Verified Lexical Analysis

Tobias Nipkow

Technische Universitat Miinchen
Institut fiir Informatik, 80290 Miinchen, Germany
http://www.in.tum.de/ nipkow/

Abstract. This paper presents the development and verification of a
(very simple) lexical analyzer generator that takes a regular expression
and yields a functional lexical analyzer. The emphasis is on simplicity
and executability. The work was carried out with the help of the theorem
prover Isabelle/HOL.

1 Introduction

Admittedly, lexical analysis is not exactly safety critical. But if the dream of a
verified compiler is to be taken seriously, it must include the front end as well.
Practical applications aside, lexical analysis is an excellent example of compu-
tational discrete mathematics, and as such an ideal test case for any aspiring
theorem prover.

We formalize and verify the process of taking a regular expression and turning
it into a lexical analyzer (also called scanner). The design goals are simplicity and
executability. The result is an almost executable functional program, except for
one place, where simplicity has prevailed over executability. The overall structure
of both the verified theories and the main sections of the paper is shown in Fig. 1.

The vertical arrows describe the well-known translation of a regular expres-
sion into a deterministic automaton. This is the subject of §3-4. We follow the
standard textbook treatment but rely on functions to represent automata.

The horizontal arrows describe the actual scanner. Roughly speaking, a scan-
ner converts a string into a list of ‘tokens’. We have simplified the model by re-
placing the tokens by the substrings themselves. In addition, the scanner returns
the unrecognized suffix of the input. Thus function scan takes a string w and
returns a pair of

— alist [uq,...,uy,] that is obtained by repeatedly chopping off the remaining
input the maximal nonempty prefix u; that is recognized by A,
— and the remaining unrecognized suffix v.

In particular this means the concatenation u; ...u,v yields the input w. Al-
though this scanning process is not given much attention in the literature,
a precise specification and a verified implementation of scan turns out to be
very interesting and is the subject of §5. All theories are available online at
http://www.in.tum.de/ isabelle/library/HOL/Lex/.



regular expression

rexp2nae

nondeterministic automaton with e-moves

nae2da

deterministic automaton

string — scan  —— (string list, string)

Fig. 1. The structure

We assume that the reader is familiar with the standard theory of finite
automata and regular expressions as described, for example, in the textbook by
Hopcroft and Ullman [6].

1.1 Notation

Although we have talked about ‘strings’ above, there is no need for a new
datatype: strings are simply lists, and we don’t even need to fix the alphabet. In
the sequel, type variable a always represents this alphabet and we use ‘string’
as a synonym for ‘list over type o’.

A few words about notation in Isabelle/HOL (abbreviated to HOL below).
List notation is similar to ML (e.g. @ is ‘append’ and concat distributes @ over
a list of lists) except that the ‘cons’ operation is denoted by # instead of ::.
There is also the function set that returns the set of elements of a list. Set
comprehension syntax is {e . P}. Function types are denoted by =.

Thanks to Markus Wenzel, Isabelle has recently acquired long identifiers of
the form T.n where T is the name of a theory and n a name defined in T'.

To distinguish variables from constants, the latter are shown in sans-serif.

2 Automata

All our automata will be triples of a start state, a next state function and a test

for final states. We define three corresponding projections start, next and fin:
start(q,d,f) = q next(q,d,f) = d fin(q,d,f) = £

Our formalization differs from standard automata theory in the following
aspects:



— there are no finiteness assumptions;
— neither the alphabet nor the set of states is a component of the automaton;
both are implicit in the type of the components.

2.1 Deterministic automata

Theory DA defines the parameterized type
(a,0)da = 0 X (@« = 0 = o) x (0 = bool)

of deterministic automata, where o is the type of states. The only painful choice
is the order of arguments of the transition function: 0 == a = o ora = o = o?
Both appear in the literature and have their minor advantages and disadvan-
tages. I prefer the state transformer view. Final states are encoded via a test
function rather than a set of states to allow direct execution.

