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Abstract

This research is about regular expression matching. The interest in this
topic arose from a 2014 paper by Sulzmann and Lu [16]. This paper contains
serious errors in the proofs, which I try to fix. Once the errors are corrected,
I attempt to make the algorithm as fast as possible and verify its translation
to machine code.

1 Introduction

This work focuses on regular expression matching. When a string is matched
against a regular expression, we are interested in the matching tree containing
the information on how different parts of the regular expression matched the
input string. This information is useful, for example, when lexing, or tokenis-
ing, programs. In general there are more than one matching tree for a regular
expression and a string. However, there are two commonly used disambigua-
tion strategies to create a unique matching tree: one is called greedy matching
[8] and the other is POSIX matching [10, 16]. For the latter there are two rough
rules:

¢ The Longest Match Rule (or “maximal munch rule”):

The longest initial substring matched by any regular expression is taken
as next token.

* Rule Priority:

For a particular longest initial substring, the first regular expression that
can match determines the token.

In the context of lexing, POSIX is the more interesting disambiguation strategy
as it produces longest matches, which is necessary for tokenising programs.
For example the string iffoo should not match the keyword if and the rest, but



as one string iffoo, which might be a variable name in a program. As another
example consider the string xy and the regular expression (x + y + xy)*. Either
the input string can be matched in two ‘iterations’ by the single letter-regular
expressions x and y, or directly in one iteration by xy. The first case corre-
sponds to greedy matching, which first matches with the left-most symbol and
only matches the next symbol in case of a mismatch. The second case is POSIX
matching, which prefers the longest match. In case more than one (longest)
matches exist, only then it prefers the left-most match. While POSIX match-
ing seems natural, it turns out to be much more subtle than greedy matching
in terms of implementations and in terms of proving properties about it. If
POSIX matching is implemented using automata, then one has to follow tran-
sitions (according to the input string) until one finds an accepting state, record
this state and look for further transition which might lead to another accepting
state that represents a longer input initial substring to be matched. Only if none
can be found, the last accepting state is returned.

Sulzmann and Lu’s paper [16] targets POSIX regular expression matching.
They write that it is known to be to be a non-trivial problem and nearly all
POSIX matching implementations are “buggy” [16, Page 203]. For this they cite
a study by Kuklewicz [10]. My current work is about formalising the proofs in
the paper by Sulzmann and Lu. Specifically, they propose in this paper a POSIX
matching algorithm and give some details of a correctness proof for this algo-
rithm inside the paper and some more details in an appendix. This correctness
proof is unformalised, meaning it is just a “pencil-and-paper” proof, not done
in a theorem prover. Though, the paper and presumably the proof have been
peer-reviewed. Unfortunately their proof does not give enough details such
that it can be straightforwardly implemented in a theorem prover, say Isabelle.
In fact, the purported proof they outline does not work in central places. We
discovered this when filling in many gaps and attempting to formalise the proof
in Isabelle.

Although we pointed out a number of problems in their proof, Sulzmann
and Lu seem to not overly interested in fixing them so that the proofs could be
formalised in a theorem prover. In private communication, Sulzmann wrote
about one flaw we pointed out

“How could I miss this? Well, I was rather careless when stating this
Lemma...Great example [of] how formal machine checked proofs (and proof
assistants) can help to spot flawed reasoning steps.”

but about another problem he wrote

“Well, I don’t think there’s any flaw. The issue is how to come up with
a mechanical proof. In my world mathematical proof = mechanical proof
doesn’t necessarily hold.”

Since working with the Isabelle theorem prover, I clearly disagree with this last
statement. I am trying to formalise a correctness proof (not necessarily the one
by Sulzmann and Lu, because of the problems). Once finished we can be really
sure their algorithm is correct. This work is currently in progress.



