Frisch and Cardelli [2] on a GREEDY
regular expression matching algorithm. Beginning with our observations that, without
evidence that it is transitive, it cannot be called an “order relation”, and that the relation
is called a “total order” despite being evidently not total4, we identify problems with
this approach (of which some of the proofs are not published in [6]); perhaps more
importantly, we give a simple inductive (and algorithm-independent) definition of what
we call being a POSIX value for a regular expression r and a string s; we show that the
algorithm computes such a value and that such a value is unique. Proofs are both done
by hand and checked in Isabelle/HOL. The experience of doing our proofs has been
that this mechanical checking was absolutely essential: this subject area has hidden
snares. This was also noted by Kuklewitz [4] who found that nearly all POSIX matching
implementations are “buggy” [6, Page 203].

If a regular expression matches a string, then in general there is more than one way
of how the string is matched. There are two commonly used disambiguation strategies
to generate a unique answer: one is called GREEDY matching [2] and the other is
POSIX matching [4,6,8]. For example consider the string xy and the regular expression
(x + y + xy)⋆. Either the string can be matched in two ‘iterations’ by the single letter-
regular expressions x and y, or directly in one iteration by xy. The first case corresponds
to GREEDY matching, which first matches with the left-most symbol and only matches
the next symbol in case of a mismatch (this is greedy in the sense of preferring instant
gratification to delayed repletion). The second case is POSIX matching, which prefers
the longest match.

In the context of lexing, where an input string needs to be split up into a sequence of
tokens, POSIX is the more natural disambiguation strategy for what programmers con-
sider basic syntactic building blocks in their programs. These building blocks are often
specified by some regular expressions, say rkey and rid for recognising keywords and

4 The relation ≥r defined in [6] is a relation on the values for the regular expression r; but it only
holds between v and v ′ in cases where v and v ′ have the same flattening (underlying string).
So a counterexample to totality is given by taking two values v and v ′ for r that have different
flattenings (see Section 3). A different relation ≥r,s on the set of values for r with flattening s
is definable by the same approach, and is indeed total; but that is not what Proposition 1 of [6]
does.

POSIX Lexing with Derivatives of Regular Expressions 3

identifiers, respectively. There are two underlying (informal) rules behind tokenising a
string in a POSIX fashion:

• The Longest Match Rule (or “maximal munch rule”):
The longest initial substring matched by any regular expression is taken as next
token.

• Priority Rule:
For a particular longest initial substring, the first regular expression that can match
determines the token.

Consider for example rkey recognising keywords such as if, then and so on; and rid
recognising identifiers (say, a single character followed by characters or numbers). Then
we can form the regular expression (rkey + rid)

⋆ and use POSIX matching to tokenise
strings, say iffoo and if. For iffoo we obtain by the longest match rule a single identifier
token, not a keyword followed by an identifier. For if we obtain by the priority rule a
keyword token, not an identifier token—even if rid matches also.

Contributions: We have implemented in Isabelle/HOL the derivative-based regular ex-
pression matching algorithm as described by Sulzmann and Lu [6]. We have proved the
correctness of this algorithm according to our specification of what a POSIX value is.
Sulzmann and Lu sketch in [6] an informal correctness proof: but to us it contains unfil-
lable gaps.5 Our specification of a POSIX value consists of a simple inductive definition
that given a string and a regular expression uniquely determines this value. Derivatives
as calculated by Brzozowski’s method are usually more complex regular expressions
than the initial one; various optimisations are possible. We prove the correctness when
simplifications of 0 + r, r + 0, 1 · r and r · 1 to r are applied.

2 Preliminaries

Strings in Isabelle/HOL are lists of characters with the empty string being represented
by the empty list, written [], and list-cons being written as :: . Often we use the usual
bracket notation for lists also for strings; for example a string consisting of just a single
character c is written [c]. By using the type char for characters we have a supply of
finitely many characters roughly corresponding to the ASCII character set. Regular
expressions are defined as usual as the elements of the following inductive datatype:

r := 0 | 1 | c | r1 + r2 | r1 · r2 | r⋆

where 0 stands for the regular expression that does not match any string, 1 for the
regular expression that matches only the empty string and c for matching a character
literal. The language of a regular expression is also defined as usual by the recursive
function L with the clauses:

5 An extended version of [6] is available at the website of its first author; this extended version
already includes remarks in the appendix that their informal proof contains gaps, and possible
fixes are not fully worked out.