The extension of next to strings is called delta:*

delta :: (a,0)da = a list = 0 = o
delta A [] s =s
delta A (a#w) s = delta A w (next A a s)

A word is accepted by a da if delta maps the start state to a final state:

accepts :: (a,0)da = a list = bool
accepts A w = fin A (delta A w (start A))

2.2 Nondeterministic automata

Nondeterministic automata come in two flavours, with and without e-moves.
The latter are defined by the type

(a,0)na =0 X (@ = 0 = o set) X (0 = bool)

and merely serve as the stepping stone towards the former. Adjoining a new
element e to the alphabet is naturally modeled by the standard datatype

(a)option = None | Some «

where None represents €. By this device a nondeterministic automaton with e-
moves over alphabet « is simply a nondeterministic automaton without e-moves
over alphabet (a)option:

(a,0)nae = (a option,o)na

That was easy. The only choice we had was whether to model the transition
function as a set-valued function (as we did) or as a relation. The argument
in favour of a set-valued function is purely computational: provided the set of
next states of every state is finite, it can be represented by a list, and hence the
transition function is computable. Using a relation, it is unclear in what sense
the set of next states is computable.

! With a different order of arguments we could have defined delta A = foldl (next A).



Although relations are not so nice for computing, they are handy for reason-
ing. Hence we define step, the relational version of next:

step :: (a,0)nae = « option = (o0 X o)set
step A a = {(p,q) . q € next A a p}

The term eps A is short for step A None and denotes all e-moves.

Before we can continue, we need two operations from the standard theory of
relations: r~x is the reflexive transitive closure of r and s ® r is the composition
of r and s (mind the order!):

s Or = {(x,2). 3y. (x,y9 € r A (y,2) € s}
The extension of step to lists is straightforward:?

steps :: (a,0)nae = «a list = (0 X o)set
steps A [] = (eps A)"*
steps A (a#w) = steps A w © step A (Some a) © (eps A)~*

The term (eps A) ~* is the so-called epsilon closure of an nae A that relates state
s to state t iff t is reachable from s by a finite sequence of e-moves.
The words accepted by an nae are defined as usual:

accepts :: (a,0)nae = a list = bool
accepts A w = 3 q. (start A,q) € steps A w A fin A q

Note that step, steps and accepts are used only in proofs. Hence their non-
executability is of no concern.

All the definitions in this subsection reside in theory NAe. Thus we can dis-
tinguish, for example, DA.accepts and NAe.accepts.

2.3 Discussion of nondeterministic automata

Apart from the fact that transition functions are arbitrary functions and hence
automata need not be finite, the above treatment of nondeterministic automata
is standard. However, it was not until after a number of painful iterations that I
arrived at this formulation. There are three different options when dealing with
the extension of the next state function to words, which behave quite differently
in proofs:

1. The standard one is of type («,0)nae = (a)list = o = (o)set. This
is how we started, but it leads to proofs with a lot of duplication because of
the asymmetry between input (single states) and output (sets of states).

2. A much slicker version is defined directly on sets of states, i.e. it is of type
(a,0)nae = (a)list = (0)set = (o)set. This eliminates the asym-
metry of the first version and results in some compact algebraic laws like

delta A (u@v) = delta A v o delta A u

Unfortunately it also leads to very complicated arguments in those cases
where only single states are involved, e.g. the start state.

2 T have used delta for functions and steps for relations.



3. steps is an excellent compromise because it it only talks about individual
states in the input and output, and it is close to our intuition. On the other
hand, there are also some drawbacks that we discuss in §4.

The touchstone for these different formulations was the correctness proof of
the translation of a regular expression into an nae (see §4). Our conclusion is
corroborated by the corresponding textbook proof [6]: the latter does not use a
set-valued transition function at all (although it has been defined) but argues
informally in terms of ‘paths’, which corresponds to the relation steps.