2 Background

Six years ago or so, Leroy and his coworkers verified a compiler, called CompCert,
compiling a rather large subset of C to machine code [11]. The promise this
compiler gives is that if a source program has a certain observable behaviour,
then also the generated machine code will have this behaviour. This is a strong
promise that is more often than not violated by conventional compilers. Bugs
usually creep in when optimisations are applied, but not all necessary safety
conditions are observed.

In 2011, Regehr et al [22] introduced a compiler testing tool, called CSmith.
They tested C-compilers by generating in a clever way “random” C-programs.
These random programs were compiled with GCC, LLVM and other commer-
cial C-compilers. If one compiler miscompiled a program (just showed a differ-
ent behaviour) then they know there must be something anomalous going on.
They can then investigate whether or not there is a bug in that C-compiler. In
this way they found, for example, more than 300 bugs in GCC and also many
bugs in LLVM. In contrast, about CompCert, which was also one of their target
C-compilers, Regehr et al wrote [22, Page 288]:

“The striking thing about our CompCert results is that the middle-end
bugs we found in all other compilers are absent. As of early 2011, the
under-development version of CompCert is the only compiler we have tested
for which Csmith cannot find wrong-code errors. This is not for lack of try-
ing: we have devoted about six CPU-years to the task.”

While this is an amazing result showing how trustworty the CompCert com-
piler is, Regehr et al did manage to find five bugs, which were in the unverified
front-end part of CompCert. Although these bugs were not necessarily in the
lexing/parsing phase of the CompCert compiler, our work on verifying a lexer
would of course be needed if CompCert or other verified compilers extend the
verification to include all parts of their front-ends.

Traditional regular expression matchers are based on automata. The pro-
cess of how to derive an automaton (potentially a non-deterministic automaton)
from a regular expression is well-understood and widely researched.t There
are many algorithms for this derivation (for example [18]). While the matching
algorithms involving automata are usually very elegant and fast, their prob-
lem is that it is rather difficult to reason formally (in a theorem prover) about
automata. This might be surprising, but can be explained by the fact that au-
tomata are essentially a restricted class of graphs—the states are the nodes and
the transitions are the edges. There needs to be a transition going out from a
node for every letter in the alphabet. This restriction does not lead to a sim-
ple definition for automata in theorem provers. Wu et al managed to formalise
a large part of regular language theory in Isabelle by side-stepping automata
completely [21]. They argue that regular expressions and Brozozwski’s no-
tion of regular expression derivatives are much more convenient for reasoning
about regular language theory. We hope to also get milage out of the fact that



Sulzmann and Lu use regular expressions and their derivatives as central com-
ponents in their POSIX matching algorithm. However there are also dissenting
opinions: for example Paulson [15] managed to formally verify a number of re-
sults about automata in Isabelle using a construction based on hereditary finite
sets.

While Brzozowski’s regular expression derivatives [5] are a rather old idea,
and they are well-known in the text algorithmics community, they seem to have
been forgotten over time in the functional programming and theorem prover
communities. According to [13, Page 173] they had been “lost in the sands of
time, and few computer scientists are aware of them.” But since [13], there has
been a furry of papers using derivatives in these two communities, for example
[6, 17], and specifically in the theorem prover community, for example, [1, 3, 7,
9, 14, 19, 20]. However, apart from Sulzmann and Lu’s paper, we are not aware
of any work on verified lexers based on the POSIX rules (neither automata-
bases, nor regular expression-based). The closest related work to ours is the
work by Nipkow [12] on a greedy lexer, and by Norrish and his student [4]
about a formally verified parsing algorithm.