4 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

(1) L(0) def
= ∅

(2) L(1) def
= {[]}

(3) L(c) def
= {[c]}

(4) L(r1 · r2)
def
= L(r1) @ L(r2)

(5) L(r1 + r2)
def
= L(r1) ∪ L(r2)

(6) L(r⋆) def
= (L(r))⋆

In clause (4) we use the operation @ for the concatenation of two languages (it is
also list-append for strings). We use the star-notation for regular expressions and for
languages (in the last clause above). The star for languages is defined inductively by
two clauses: (i) the empty string being in the star of a language and (ii) if s1 is in a
language and s2 in the star of this language, then also s1 @ s2 is in the star of this
language. It will also be convenient to use the following notion of a semantic derivative
(or left quotient) of a language defined as:

Der c A def
= {s | c :: s ∈ A}

For semantic derivatives we have the following equations (for example mechanically
proved in [3]):

Der c ∅ def
= ∅

Der c {[]} def
= ∅

Der c {[d]} def
= if c = d then {[]} else ∅

Der c (A ∪ B) def
= Der c A ∪ Der c B

Der c (A @ B) def
= (Der c A @ B) ∪ (if [] ∈ A then Der c B else ∅)

Der c (A⋆) def
= Der c A @ A⋆

(1)

Brzozowski’s derivatives of regular expressions [1] can be easily defined by two recur-
sive functions: the first is from regular expressions to booleans (implementing a test
when a regular expression can match the empty string), and the second takes a regular
expression and a character to a (derivative) regular expression:

nullable (0) def
= False

nullable (1) def
= True

nullable (c) def
= False

nullable (r1 + r2)
def
= nullable r1 ∨ nullable r2

nullable (r1 · r2)
def
= nullable r1 ∧ nullable r2

nullable (r⋆) def
= True

POSIX Lexing with Derivatives of Regular Expressions 5

(0)\c def
= 0

(1)\c def
= 0

d\c def
= if c = d then 1 else 0

(r1 + r2)\c def
= (r1\c) + (r2\c)

(r1 · r2)\c def
= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) · r2

(r⋆)\c def
= (r\c) · r⋆

We may extend this definition to give derivatives w.r.t. strings:

r\[] def
= r

r\(c :: s) def
= (r\c)\s

Given the equations in (1), it is a relatively easy exercise in mechanical reasoning to
establish that

Proposition 1.
(1) nullable r if and only if [] ∈ L(r), and
(2) L(r\c) = Der c (L(r)).

With this in place it is also very routine to prove that the regular expression matcher
defined as

match r s
def
= nullable (r\s)

gives a positive answer if and only if s ∈ L(r). Consequently, this regular expression
matching algorithm satisfies the usual specification for regular expression matching.
While the matcher above calculates a provably correct YES/NO answer for whether a
regular expression matches a string or not, the novel idea of Sulzmann and Lu [6] is to
append another phase to this algorithm in order to calculate a [lexical] value. We will
explain the details next.

3 POSIX Regular Expression Matching

The clever idea in [6] is to introduce values for encoding how a regular expression
matches a string and then define a function on values that mirrors (but inverts) the
construction of the derivative on regular expressions. Values are defined as the inductive
datatype

v := () | Char c | Left v | Right v | Seq v1 v2 | Stars vs

where we use vs to stand for a list of values. (This is similar to the approach taken by
Frisch and Cardelli for GREEDY matching [2], and Sulzmann and Lu [6] for POSIX
matching). The string underlying a value can be calculated by the flat function, written
| | and defined as:

6 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

|()| def
= []

|Char c| def
= [c]

|Left v| def
= |v|

|Right v| def
= |v|

|Seq v1 v2|
def
= |v1| @ |v2|

|Stars []| def
= []

|Stars (v :: vs)| def
= |v| @ |Stars vs|

Sulzmann and Lu also define inductively an inhabitation relation that associates values
to regular expressions:

() : 1 Char c : c

v1 : r1
Left v1 : r1 + r2

v2 : r1
Right v2 : r2 + r1

v1 : r1 v2 : r2
Seq v1 v2 : r1 · r2

Stars [] : r⋆
v : r Stars vs : r⋆

Stars (v :: vs) : r⋆

Note that no values are associated with the regular expression 0, and that the only value
associated with the regular expression 1 is (), pronounced (if one must) as Void. It
is routine to establish how values “inhabiting” a regular expression correspond to the
language of a regular expression, namely

Proposition 2. L(r) = {|v| | v : r}
In general there is more than one value associated with a regular expression. In case

of POSIX matching the problem is to calculate the unique value that satisfies the (in-
formal) POSIX rules from the Introduction. Graphically the POSIX value calculation
algorithm by Sulzmann and Lu can be illustrated by the picture in Figure 1 where the
path from the left to the right involving derivatives/nullable is the first phase of the al-
gorithm (calculating successive Brzozowski’s derivatives) and mkeps/inj, the path from
right to left, the second phase. This picture shows the steps required when a regular
expression, say r1, matches the string [a, b, c]. We first build the three derivatives (ac-
cording to a, b and c). We then use nullable to find out whether the resulting derivative
regular expression r4 can match the empty string. If yes, we call the function mkeps
that produces a value v4 for how r4 can match the empty string (taking into account the
POSIX rules in case there are several ways). This functions is defined by the clauses:

mkeps (1) def
= ()

mkeps (r1 · r2)
def
= Seq (mkeps r1) (mkeps r2)

mkeps (r1 + r2)
def
= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)

mkeps (r⋆) def
= Stars []

POSIX Lexing with Derivatives of Regular Expressions 7

r1 r2
\a

r3
\b

r4
\c

nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

Fig. 1. The two phases of the algorithm by Sulzmann & Lu [6], matching the string [a,
b, c]. The first phase (the arrows from left to right) is Brzozowski’s matcher building
succesive derivatives. If the last regular expression is nullable, then the functions of the
second phase are called (the top-down and right-to-left arrows): first mkeps calculates a
value witnessing how the empty string has been recognised by r4. After that the function
inj ‘injects back’ the characters of the string into the values.

Note that this function needs only to be partially defined, namely only for regular ex-
pressions that are nullable. In case nullable fails, the string [a, b, c] cannot be matched
by r1 and an error is raised instead. Note also how this function makes some subtle
choices leading to a POSIX value: for example if an alternative regular expression, say
r1 + r2, can match the empty string and furthermore r1 can match the empty string,
then we return a Left-value. The Right-value will only be returned if r1 cannot match
the empty string.

The most interesting idea from Sulzmann and Lu [6] is the construction of a value
for how r1 can match the string [a, b, c] from the value how the last derivative, r4 in
Fig 1, can match the empty string. Sulzmann and Lu achieve this by stepwise “injecting
back” the characters into the values thus inverting the operation of building derivatives
on the level of values. The corresponding function, called inj, takes three arguments, a
regular expression, a character and a value. For example in the first (or right-most) inj-
step in Fig 1 the regular expression r3, the character c from the last derivative step and
v4, which is the value corresponding to the derivative regular expression r4. The result
is the new value v3. The final result of the algorithm is the value v1 corresponding to the
input regular expression. The inj function is by recursion on the regular expressions and
by analysing the shape of values (corresponding to the derivative regular expressions).