2.4 Equivalences

Every nae can be translated into an equivalent na which can then be translated
into an equivalent da. Since we are not interested in nas, we have defined a
direct translation from naes into das which combines the powerset and e-closure
construction:

nae2da :: (a,0)nae = (a,0 set)da

nae2da A = ({start A},
XA a Q. Jlnext A (Some a) ““ ((eps A)~* =~ Q)),
A Q. 3p € (eps &)+ =~ Q. fin A p)

We use two further standard constructs, the image of a set under a function and
a relation:
f ‘¢S
r ~° S

{f x.xe€ 8}
{y. 3x € 5. (x,y) € r}

The actual equivalence proof, i.e. the proof of
DA.accepts (nae2da A) w = NAe.accepts A w (1)

is by rewriting with the lemma
(eps A)"* -~ (DA.delta (nae2da A) w S) = steps A w °~ S

which is proved by induction on w.

3 Regular expressions

Regular expressions represent regular sets. The latter are sets of strings finitely
generated from finite sets by union, concatenation and iteration (the star oper-
ation). Concatenation is defined explicitly

conc :: « list set = «a list set = a list set
conc A B = {xs@ys . xs € A A ys € B}

whereas the star operation is defined inductively:

star :: a list set = a list set
[1 € star A
a € AN as € star A = a@as € star A



Two easy inductions yield an alternative characterization of star:
w € star A = (d as. (V a € set as. a € A) A (w = concat as))
Regular expressions are defined as usual

datatype a rexp = Empty
| Atom «
| Union (a rexp) (a rexp)
| Conc (a rexp) (a rexp)
| Star (a rexp)

as is the language denoted by a regular expression:

lang :: a rexp = « list set
lang Empty = {}
lang (Atom a) = {[al}

(lang r) U (lang s)
conc (lang r) (lang s)
star (lang r)

lang (Union r s)
lang (Conc r s)
lang (Star r)

Note that there is no separate constructor for a regular expression denoting the
set {[1} because Star Empty does just that.

4 Regular expressions into nondeterministic automata

This section is the core of the paper. It discusses the transformation of regular
expressions into nondeterministic automata with e-transitions. We follow the
spirit of the standard inductive construction [6], but simplify things a little: we
do not insist that each automaton has only one final state and no transitions out
of this state. The simplified construction of the union and iteration of automata
is shown in Fig. 2. The capital F' represents a set of final states.

Fig. 2. Union and iteration of automata

The function we want to define has to be of type (a)rexp = (a,0)nae.
It remains to be determined what o should be. The main criterion is the ease
of renaming the states of an automaton to ensure they are disjoint from some



other automaton. Graphically, this is easy: simply draw the two automata in
nonoverlapping areas (e.g. as in Fig. 2 on the left). Adding offsets to natural
numbers comes to mind, but this can be messy in proofs. Instead we use lists
of Booleans and stick True or False in front to guarantee distinctness. Thus the
above o is simply (bool)list and we define the type

(a)bitsNAe = (a,(bool)list)nae

and the function

rexp2nae :: o rexp => « bitsNAe

rexp2nae Empty = ([0, X as. {}, X s. False)
rexp2nae (Atom a) = atom a

rexp2nae(Union r s) = union (rexp2nae r) (rexp2nae s)
rexp2nae(Conc r s) = conc (rexp2nae r) (rexp2nae s)
rexp2nae (Star r) = star (rexp2nae r)

Let us first examine the translation of Empty. The initial state is the empty
list. The transition function always returns the empty set. Hence there is no
transition out of any state, in particular not out of []. Thus the only reachable
state is []. There is no final state because the last component (fin) always returns
False. Hence the automaton accepts no word, as required by Empty.
The definition of atom is analogous.
We could now go through the remaining constructions one by one, but it will
suffice to examine conc in detail:
conc :: « bitsNAe = « bitsNAe = « bitsNAe
conc = A(ql,dl,fl) (qr,dr,fr).
(True#ql,
Aa s. case s of

ao=4{
| left#s = if left then (True ## d1 a s) U
(if f1 s A a=None then {False#qr}
else {})
else False #i# dr a s,
As. case s of [] = False | left#s = -left A fr s)

The idea is to prefix states of the left automaton (let us call it L) with True
and states of the right automaton (let us call it R) with False. Hence the start
state of the concatenation is True#ql, where ql is the start state of L. There
are no transitions out of the (unreachable) state [1. To describe the remaining
transitions we have introduced an abbreviation: ## is # lifted to sets of lists, i.e.
x##XS stands for (Axs. x#xs) ‘¢ XS.