3 Terminologies

Since regular expression matching is an old field and terminology varies widely,
let us first fix our basic terminology and definitions. We use *, -, +, €, ¢ for
Kleene star, concatenation, alternative, empty string and empty language. Reg-
ular expression are therefore given by the grammar

ro=¢lelc|rn+rn|rn-rn|r

where c is a letter of the alphabet, which we leave unspecified. For brevity, we
often omit the - in the concatenation. Importantly in our context, there is also an
associated notion of values, which record how a regular expression has matched
a string. These values are given by the grammar

v ::= Void | Char c | Left(v) | Right(v) | (v1,v2) | [] | © = vs

The last two stand for the empty list and list-cons. There is no value for ¢ since
it does not match anything. Void is for €, Char c for the character c and so on. It
is easy to extract the underlying string from a value by the following flattening
operation:



|Void| &
ICharc| & [

[Left(v)] = |v]
|Right(o)| j:f o]
|(v1,02)| d:ef 01| |02
1l =

|v :: vs| def |o| |vs|

where [c] is the string consisting of only the character c and [] is the empty string.
Both Sulzmann and Lu, and Frisch and Cardelli use a kind of type inhabitation
relation for values and regular expressions. This relation is defined by the rules

Fo:r Fos:r*
F:r F(v:oos):r"

Foi:rnbE v:im

F (v1,v2) i 1172

= 011" F (%)
F Left(vy) :r1+ 12 F Right(vy) : 11 + 12

F Void : € F Charc:c

The main idea of this type-like relation is the following property about the lan-
guage, L, of a regular expression:

L(r)y={|v|. Fo:r}

This means that if we take all values “inhabited” in a regular expression and
extract the underlying strings (by flattening), we obtain the language matched
by the regular expression. The point of the values is that they contain more
structure by encoding how a regular expression has matched a string. In the
example with the regular expression (x + y + xy)* we have the following two
values

[Left(Char x),Right(Left(Char y))] and [Right(Right((Char x,Char y)))]

giving two different answers to how the regular expression matched the string
xy (the left-value states that two iteration are needed with the star, while the
value on the right-hand side states only one iteration is needed). There are of
course more values inhabited in this regular expression (in fact infinitely many).



4 ThePOSIXMatching Algorithm by Sulzmann and
Lu

Sulzmann and Lu presented their POSIX matching algorithm in 2014 at the
FLOPS conference [16]. This algorithm consists of two phases: a matching
phase and a value construction phase. The matching phase goes back to a quite
old idea from 1964 by Brzozowski [5], called derivatives of reqular expressions.
They can be used for a simple matching The matching phase can only decide
whether a string is matched by a regular expression or not. The novel idea
of Sulzmann and Lu is to add a second phase that, given a string is actually
matched by a regular expression, constructs a value giving an answer for how
the regular expression matched the string.

4.1 The Matching Phase

Central to the matching phase are two functions called nullable and der. The
former decides when a regular expression can match the empty string or not.
It can be defined by recursion over regular expressions as follows:

Nullable Function
def

nullable(¢p) false
nullable(e) T e
nullable(c) & false
nullable(r1 + r7) & nullable(r1) V nullable(r;)
nullable(ri77) = nullable(r1) A nullable(r;)
nullable(r*) T e

The second function, called der, is quite subtle: it takes a character, say ¢, and
a regular expression, say 7, as input and returns the derivative regular expres-
sion. The idea of the the derivative regular expression is: if r can match strings
of the form c::s, what does the regular expression look like that can match the
strings s (where the leading character ¢ has been “chopped off”)? Again this
function can be defined by recursion on regular expressions.

Derivative Function

der ¢ ¢ = ¢
der c e & ¢
dercd & if ¢ = d then € else ¢
dercr i+ CE der r +dercry
dercry-m Fif nullable 1
then (der c 1) - ro +der c 1y
else (der cr1) - 12
der c r* &of (dercr)-r*