(1) inj d c ()
def
= Char d

(2) inj (r1 + r2) c (Left v1)
def
= Left (inj r1 c v1)

(3) inj (r1 + r2) c (Right v2)
def
= Right (inj r2 c v2)

(4) inj (r1 · r2) c (Seq v1 v2)
def
= Seq (inj r1 c v1) v2

(5) inj (r1 · r2) c (Left (Seq v1 v2))
def
= Seq (inj r1 c v1) v2

(6) inj (r1 · r2) c (Right v2)
def
= Seq (mkeps r1) (inj r2 c v2)

(7) inj (r⋆) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

8 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

To better understand what is going on in this definition it might be instructive to look
first at the three sequence cases (clauses (4)–(6)). In each case we need to construct an
“injected value” for r1 · r2. This must be a value of the form Seq . Recall the clause
of the derivative-function for sequence regular expressions:

(r1 · r2)\c def
= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) · r2

Consider first the else-branch where the derivative is (r1\c) · r2. The corresponding
value must therefore be the form Seq v1 v2, which matches the left-hand side in clause
(4) of inj. In the if-branch the derivative is an alternative, namely (r1\c) · r2 + (r2\c).
This means we either have to consider a Left- or Right-value. In case of the Left-value
we know further it must be a value for a sequence regular expression. Therefore the
pattern we match in the clause (5) is Left (Seq v1 v2), while in (6) it is just Right v2.
One more interesting point is in the right-hand side of clause (6): since in this case the
regular expression r1 does not “contribute” to matching the string, that means it only
matches the empty string, we need to call mkeps in order to construct a value for how r1
can match this empty string. A similar argument applies for why we can expect in the
left-hand side of clause (7) that the value is of the form Seq v (Stars vs)—the derivative
of a star is r · r⋆. Finally, the reason for why we can ignore the second argument in
clause (1) of inj is that it will only ever be called in cases where c = d, but the usual
linearity restrictions in patterns do not allow is to build this constraint explicitly into
our function definition.6

The idea of the inj-function to “inject” a character, say c, into a value can be made
precise by the first part of the following lemma, which shows that the underlying string
of an injected value has a prepend character c; the second part shows that the underlying
string of an mkeps-value is always the empty string (given the regular expression is
nullable since otherwise mkeps might not be defined).

Lemma 1.
(1) If v : r\c then |inj r c v| = c :: |v|.
(2) If nullable r then |mkeps r| = [].

Proof. Both properties are by routine inductions: the first one can, for example, be
proved by an induction over the definition of derivatives; the second by an induction on
r. There are no interesting cases. ⊓⊔

Having defined the mkeps and inj function we can extend Brzozowski’s matcher
so that a [lexical] value is constructed (assuming the regular expression matches the
string). The clauses of the lexer are

lexer r [] def
= if nullable r then Some (mkeps r) else None

lexer r (c :: s) def
= case lexer (r\c) s of

None ⇒ None
| Some v ⇒ Some (inj r c v)

6 Sulzmann and Lu state this clause as inj c c ()
def
= Char c, but our deviation is harmless.

POSIX Lexing with Derivatives of Regular Expressions 9

If the regular expression does not match the string, None is returned, indicating an error
is raised. If the regular expression does match the string, then Some value is returned.
One important virtue of this algorithm is that it can be implemented with ease in a
functional programming language and also in Isabelle/HOL. In the remaining part of
this section we prove that this algorithm is correct.

The well-known idea of POSIX matching is informally defined by the longest match
and priority rule; as correctly argued in [6], this needs formal specification. Sulzmann
and Lu define a dominance relation7 between values and argue that there is a maximum
value, as given by the derivative-based algorithm. In contrast, we shall introduce a sim-
ple inductive definition that specifies directly what a POSIX value is, incorporating the
POSIX-specific choices into the side-conditions of our rules. Our definition is inspired
by the matching relation given in [8]. The relation we define is ternary and written as
(s, r)→ v, relating strings, regular expressions and values.

([], 1) → ()
P1

([c], c)→ Char c
Pc

(s, r1) → v
(s, r1 + r2)→ Left v

P+L
(s, r2) → v s /∈ L(r1)
(s, r1 + r2)→ Right v

P+R

(s1, r1) → v1 (s2, r2) → v2
∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

(s1 @ s2, r1 · r2) → Seq v1 v2
PS

([], r⋆)→ Stars []
P[]

(s1, r) → v (s2, r⋆) → Stars vs |v| ̸= []
∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r) ∧ s4 ∈ L(r⋆)