Transitions out of a state left#s depend on left. If left is True, i.e. we
are in L, we take the transitions of L out of s together with an e-transition to
False#qr, where qr is the start state of R, in case s is a final state of R. If left
is False, we simply take the transitions of R. The operation ## lifts states of L
and R to states of their concatenation. The final states are those of R.

The definitions of union and star are analogous.

If the reader finds the above treatment in terms of bit lists revoltingly con-
crete, I cannot disagree. A more abstract approach is clearly desirable.



4.1 The proof
The proof plan in the large is easy: show
accepts (rexp2nae r) w = (w € lang r) (2)

by induction on r using the obvious lemmas

= (w = [a])
= (accepts L w V accepts R w)
= (duv. w=ulv A accepts L u A accepts R v)

accepts (atom a)
accepts (union L R)
accepts (conc L R)
accepts (star A)

(3 us. (V u € set us. accepts A u) A (w = concat us))

£ =2 5 =

The realization of this plan is, unfortunately, a textbook example of the gap
between graphical intuition and formal proof. All of the lemmas appear obvious
given a picture of the composition of automata such as Fig. 2. Yet their proofs
require a painful amount of detail. For your amusement, the lemmas for the
conc-case are shown in Fig. 3.

fin (conc L R) (True#p) = False
fin (conc L R) (False#tp) = fin R p
(True#tp,q) € step (conc L R) a =

((3 r. gq=True#tr A (p,r) € step L a) V (fin L p A a=None A g=False#start R))
(False#p,q) € step (conc L R) a = (3 r. q = False#tr A (p,r) € step R a)
(False#tp,fq) € (eps(conc L R))"* = 3 q. (p,q) € (eps R)"* A fq = False#q
(p,q) € (eps R)"* =—> (False#p, False#tq) € (eps(conc L R))"*
(False#tp,fq) € (eps(conc L R))"* = (3 q. fq = False#q A (p,q) € (eps R)"*)
(False#tp,fq) € steps (conc L R) w = (3 q. fq = False#q A (p,q) € steps R w)
(p,q) € (eps L)% = (True#p,True#q) € (eps(conc L R)) *
(p,q) € steps L w = (True#tp, True#q) € steps (conc L R) w
(True#tp,tq) € (eps(conc L R)) "% —

(3 q. tq = True#q A (p,q) € (eps L) %) V

(3 q r. tq = False#q A (p,r)E(eps L) * A fin L r A (start R,q) € (eps R)"*)
(p,q) € (eps L) % = (True#p, True#tq) € (eps(conc L R)) *
(p,q) € step R None == (False#tp,False#q) € step (conc L R) None
(p,q) € (eps R)"* —> (False#p,Falsetq) € (eps(conc L R))"*
fin L p = (True#p,False#tstart R) € eps(conc L R)
((Truettp,q) € (eps(conc L R))"*) =

((3 r. (p,r) € (eps L)"* A q = True#r) V

(I r. (p,r) € (eps L)"* A fin L r A

(3 s. (start R, s) € (eps R)"* A q = False#s)))

(Truettp,q) € steps (conc L R) w —>

(3 r. (p,r) € steps L w A q = True#r) V

(Guv.w=uv A (3r. (p,r) € stepsLu A finL rA

(3 s. (start R,s) € steps R v A q = False#s))))