The first two cases are straightforward: for this recall that der should calculate
a regular expression so that given the “input” regular expression can match a
string of the form c::s, we want a regular expression for s. Since neither ¢ nor e
can match a string of the form c::s, we return ¢. In the character case we have
to make a case-distinction: In case the regular expression is ¢, then clearly it
can recognise a string of the form c::s, just that s is the empty string. Therefore
we return the e-regular expression. In the other case we again return ¢ since
no string of the c::s can be matched. Rationalising the recursive cases are a bit
more involved. Fortunately, the 4--case is still relatively simple: all strings of
the form c:: s are either matched by the regular expression 71 or r,. So we just
have to recursively call der with these two regular expressions and compose the
results again with +. The --case is more complicated: if 1 - rp matches a string
of the form c :: s, then the first part must be matched by ry. Consequently, it
makes sense to construct the regular expression for s by calling der with r{ and
“appending” r,. There is however one exception to this simple rule: if r; can
match the empty string, then all of c::s is matched by r,. Consequently in case
r1 is nullable (that is can match the empty string) we have to allow the choice
der c rp for calculating the regular expression that can match s. This means we
have to add the regular expression der ¢ r; in the result. The *-case is again sim-
ple: if r* matches a string of the form c::s, then the first part must be “matched”
by a single copy of r. Therefore we call recursively der cr and “append” r* in
order to match the rest of s.

We can lift the derivative of regular expressions from single characters to
strings as follows:

ders[]r =r
ders (c::s)r = derss (dercr)

Let uslook at some examples. Suppose the regular expressionris (a + ab) (b + €)
and the input string is ab. Obviously rg can match the input string. Below are
the intermediate steps for calculating ders.

rip=derarg = (e+eb)(b+e)
rp=derbry = (p+¢b+e)(b+e)+(e+¢)

The point of the derivative is that we can decide whether a string is matched
by a regular expression, if the final derivative (after exhausting the string) can
match the empty string, that is it is nullable. So a regular expression matcher
can be defined as

matches s r nullable(ders s r)

This is essentially Brzozowski’s algorithm from 1964. Its main virtue is that
the algorithm can be easily implemented as a functional program and easily be
reasoned about in theorem provers: regular expressions and values are simple
inductive datatypes, and nullable, der and ders are straightforward recursive



functions. Therefore the correctness proof for matches, that is establishing the
property

matches s r if and only if s € L(r)

is a relatively simple exercise in a theorem prover (for example done in [14]
using the HOL theorem prover, but also part of the Archive of Formal Proofs for
Isabelle). Another virtue of this algorithm is that it can be easily extended to
the not-regular expression and other practically useful regular expressions.

The main disadvantage is that the version of matches explained above be-
haves abysmal in terms of running time. The reason is that the der-function
can grow the regular expression and an increased size of the regular expres-
sion means more work for the following stages, since the “next” der needs to
traverse the resulting regular expression again. However, this problem can be
solved easily by noticing that the derivative produces many instances of ¢ and
€, which can be simplified away. In this way the regular expressions can be
made smaller and the algorithm runs quite fast. We omit here mentioning any-
thing allbout the simplification step, because it is not relevant for the correctness
proof.

4.2 The Value Construction Phase

While the matching phase only calculates a yes or no answer for whether a
regular expression matches a string, the novel idea of Sulzmann and Lu [16]
is to append another phase to calculate a value. For this consider again the
definition of regular expressions and values side-by-side:

Regular Expressions ~ Values

r = ¢ v on=
| € Void
| ¢ | Char(c)
| r-n | (01,02)
| r+nr | Left(v)
| Right(v)
| | [v1,... v4)

For each regular expression, there is a specific value that records how the reg-
ular expression matched the string. The exception is the ¢-regular expression,
because it cannot match anything and therefore does not need a corresponding
value; and the two values for the alternative regular expression, which corre-
spond to the two choices in the alternative.

The values need to be calculated in the second phase of the Sulzmann and
Lu algorithm. Central to their algorithm are two functions called mkeps and

1The hard part is to prove that the slow version is correct, and then to show that the improved
version still produces the same result. We guess, and this is confirmed by the comments in [16],
that the second part is not difficult to establish.



inj (injection). If in the last step of the first phase, nullable returns true, then
mkeps will generate a value that shows how the last derivative regular expres-
sion could have matched the empty string. The function mkeps can be defined
recursively as follows:

Mkeps Function
mkeps(€) ' Void
mkeps(r1 + 1) L if nullable(ry)
then Left(mkeps(r1))
else Right (mkeps(r2))

mkeps(rq - 12) (mkeps(r1), mkeps(rz))

mheps(rt) =]

Notice how this function makes some subtle choices leading to a POSIX value
at the end of the second phase: for example if the alternative, say r1 + 2, can
match the empty string and furthermore r; can match the empty string, then we
return a Left-value. The Right-value will only be returned if r1 is not nullable.
The four regular expressions in mkeps are the only cases we need to consider,
since the other regular expressions cannot match the empty string. Below is
the calculation of mkeps with the intermediate steps shown when applied to the
regular expression obtained after the matching phase of the algorithm (see ro
in Section 4.1)

mkeps((¢ + (b +¢€))(b+€) + (e + ¢))
= Left(mkeps((¢+ (pb+¢€))(b+€)))
Left((mkeps(¢ + (b +€)), mkeps(b + €)))
Left((Right(mkeps(¢b + €)), Right(mkeps(€))))
Left((Right(Right(mkeps(€))), Right(Void))
= Left((Right(Right(Void)), Right(Void))) = v,

Given the regular expression

@+ (¢b+e€))(b+e)+(e+)

the value calculated by mkeps corresponds to the two underlined e€s which are
responsible (according to POSIX matching) for recognising the empty string.
The more interesting function in the second phase is called injection and
written inj. Recall that the derivative essentially “chops off” a single character
from a regular expression. The injection function undoes this “chopping off”
by injecting back a character...just on the level of values, rather than regular
expressions. The inj function can be defined recursively as follows:



Injection Function

inj(c) ¢ Void = Charc

inj(r1 + 1) ¢ Left(v) o Left(injry c v)

inj(r1 +ra) ¢ Right(v) o Right(inj ry ¢ v)
inj(ry - r2) ¢ (v1,02) = (injri coi,v0)
inj(ry -r2) ¢ Left((v1,v2)) &of (inj r1 ¢ v1,02)
inj(ry - r2) ¢ Right(v) o (mkeps(r1),inj ry ¢ v)
inj(r*) c (v,vs) o injrco:os

A sanity property Sulzmann and Lu prove, and which we could formally verify
is

if Fo:r then [injrco|=c: |y

meaning the character c is really injected back into the value v—the underlying
string is extended at the front by c. Below are the details of intermediate steps
after applying the inj function with rp, v; and b

inj((e +eb)(b+e€)) b Left((Right(Right(Empty)), Right(Empty)))
= (inj(e + eb)bRight(Right(Void)), Right(Void))
= (Right(inj(eb)bRight(Void)), Right(Void))
= (Right((mkeps(e),inj(b)bVoid)), Right(Void))
= (Right(Void, Char (b)), Right(Void))

To sum up, we started with the string ab and the regular expression g = (a +
ab) (b + €). For this the algorithm returns the value

(Right((Char(a),Char(b))), Right(Void))

as answer, which means the underlined parts of ry contributed (according to
POSIX rules) how the string ab is matched. Pictorially the whole process can
be illustrated as follows:

o dera> " derb> y, nullable
lmkeps
COR U1 € U2
inja injb

where the upper line is the first phase calculating derivatives or regular expres-
sions. At the end of the line we test whether the resulting regular expression is
nullable; if yes, then we call mkeps in order to calculate the first value (v3 in the
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picture). Then we go back on the lower line (the second phase) to the beginning
of the string. For this the inj function takes the regular expression r;_1 and v;,
as well as the character from the derivative, as input and calculates v;_;.

Again the virtues of this algorithm is that it can be implemented with ease.
Although we could verify the first phase already and also all facts about mkeps
from the paper by Sulzmann and Lu, reasoning about the second phase and
and ordering =}y (explained below) is not so straightforward. We shall show
this next, but before we shall outline the definitions from [8] about a greedy
regular matching algorithm. This is where the inspiration for Sulzmann and
Lu came from.