(s1 @ s2, r⋆) → Stars (v :: vs)
P⋆

We claim that this relation captures the idea behind the two informal POSIX rules shown
in the Introduction: Consider for example the rules P+L and P+R where the POSIX
value for a string and an alternative regular expression, that is (s, r1 + r2), is specified—
it is always a Left-value, except when the string to be matched is not in the language
of r1; only then it is a Right-value (see the side-condition in P+R). Interesting is also
the rule for sequence regular expressions (PS). The first two premises state that v1 and
v2 are the POSIX values for (s1, r1) and (s2, r2) respectively. Consider now the third
premise and note that the POSIX value of this rule should match the string s1 @ s2.
According to the longest match rule, we want that the s1 is the longest initial split of s1
@ s2 such that s2 is still recognised by r2. Let us assume, contrary to the third premise,
that there exist an s3 and s4 such that s2 can be split up into a non-empty string s3 and
possibly empty string s4. Moreover the longer string s1 @ s3 can be matched by r1 and
the shorter s4 can still be matched by r2. In this case s1 would not be the longest initial

7 Sulzmann and Lu call it an ordering relation, but without giving evidence that it is transitive.

10 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

split of s1 @ s2 and therefore Seq v1 v2 cannot be a POSIX value for (s1 @ s2, r1 · r2).
The main point is that this side-condition ensures the longest match rule is satisfied.

A similar condition is imposed on the POSIX value in the P⋆-rule. Also there we
want that s1 is the longest initial split of s1 @ s2 and furthermore the corresponding
value v cannot be flatten to the empty string. In effect, we require that in each “iteration”
of the star, some non-empty substring need to be “chipped” away; only in case of the
empty string we accept Stars [] as the POSIX value.

We can prove that given a string s and regular expression r, the POSIX value v is
uniquely determined by (s, r) → v (albeilt in an uncomputable fashion—for example
rule P + R would require the calculation of the potentially infinite set L(r1)).

Theorem 1. If (s, r) → v1 and (s, r) → v2 then v1 = v2.

Proof. By induction on the definition of (s, r)→ v1 and a case analysis of (s, r) → v2.
This proof requires the auxiliary lemma that (s, r) → v implies s ∈ L(r) and |v| = s,
which are both easily established by inductions. ⊓⊔

Next is the lemma that shows the function mkeps calculates the posix value for the
empty string and a nullable regular expression.

Lemma 2. If nullable r then ([], r)→ mkeps r.

Proof. By routine induction on r. ⊓⊔

The central lemma for our POSIX relation is that the inj-function preserves POSIX
values.

Lemma 3. If (s, r\c) → v then (c :: s, r) → inj r c v.

Proof. By induction on r. Suppose r = r1 + r2. There are two subcases, namely (a)
v = Left v ′ and (s, r1\c) → v ′; and (b) v = Right v ′, s /∈ L(r1\c) and (s, r2\c) → v ′.
In (a) we know (s, r1\c) → v ′, from which we can infer (c :: s, r1) → inj r1 c v ′ by
induction hypothesis and hence (c :: s, r1 + r2) → inj (r1 + r2) c (Left v ′) as needed.
Similarly in subcase (b) where, however, in addition we have to use Prop. 1(2) in order
to infer c :: s /∈ L(r1) from s /∈ L(r1\c).

Suppose r = r1 · r2. There are three subcases:

(a) v = Left (Seq v1 v2) and nullable r1
(b) v = Right v1 and nullable r1
(c) v = Seq v1 v2 and ¬ nullable r1

For (a) we know (s1, r1\c)→ v1 and (s2, r2)→ v2 as well as

∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1\c) ∧ s4 ∈ L(r2)

From the latter we can infer by Prop. 1(2):

∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ c :: s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

POSIX Lexing with Derivatives of Regular Expressions 11

We can use the induction hypothesis for r1 to obtain (c :: s1, r1) → inj r1 c v1. This
allows us to infer (c :: s1 @ s2, r1 · r2)→ Seq (inj r1 c v1) v2. The case (c) is similarly.

For (b) we know (s, r2\c) → v1 and s1 @ s2 /∈ L((r1\c) · r2). From the former we
have (c :: s, r2) → inj r2 c v1 by induction hypothesis for r2. From the latter we can
infer

∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = c :: s ∧ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

By Lem. 2 we know ([], r1)→ mkeps r1 holds. Putting this all together, we can conclude
with (c :: s, r1 · r2) → Seq (mkeps r1) (inj r2 c v1).