Fig. 3. Lemmas for correctness of conc

If you examine the lemmas in Fig. 3 carefully, you will find that each one
is very reasonable, i.e. none of them is contrived to fit the needs of the theo-
rem prover. Apart from the last two, which require 10 and 24 steps respectively,
all of them are proved in 3 or 4 steps: induction plus (automatic) predicate
calculus reasoning and a bit of simplification. However, because of the form of



the lemmas, predicate calculus reasoning dominates. Fortunately, Isabelle now
provides the right kind of automation [10], whereas the previous generation of
Isabelle’s predicate calculus reasoning tools [9] floundered on some of the lem-
mas. Unfortunately, predicate calculus reasoning is inherently less pleasant than
simplification because a failed attempt of an automatic procedure yields no in-
formation on what is missing. Hence you have to start your own manual single
step proof to discover where things go wrong, which is how we found the lem-
mas in Fig. 3. This is in contrast to simplification, where a failed proof attempt
results in a new goal that, in many cases, is a strong clue as to what the missing
lemma is. Hence the design decision for a relational treatment as discussed in
§2.3 also has its drawbacks. For example, in a functional style, the lemma

(False#p,fq) € steps (conc L R) w =
(3 q. fq = False#q A (p,q) € steps R w)

becomes
delta (conc L R) a (False ## Q) = False ## delta R a Q

Despite these difficulties, the relational approach appears simpler. Proponents
of relation algebra might point out that the reduction to predicate calculus is
responsible for all complications, and a purely relation-algebraic treatment would
have been much slicker. They may well be right.

The derivation of the lemmas for union and star is entirely similar. If we now
put (1) and (2) together, we obtain the main correctness theorem:

DA.accepts (nae2da(rexp2nae r)) w = (w € lang r)

5 The scanner

We will now turn deterministic automata into scanners as described in the in-
troduction. It is easy to see that the concept of repeatedly chopping a maximal
prefix off a string is independent of automata theory and can be parameterized
by an arbitrary predicate on strings. Thus we will first do a bit of list processing,
followed by two applications: the scanner, and, as an afterthought, paragraph
filling. The nice thing is that the hard part of the development, including most
of the proofs, is confined to the generic list processing functions.

5.1 Chopping up lists

We start by specifying the requirements. What does it mean to chop a list up
into maximal prefixes? The prefix ordering on lists is defined as usual:

xs < zs = I ys. zs = xs@ys



Note the overloading of <. Then what is a maximal prefix of a list w.r.t. a
predicate? The answer is almost obvious

is_maxpref P xs ys =
xs < ys A (xs=[1 VP xs) A (Vzs. zs < ys AP zs — zs < xs)

except that we also allow [] to be a maximal prefix in case ys has no prefix that
satisfies P. This definition makes sense in our context where the maximal prefix
should never be empty (because chopping it off should reduce the list). Thus we
can use [] as an indication that there is no nonempty prefix that satisfies P.

We now come to the main specification. The class of functions we want to
specify are of type

a chopper = o« list = « list list X «a list
The specification is a predicate
is_maxchopper :: (a list = bool) = a chopper = bool

that expresses when its second argument correctly chops up lists according to
its first argument:

is_maxchopper P chopper =
V xs zs yss.
(chopper(xs) = (yss,zs)) =
(xs = concat yss @ zs A (V ys € set yss. ys # [1) A
(case yss of
[0 = is_maxpref P [1 xs
| us#uss = is_maxpref P us xs A
chopper (concat (uss)@zs) = (uss,zs)))

Let’s recast this into words: chopper (xs) returns (yss,zs) iff

1. the concatenation of the outputs yields the input,

2. all elements of yss are nonempty, and

3. if yss is empty, then there is no nonempty prefix of xs that satisfies P, and
if yss = us#uss, then us is the maximal prefix of xs w.r.t. P and chopping
up the remaining list yields (uss,zs).

Note that instead of an unjustified axiom specifying a constant chopper, the
predicate is_maxchopper is merely an abbreviation.