5 Greedy Ordering Rules

Sulzmann and Lu explicitly refer to the paper [8] by Frisch and Cardelli from
where they have taken their main idea for their correctness proof of the POSIX
algorithm. Frisch and Cardelli introduced an ordering, written 3=, for val-
ues and they show that their greedy matching algorithm always produces a
maximal element according to this ordering (from all possible solutions). The
ordering 3= ¢ is defined by the following rules:

U1 Fgr Z)/1 U2 Fgr Ué
(01102) Fgr (0/1/0/2) (01/02) Fgr (vllvlz)
U1 Fgr U2 U1 Fgr U2

Left vy =gr Left vy Right vy =gy Right vo

Left v =gr Right vq

U1 Fgr U2 US1 =gr US2
U1 11 US] i=gr U 1 USy VI US] Fgr U US)
v 08 =gr |[]
Char ¢ =gy Char c Void ‘=4, Void

That these rules realise a greedy ordering can be seen in the first rule in the
third line where a Left-value is always bigger than (or preferred over) a Right-
value. What is interesting for our purposes is that the properties reflexivity,
totality and transitivity for this greedy ordering can be proved relatively easily
by induction.? This is illustrated next:

Lemma 1 (Reflexivity). If = v : r then v ‘=g, ©.

Proof. This is by a straightforward induction on the definition of - v : . O

2] have formalised these proofs in Isabelle.
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Lemma 2 (Totality). Ift- v : rand = vy : v then vy 2= V3 0r V2 =g 1.

Proof. This is again by a straightforward induction on the definition of - v1 : ¥
and a case-analysis of - v : 7. O

More interesting is the proof for transitivity which can be shown by induction
onr.

Lemma 3 (Transitivity). Suppose = v : 7, vy i rand = o3 : 1. If vy =g v and
U2 t=gr U3 then vq =gy V3.

Proof. By induction on r analysing all cases of - v; : r and so on. The only
interesting case is for sequences, where we can assume vy = (vy;,01,), V2 =
(v2,v2), and v3 = (v3],v3,). We need to show that (vy;,v1,) =g (v31,03/)
under the assumptions that (v1;,v1,) =g (v21,v2,) and (v, v2r) =gr (v31,V3r)
hold. There are two rules which could have derived each assumption. For
example vy; *=¢r Uy and vy i=¢r U3. In this case we can apply the induction
hypothesis and derive vy; =g v3 from this we obtain (vq;,v1,) =¢r (v31,V3).
The other three cases are similar (where in one case we need to appeal to the
reflexivity property). O

It should not come as a surprise that if we make changes to the ordering rules,
the proof ideas behind these proofs might not necessarily transfer to the mod-
ified rules. That is what we shall show in the next section about the POSIX
ordering rules introduced by Sulzmann and Lu.

6 POSIX Ordering Rules and Correctness Proofs

There are a number of proofs in [16] that suffer from a problem where the in-
duction hypothesis is not strong enough. This problem arises from how the
POSIX ordering rules are defined and what properties they satisfy. Recall that
the correctness proof of the POSIX matching algorithm in [16] needs to establish
that a maximal value is returned amongst all possible values. That requires for
example a proof that there is a unique maximal element (otherwise there might
be several “correct” answers, which would be counter intuitive).

As mentioned before, the rules by Sulzmann and Lu are a variant of the
greedy rules by Cardelli and Frisch. The difference is that Sulzmann and Lu’s
ordering, written =}y, also includes a regular expression.® The rules are as
follows:

3Though, we have already shown that the regular expression in the =}y -ordering is
redundant—it does not contribute to what is defined.