Finally suppose r = r1⋆. This case is very similar to the sequence case, except that
we need to ensure that |inj r1 c v1| ̸= []. This follows from (c :: s1, r ′) → inj r1 c v1
(which in turn follows from (s1, r1\c)→ v1 and the induction hypothesis). ⊓⊔

With Lem. 3 in place, it is completely routine to establish that the Sulzmann and Lu
lexer satisfies our specification (returning an “error” iff the string is not in the language
of the regular expression, and returning a unique POSIX value iff the string is in the
language):

Theorem 2.
(1) s /∈ L(r) if and only if lexer r s = None
(2) s ∈ L(r) if and only if ∃ !v. lexer r s = Some v ∧ (s, r) → v

Proof. By induction on s using Lem. 2 and 3. ⊓⊔

This concludes our correctness proof. Note that we have not changed the algorithm by
Sulzmann and Lu, but introduced our own specification for what a correct result—a
POSIX value—should be. A strong point in favour of Sulzmann and Lu’s algorithm is
that it can be extended in various ways.

4 Extensions and Optimisations

If we are interested in tokenising string, then we need to not just split up the string into
tokens, but also “classify” the tokens (for example whether it is a keyword or an iden-
tifier). This can be done with only minor modifications by introducing record regular
expressions and record values (for example [7]):

r := ... | (l : r) v := ... | (l : v)

where l is a label, say a string, r a regular expression and v a value. All functions
can be smoothly extended to these regular expressions and values. For example (l :
r) is nullable iff r is, and so on. The purpose of the record regular expression is to
mark certain parts of a regular expression and then record in the calculated value which
parts of the string were matched by this part. The label can then serve for classifying
tokens. Recall the regular expression (rkey + rid)

⋆ for keywords and identifiers from
the Introduction. With record regular expression we can form ((key : rkey) + (id : rid))

⋆

12 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

and then traverse the calculated value and only collect the underlying strings in record
values. With this we obtain finite sequences of pairs of labels and strings, for example

(l1 : s1), ..., (ln : sn)

from which tokens with classifications (keyword-token, identifier-token and so on) can
be extracted.

Derivatives as calculated by Brzozowski’s method are usually more complex regu-
lar expressions than the initial one; the result is that the matching and lexing algorithms
are often abysmally slow. However, various optimisations are possible, such as the sim-
plifications of 0 + r, r + 0, 1 · r and r · 1 to r. One of the advantages of having a
simple specification and correctness proof is that the latter can be refined to allow for
such optimisations and simple correctness proof.

While the simplification of regular expressions according to rules like

0 + r ⇒ r
r + 0 ⇒ r
1 · r ⇒ r
r · 1 ⇒ r

is well understood, there is an obstacle with the POSIX value calculation algorithm by
Sulzmann and Lu: if we build a derivative regular expression and then simplify it, we
will calculate a POSIX value for this simplified regular expression, not for the original
(unsimplified) derivative regular expression. Sulzmann and Lu overcome this obstacle
by not just calculating a simplified regular expression, but also calculating a rectification
function that “repairs” the incorrect value.

The rectification functions can be (slightly clumsily) implemented in Isabelle/HOL
as follows using some auxiliary functions:

FRight f v def
= Right (f v)

FLeft f v def
= Left (f v)

FAlt f 1 f 2 (Right v) def
= Right (f 2 v)

FAlt f 1 f 2 (Left v) def
= Left (f 1 v)

FSeq1 f 1 f 2 v def
= Seq (f 1 ()) (f 2 v)

FSeq2 f 1 f 2 v def
= Seq (f 1 v) (f 2 ())