Note also that although the specification only says that the first element
us of yss must be a maximal prefix, the remaining elements are covered by the
“recursive” call of chopper in the final line. A direct specification of the maximal
prefix property for all elements of yss is more involved because the list of which
they are a prefix is not directly at hand.

Now that we have the main specification, let us look at an implementation:

1. function maxsplit splits a list into a maximal prefix and the remaining list;
2. function chop iterates the process of splitting off a prefix.

10



To make things more modular, we introduce the type

« splitter = « list = a list X a list

and a separate specification

is_maxsplitter :: (a list = bool) = « splitter = bool
is_maxsplitter P splitf =
(V xs ps gs. (splitf xs = (ps,qgs)) = (xs=ps@qgs A is_maxpref P ps xs))

that maxsplit should satisfy. The definition of

maxsplit :: (a list = bool) = a list X «a list = « list
= « splitter
maxsplit P r ps [] = (if P ps then (ps,[]) else r)
maxsplit P r ps (q#gs) = maxsplit P (if P ps then (ps,q#qs) else r)
(ps@[ql) gs

is fairly easy: r is the maximal result found so far, ps the prefix accumulated
since the initial call, and gs is the suffix that remains to be examined; r is
updated every time a longer prefix that satisfies P is found.

Once you come up with and prove (by induction on gs) the lemma

(maxsplit P r ps gs = (xs,ys)) =
(if 3 us. us < gs A P(ps@us)
then xsQ@ys=ps@qs A is_maxpref P xs (ps@qgs) else (xs,ys)=r)

it follows easily that maxsplit, suitably initialized, meets its specification:

is_maxsplitter P (A xs. maxsplit P ([1,xs) [] xs)

Note that maxsplit traverses the whole list. Iterating maxsplit may therefore
lead to quadratic run times. This problem could be overcome if there were an
additional test whether ps can at all be extended to a list satisfying P. In terms
of automata theory, this corresponds to a test whether the current state is an
‘error’ state which does not lead to any final state.

We now come to our main function chop that turns splitters into choppers
by iterating them:

chop :: a splitter = a chopper
reducing splitf =
chop splitf xs = (let (pre,post) = splitf xs
in if pre=[] then ([],xs)
else let (xss,zs) = chop splitf post
in (pre#xss,zs))

Note that this a direct consequence of the actual definition by wellfounded re-
cursion, which is not shown. The precondition involving

reducing :: a splitter = bool
reducing splitf =
V xs ys zs. splitf xs = (ys,zs) A ys # [J — length zs < length xs

11



is necessary to guarantee termination of chop. With the help of a few lemmas
(proved by induction on the length of a list) one can establish

is_maxsplitter P splitf == is_maxchopper P (chop splitf)

5.2 Scanning

Now we specialize the above generic functions to perform scanning, i.e. chop-
ping up strings based on the acceptance by a deterministic automaton. A naive
solution is to call maxsplit with the predicate (accepts A). But since accepts is
applied to longer and longer prefixes, this leads to quadratic run times.

Thus we need to re-implement maxsplit, replacing the predicate by an ac-
cepting da together with its current state:

autosplit :: (a,o)da = 0 = a list X a list = « list
= « splitter
autosplit A q r ps [] = (if fin A q then (ps,[]) else r)

autosplit A q r ps (xi#xs) =
autosplit A (next A x q) (if fin A q then (ps,x#xs) else r) (ps@[x]) xs

Although it may seem that maxsplit is completely superseded by auto_split and
need never have been defined, the opposite is true: it is now trivial (an induction
on xs) to show

autosplit A (delta A ps q) r ps xs =
maxsplit (A ys. fin A (delta A ys q)) r ps xs

which, putting the results of §5.1 together, yields the corollary
is_maxchopper (accepts A) (scan A)

where

scan :: (a,0)da = « chopper
scan A = chop (X xs. autosplit A (start 4) ([],xs) [] xs)

is our main function. As predicted above, specializing the generic development
to automata is easy.