12



T /
01 Zpx U1

(01,02) =y (01, 05)
len|vy| > len|vq|

0y Fpx Uh
(v1,02) =Py (v1,75)

len|v1| > len|v,|

Right vy =" Left vy

T /
vy Fpx U2

Right vy =77 Right vh
|v:ovs| =]
) 7y 0505

;
U1 Fpx U2

:
U1 1 US| =pyx U2 i USp

Char ¢ =px Char ¢

Left vy =™ Right vy

T !
U1 Fpx U1

Left vy =™ Left v}

o vs| # ]

0208y |

.
vS1 =px US2

:
VUS| Epx U US)

Void =% Void

The interesting rules are in the second line. For this remember that the greedy
ordering always prefers a Left-value over a Right-value. This is different in
POSIX rules above: there a Right-value is preferred when it can match a longer
string (the rule on the left); a Left-value is only preferred when it can match a
longer or equal string than the Right-value. Perhaps surprisingly, but perhaps
not, this “small” change has drastic consequences for the proofs.

To start with, transitivity does not hold anymore in the “normal” formula-
tion, that is:

Property 1. Suppose - vy : v, = vy i rand = v3 : 1. If v1 =py V2 and vy Fpy U3
then vq >;§3X v3.

If formulated like this, then there are various counter examples: Suppose r is
a+ ((a+a)(a+ e)) then the v1, v; and v3 below are values of r:

vy = Left(Chara)
vy = Right((Left(Char a), Right(Void)))
vs = Right((Right(Char a), Left(Char a)))

Moreover vy =pby v2 and vy =py ©3, but not vy =py v3! The reason is that
although v3 is a Right-value, it can match a longer string, namely |v3| = aa,
while |v1| (and |v;|) matches only a. So transitivity in this formulation does not
hold —in this example actually v3 =py v1!

Sulzmann and Lu “fix” this problem by weakening the transitivity property.
They require in addition that the underlying strings are of the same length. This
excludes the counter example above and any counter-example we could find
with our implementation. Thus the transitivity lemma in [16] is:

Property 2. Suppose vy : v, vy i rand b vs @ v, and also |v1| = |va| = |v3].
Ifvg %%X vy and vy %%X v3 then vq %%X U3.

13



While we agree with Sulzmann and Lu that this property probably holds, prov-
ing it seems not so straightforward. Sulzmann and Lu do not give an explicit
proof of the transitivity property, but give a closely related property about the
existence of maximal elements. They state that this can be verified by an induc-
tion on r. We disagree with this as we shall show next in case of transitivity.

The case where the reasoning breaks down is the sequence case, say r; 1.
The induction hypotheses in this case are

IH rq: IH ry:
Yvi,00,0v3. Foi:iry A Youi,v2,03. Fovi:irm A
Foy:rp A Foy:rm A
Fog:rp A Fog:r A
1] = |o2] = vs| A 1] = [v2] = [v3] A
V1 Fpy U2 A U2 =py U3 U1 Ry U2 A U2 =Py U3
= U1 Fpx U3 = V1 =Py U3

We can assume that

(011, 017) =px® (021, 02r) and (021, 02¢) = px” (031, 03r) (1)

hold, and furthermore that the values have equal length, namely:

|(v11,017)| = [(v21,02,)]  and  |(vy, v2)| = |(v31,03)] 2)

We need to show that

(v11,017) =5y (031, 03)

holds. We can proceed by analysing how the assumptions in (1) have arisen.
There are four cases. Let us assume we are in the case where we know

T T
v Fpx V21 and Uy =py U3

and also know the corresponding typing judgements. This is exactly a case
where we would like to apply the induction hypothesis IH r;. But we cannot!
We still need to show that |vy;| = |vy| and |vy| = |vs;|. We know from (2)
that the lengths of the sequence values are equal, but from this we cannot infer
anything about the lengths of the component values. Indeed in general they
will be unequal, that is

|o11| # |va] and [o1,| # |v2r]

but still (2) will hold. Now we are stuck, since the IH does not apply. Sulzmann
and Lu overlook this fact and just apply the IHs. Obviously nothing which a
theorem prover allows us to do.

The immediate effect is that the existence of a unique maximal value cannot
be inferred. We know totality of =}, and know that for every regular expres-
sion there are only a finite number of (proper) values. But without transitivity
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it seems hard to establish that given a regular expression and given a string,
there exists always a unique maximal value...which the algorithm is supposed
to calculate. Without this basic property, the whole correctness proofs already
collapses.