FSeq f 1 f 2 (Seq v1 v2)
def
= Seq (f 1 v1) (f 2 v2)

simpAlt (0,) (r2, f 2)
def
= (r2, FRight f 2)

simpAlt (r1, f 1) (0,)
def
= (r1, FLeft f 1)

simpAlt (r1, f 1) (r2, f 2)
def
= (r1 + r2, FAlt f 1 f 2)

simpSeq (1, f 1) (r2, f 2)
def
= (r2, FSeq1 f 1 f 2)

simpSeq (r1, f 1) (1, f 2)
def
= (r1, FSeq2 f 1 f 2)

simpSeq (r1, f 1) (r2, f 2)
def
= (r1 · r2, FSeq f 1 f 2)

POSIX Lexing with Derivatives of Regular Expressions 13

The main simplification function is then

simp (r1 + r2)
def
= simpAlt (simp r1) (simp r2)

simp (r1 · r2)
def
= simpSeq (simp r1) (simp r2)

simp r def
= (r, id)

where id stands for the identity function. Note that we do not simplify under stars: this
seems to slow down the algorithm, rather than speed up. The optimised lexer is then
given by the clauses:

lexer+ r [] def
= if nullable r then Some (mkeps r) else None

lexer+ r c :: s def
= let (rs, f r) = simp (r\c) in

case lexer+ rs s of
None ⇒ None

| Some v ⇒ Some (inj r c (f r v))

In the second clause we first calculate the derivative r \ c and then simplify the result.
This gives us a simplified derivative rs and a rectification function f r. The matcher is
recursively called with the simplified derivative, but before we inject the character c
into value, we need to rectify it (f r v). We can prove that

Lemma 4. lexer+ r s = lexer r s

holds but refer the reader to our mechanisation for details.

5 The Correctness Argument by Sulzmmann and Lu

An extended version of [6] is available at the website of its first author; this includes
some “proofs”, claimed in [6] to be “rigorous”. Since these are evidently not in final
form, we make no comment thereon, preferring to give general reasons for our belief
that the approach of [6] is problematic. Their central definition is an “ordering relation”

v1 >r1 v′1
Seq v1 v2 >r1r2 Seq v′1 v

′
2

(C2)
v2 >r2 v′2

Seq v1 v2) >r1r2 Seq v1 v
′
2

(C1)

len|v2| > len|v1|
Right v2 >r1+r2 Left v1

(A1)
len|v1| ≥ len|v2|

Left v1 >r1+r2 Right v2
(A2)

v2 >r2 v′2
Right v2 >r1+r2 Right v′2

(A3)
v1 >r1 v′1

Left v1 >r1+r2 Left v′1
(A4)

|v :: vs| = []

[] >r⋆ v :: vs
(K1)

|v :: vs| ̸= []

v :: vs >r⋆ []
(K2)

v1 >r v2

v1 :: vs1 >r⋆ v2 :: vs2
(K3)

vs1 >r⋆ vs2

v :: vs1 >r⋆ v :: vs2
(K4)

14 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

Sulzmann and Lu explicitly refer to the paper [2] by Frisch and Cardelli from where
they have taken their main idea for their correctness proof of the POSIX value algo-
rithm. Frisch and Cardelli introduced an ordering, written ≽gr, for values and they show
that their greedy matching algorithm always produces a maximal element according to
this ordering (from all possible solutions). The only difference between their greedy or-
dering and the “ordering” by Sulzmann and Lu is that GREEDY always prefers a Left-
value over a Right-value. What is interesting for our purposes is that the properties
reflexivity, totality and transitivity for this GREEDY ordering can be proved relatively
easily by induction.

These properties of GREEDY, however, do not transfer to POSIX by Sulzmann and
Lu. To start with, transitivity does not hold anymore in the “normal” formulation, that
is:

Property 1. Suppose v1 : r, v2 : r and v3 : r. If v1 >r v2 and v2 >r v3 then v1 >r v3.

If formulated like this, then there are various counter examples: Suppose r is a+ ((a+
a)(a+ 0)) then the v1, v2 and v3 below are values of r:

v1 = Left(Char a)
v2 = Right((Left(Char a), Right(V oid)))
v3 = Right((Right(Char a), Left(Char a)))

Moreover v1 >r v2 and v2 >r v3, but not v1 >r v3! The reason is that although
v3 is a Right-value, it can match a longer string, namely |v3| = aa, while |v1| (and
|v2|) matches only a. So transitivity in this formulation does not hold—in this example
actually v3 >r v1!