If the whole development appears overly modular, I recommend the following
more direct definition of the scanner

acc A st ps [] ys = (if ys=[] then r else (ys#fst(r),snd(r)))
acc A s r ps (x#xs) ys = (let t = next A x s in
if fin A t

then acc A t (acc A (start A) ([1,xs) [1 xs [1)
(ps@[x]) xs (ps@[x])
else acc A t r (ps@[x]) xs ys)

due to Roland Handl [5]. It mixes the generic and the specific and, on top of
that, is primitive recursive.® Although acc confuses me to this day, Richard

% Nested primitive recursion can be reduced to ordinary primitive recursion [3]. Handl
was forced to use primitive recursion because at the time HOL did not provide easy
access to wellfounded recursion.

12



Mayr managed to verify it. However, the proof is sufficiently unpleasant that
there had to be a better way to do it. What I presented above is the result of
my quest for a more appealing solution.

5.3 Filling paragraphs

After the completion of the above development I suddenly remembered that
Bird and Wadler [1] also define a function scan. On looking it up, I found that
it is used in a similar application, namely filling paragraphs (pages 91-92). This
made me realize that one can define their function

fill :: nat = (a list list) = (a list list list)

that takes a list of words and returns a list of lines that are no longer than the
given line width (the first parameter), as an instance of our scan:

fill n = fst(scan (0, A xs i. i+length(xs)+1, A i. i < n+1))

The second component of the result of scan is dropped (fst selects the first
component) to make the function conform to the type in [1]. If none of the input
words is longer than the line width, the second component is always [].

6 Does it run?

To be more precise: can the definitions of the main functions rexp2nae, nae2da
and scan (and of their supporting functions) be interpreted directly in a func-
tional programming language? For scan, the answer is yes: only primitive or
wellfounded recursion on lists is used. Deterministic automata are also easy, but
nondeterministic automata cause a little problem: we need to implement sets.
In full generality, this is impossible, but finite sets can be represented as lists,
which is one of the standard examples of implementation concepts for abstract
data types. Fortunately, the sets arising in rexp2nae are all finite, thanks to the
finite nature of regular expressions. Hence rexp2nae is also executable (although
a replacement of finite sets by lists would be tricky to perform automatically in
HOL).

The real problem arises with the definition of nae2da, which contains the
inductively defined transitive closure operator ~* and is therefore definitely not
directly executable. Even if all sets in sight are finite, we would still need a
recursive function for computing the transitive closure. Hence the answer to the
section title is ‘almost’.

There are a number of solutions to this problem:

— Show that rexp2nae only produces finite automata and define a recursive
version of ~* that operates on finite relations. This is possible but most
likely messier than the next alternative.

— Generate a nondeterministic automaton without e-steps directly from a reg-
ular expression. Although this complicates the construction a little, I expect
the proofs actually become simpler because e-steps are eliminated.

13



— Give a concrete finite representation of the transition function of automata in
terms of, for example, association lists. This does entail rephrasing rexp2nae
in terms of this representation, but I believe that one can reuse most of the
proofs by showing that the concrete representation is a correct implementa-
tion of the abstract automaton model of this paper.

We intend to investigate the last two options in the near future. Note that
there is a fundamental difference between them. Performing the conversion of
nondeterministic automata on our functional representation postpones most of
the work until run time, where states of the da are represented as sets of states
of the na, all of which have to be processed. Given a concrete data structure
for the transition function of the na, it is possible to eliminate this overhead
by representing each of the (finitely many!) sets of states by a single new state.
Nevertheless, the speedup is only a constant factor that depends on the size
of the state space. Both representations allow DA.accepts to operate in time
linear in the size of the input string. Scanning, however, is quadratic, because
the recognition of each maximal prefix requires traversing the whole (remaining)
string.