But let us assume we could somehow establish this properties by other rea-
soning steps. Surprisingly all main proofs in [16] are “infected” from this bogus
reasoning, not just transitivity. There is a proof in [16] that the inj-function pre-
serves maximal elements. This follows similar reasoning and therefore breaks
down when subvalues of a sequence are required to have equal length.

The advantage of having such proofs formalised in Isabelle, say, is that all
assumptions are clearly spelled out—the restriction about the equal lengths is
somewhat opaque in the paper by Sulzmann and Lu. It seems Sulzmann and
Lu are actually not really aware of them, judging from their reply shown in the
Introduction. To sum up, the weakening of the properties by requiring that
values need to have equal length seems to make the properties to hold, but
destroys all inductive properties in the sequence case.

7 Conclusion and Future Work

At the moment I am working on fixing the correctness proof of Sulzmann and
Lu. This should yield a publication at a venue like ITP, where such work about
formalisations is valued (especially since it fixes a problem that has been over-
looked by “pencil-and-paper” reasoning). I have now the necessary theorem
proving skills to do such a proof in the theorem prover Isabelle. I was already
able to verify a number of results from the Sulzmann and Lu paper, like all
properties about mkeps. What is missing are the proofs about the existence of
unique maximal elements and proofs about inj. While attempting to prove the
former, I found that the regular expression r in the POSIX-ordering =} is re-
dundant in the definition by Sulzmann and Lu. That is, I could show that

U1 =px U2 holds if and only if V1 =px U2

After completing the proof, the plan is to make the algorithm as fast as pos-
sible. This includes the simplification steps which we omitted in this report. I
do not foresee any problems with this in terms of proving the correctness of
the improved version of the POSIX matching algorithm. However it is clear
that this will not produce an implementation for a lexer that is on par with
automata based lexers. These lexers might be fast, but of course they are not
formally proven to be correct and it seems difficult to do so (since it is hard to
reason formally about automata). We therefore want to achieve speed via a dif-
ferent route: there is already very promising work on a verified compiler for the
SML language. This work is done in HOL, not in the Isabelle theorem prover.
The algorithm by Sulzmann and Lu only requires a very simple functional lan-
guage, much simpler than SML. We therefore aim at implementing a very small
functional programming language inside the Isabelle theorem prover and then
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implement a verified compiler for it. Since our language will be very small, it
should be feasible to achieve this given the time constraints. This will build
on my work I did during my MSc where I already implemented a compiler for
a small language —of course at the time I did not verify the correctness of the
compiler. Once this is done, I expect another publication containing the verified
compiler and the case study about the POSIX matching algorithm.

Of course such a result relies on me being able to fix the proof of Sulzmann
and Lu. If I am unable to fix the proof, then there are a number of options.
One is to change the algorithm to a version that is easier to verify. For example
there is a slight variant of Brzozowski’s notion of regular expression deriva-
tives, called partial derivatives [2]. Perhaps these partial derivatives help with
establishing the correctness of a POSIX matcher. However this is a bit specu-
lative, since partial derivatives have never been used in the context of lexing.
Another option is to just focus on the compilation part. This part is less specu-
lative, as there is some previous work. The novelt of our work is to start from
a very small functional programming language and generate for example JVM
code (for which there exists the necessary formal model in Isabelle). If this all
fails, ther might be a possibility to continue work I like to do as intern at FireEye.
They use the Coq theorem prover in order to verify parts of an operating sys-
tem. I am not yet hired by them, but have already advanced to the second stage
of their selection process and have been invited to come to Dresden, Germany,
in order to talk to their lead developers.

To sum up, the main goal for my PhD is a fix for the correctness proof given by
Sulzmann and Lu, and then generating machine code for the algorithm that is
provably correct with respect to the fixed, high-level, correctness proof.
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