Sulzmann and Lu “fix” this problem by weakening the transitivity property. They
require in addition that the underlying strings are of the same length. This excludes the
counter example above and any counter-example we could find with our implementa-
tion. Thus the transitivity lemma in [6] is:

Property 2. Suppose v1 : r, v2 : r and v3 : r, and also |v1| = |v2| = |v3|.
If v1 >r v2 and v2 >r v3 then v1 >r v3.

While we agree with Sulzmann and Lu that this property probably holds, proving it
seems not so straightforward. Sulzmann and Lu do not give an explicit proof of the
transitivity property, but give a closely related property about the existence of maximal
elements. They state that this can be verified by an induction on r. We disagree with
this as we shall show next in case of transitivity.

The case where the reasoning breaks down is the sequence case, say r1 r2. The
induction hypotheses in this case are

IH r1:
∀v1, v2, v3. ⊢ v1 : r1 ∧

⊢ v2 : r1 ∧
⊢ v3 : r1 ∧
|v1| = |v2| = |v3| ∧
v1 >r1 v2 ∧ v2 >r1 v3

⇒ v1 >r1 v3

IH r2:
∀v1, v2, v3. ⊢ v1 : r2 ∧

⊢ v2 : r2 ∧
⊢ v3 : r2 ∧
|v1| = |v2| = |v3| ∧
v1 >r2 v2 ∧ v2 >r2 v3

⇒ v1 >r2 v3

POSIX Lexing with Derivatives of Regular Expressions 15

We can assume that

(v1l, v1r) >
r1 r2 (v2l, v2r) and (v2l, v2r) >

r1 r2 (v3l, v3r) (2)

hold, and furthermore that the values have equal length, namely:

|(v1l, v1r)| = |(v2l, v2r)| and |(v2l, v2r)| = |(v3l, v3r)| (3)

We need to show that

(v1l, v1r) >
r1 r2 (v3l, v3r)

holds. We can proceed by analysing how the assumptions in (2) have arisen. There are
four cases. Let us assume we are in the case where we know

v1l >
r1 v2l and v2l >

r1 v3l

and also know the corresponding typing judgements. This is exactly a case where we
would like to apply the induction hypothesis IH r1. But we cannot! We still need to
show that |v1l| = |v2l| and |v2l| = |v3l|. We know from (3) that the lengths of the
sequence values are equal, but from this we cannot infer anything about the lengths of
the component values. Indeed in general they will be unequal, that is

|v1l| ̸= |v2l| and |v1r| ̸= |v2r|

but still (3) will hold. Now we are stuck, since the IH does not apply. Sulzmann and Lu
overlook this fact and just apply the IHs. Obviously nothing which a theorem prover
allows us to do.

6 Conclusion

Nipkow lexer from 2000
We have also introduced a slightly restricted version of this relation where the last rule
is restricted so that |v| ̸= [].

References

1. J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481–494,
1964.

2. A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In Proc. of the 31st Inter-
national Conference on Automata, Languages and Programming (ICALP), volume 3142 of
LNCS, pages 618–629, 2004.

3. A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence and Relation Algebra.
Journal of Automated Reasoning, 49:95–106, 2012.

4. C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex Posix.

https://wiki.haskell.org/Regex_Posix

16 Fahad Ausaf, Roy Dyckhoff, and Christian Urban

5. S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order
and Symbolic Computation, 21(4):377–409, 2008.

6. M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of
the 12th International Conference on Functional and Logic Programming (FLOPS), volume
8475 of LNCS, pages 203–220, 2014.

7. M. Sulzmann and P. van Steenhoven. A Flexible and Efficient ML Lexer Tool Based on
Extended Regular Expression Submatching. In Proc. of the 23rd International Conference on
Compiler Construction (CC), volume 8409 of LNCS, pages 174–191, 2014.

8. S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on Pro-
gramming Languages and Systems, 28(3):389–428, 2006.

	Introduction
	Preliminaries
	POSIX Regular Expression Matching
	Extensions and Optimisations
	The Correctness Argument by Sulzmmann and Lu
	Conclusion