7 Related work

I am aware of three other papers on formalized automata theory [7, 4, 2], all
of which use constructive type theory (i.e. they extract their algorithms from
the proofs rather than providing them as part of the definitions) and follow [6]
closely. The main result of Kreitz [7] is the pumping lemma and the main result
of Constable et al. [2] the Myhill/Nerode theorem. Both of them use the Nuprl
system.

Closest to our work is that by Filliatre [4] who gives a constructive proof for
the translation of regular expressions into nondeterministic finite automata with
e-moves in the Coq system.? Although the transition relation of the resulting
automaton has a nice concrete representation as a finite set of triples, he does
not consider the further conversion into a deterministic automaton (nor the
scanning aspect). It is the latter conversion where executability breaks down for
us because we use the transitive closure operator ~*.

Thompson [11] presents an implementation (no proofs) of regular expressions
and finite automata in Miranda.

8 Conclusion

We have seen a formalization of a (very simple) lexical analyzer generator tak-
ing us from a regular expression right to the actual scanner. Almost all of the

* Contrary to the title of that paper, the opposite direction is not mentioned. I have
formalized and verified the translation of automata into regular sets as a recursive
algorithm similar to Warshall’s. The details are beyond the current paper.

14



functions involved are directly executable. Ignoring the small executability gap
in our development (see §6), this work shows that HOL is eminently suitable to
verify (total) functional programs, although HOL is neither constructive (where
you often worry if the extracted program will be what you think it should be)
nor a quantifier-free logic of recursively defined functions.

The size of the combined theories and proofs is quite acceptable: roughly 1000
lines dedicated to automata and regular expressions, and fewer than 400 lines
involving the scanner. My first attempts in this direction go back a number of
years and include dead alleys explored by students. The bulk of the development
presented in this paper took me about 3 intensive weeks.

Although the work was not intended as a formalization of a specific text-
book (in contrast to [2] or [8]), I feel that Hopcroft and Ullman’s treatment has
influenced me more than necessary, and that a development bypassing e-moves
might have been better. This will be explored in the future.

Acknowledgment Stefan Weber helped with an initial version of the proofs in
§4. David Basin, David von Oheimb, Larry Paulson and Markus Wenzel read a
draft and commented on it at short notice, for which I am very grateful.

References

1. R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall,
1988.

2. R. Coustable, P. Jackson, P. Naumov, and J. Uribe. Counstructively formalizing
automata. In G. Plotkin and M. Tofte, editors, Proof, Language and Interaction:
Essays in Honour of Robin Milner. MIT Press, 1998. To appear.

3. W. Felscher. Berechenbarkeit. Springer-Verlag, 1993.

4. J.-C. Fillidtre. Finite automata theory in Coq. A constructive proof of Kleene’s
theorem. Technical Report 97-04, Laboratoire de I'Informatique du Parallélisme,
Ecole Normale Supérieure de Lyon, 1997.

5. R. Handl. Verifikation eines Scanners (mit Isabelle). Master’s thesis, Institut fir
Informatik, TU Miinchen, 1993.

6. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

7. C. Kreitz. Constructive automata theory implemented with the Nuprl proof devel-
opment system. Technical Report TR 86-779, Dept. of Computer Science, Cornell
University, 1986.

8. T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook.
In V. Chandru and V. Vinay, editors, Foundations of Software Technology and
Theoretical Computer Science, volume 1180 of Lect. Notes in Comp. Sci., pages
180-192. Springer-Verlag, 1996.

9. L. C. Paulson. Generic automatic proof tools. In R. Veroff, editor, Automated
Reasoning and its Applications. MIT Press, 1997. Also Report 396, Computer
Laboratory, University of Cambridge.

10. L. C. Paulson. A generic tableau prover and its integration with Isabelle. Technical
Report 441, University of Cambridge, Computer Laboratory, 1998.

11. S. Thompson. Regular expressions and automata using Miranda. Available at
http://wuw.cs.ukc.ac.uk/pubs/1995/212, 1995.

15



This article was typeset using the INTEX macro package with the LLNCS2E class.

16



