
POSIX Lexing with Bitcoded Derivatives
Chengsong Tan !

King’s College London

Christian Urban !

King’s College London

Abstract

Sulzmann and Lu described a lexing algorithm that calculates Brzozowski derivatives using bitcodes annotated
to regular expressions. Their algorithm generates POSIX values which encode the information of how a regular
expression matches a string—that is, which part of the string is matched by which part of the regular expression.
The purpose of the bitcodes is to generate POSIX values incrementally while derivatives are calculated. They
also help with designing an ‘aggressive’ simplification function that keeps the size of derivatives small. Without
simplification derivatives can grow exponentially resulting in an extremely slow lexing algorithm. In this paper
we describe a variant of Sulzmann and Lu’s algorithm: Our algorithm is a recursive functional program, whereas
Sulzmann and Lu’s version involves a fixpoint construction. We (i) prove in Isabelle/HOL that our program
is correct and generates unique POSIX values; we also (ii) establish a polynomial bound for the size of the
derivatives. The size can be seen as a proxy measure for the efficiency of the lexing algorithm: because of the
polynomial bound our algorithm does not suffer from the exponential blowup in earlier works.

2012 ACM Subject Classification Design and analysis of algorithms; Formal languages and automata
theory

Keywords and phrases POSIX matching, Derivatives of Regular Expressions, Isabelle/HOL

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

In the last fifteen or so years, Brzozowski’s derivatives of regular expressions have sparked quite
a bit of interest in the functional programming and theorem prover communities. The beauty of
Brzozowski’s derivatives [3] is that they are neatly expressible in any functional language, and easily
definable and reasoned about in theorem provers—the definitions just consist of inductive datatypes
and simple recursive functions. A mechanised correctness proof of Brzozowski’s matcher in for
example HOL4 has been mentioned by Owens and Slind [9]. Another one in Isabelle/HOL is part of
the work by Krauss and Nipkow [6]. And another one in Coq is given by Coquand and Siles [4].

The notion of derivatives [3], written r\c, of a regular expression give a simple solution to the
problem of matching a string s with a regular expression r: if the derivative of r w.r.t. (in succession)
all the characters of the string matches the empty string, then r matches s (and vice versa). The
derivative has the property (which may almost be regarded as its specification) that, for every string s
and regular expression r and character c, one has cs ∈ L r if and only if s ∈ L (r\c).

If a regular expression matches a string, then in general there is more than one way of how the
string is matched. There are two commonly used disambiguation strategies to generate a unique
answer: one is called GREEDY matching [5] and the other is POSIX matching [1, 7, 8, 10, 11]. For
example consider the string xy and the regular expression (x + y + xy)?. Either the string can be
matched in two ‘iterations’ by the single letter-regular expressions x and y, or directly in one iteration
by xy. The first case corresponds to GREEDY matching, which first matches with the left-most
symbol and only matches the next symbol in case of a mismatch (this is greedy in the sense of
preferring instant gratification to delayed repletion). The second case is POSIX matching, which
prefers the longest match.

© ;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chengsong.tan@kcl.ac.uk
mailto:christian.urban@kcl.ac.uk
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 POSIX Lexing with Bitcoded Derivatives

r1 r2
_\a

r3
_\b

r4
_\c

nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

Figure 1 The two phases of the algorithm by Sulzmann & Lu [10], matching the string [a, b, c]. The first
phase (the arrows from left to right) is Brzozowski’s matcher building successive derivatives. If the last regular
expression is nullable, then the functions of the second phase are called (the top-down and right-to-left arrows):
first mkeps calculates a value v4 witnessing how the empty string has been recognised by r4. After that the
function inj “injects back” the characters of the string into the values.

([], 1)→ Empty
P1

([c], c)→ Char c
Pc

(s, r1)→ v

(s, r1 + r2)→ Left v
P+L

(s, r2)→ v s /∈ L r1

(s, r1 + r2)→ Right v
P+R

(s1, r1)→ v1 (s2, r2)→ v2

@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r1 ∧ s4 ∈ L r2

(s1 @ s2, r1 · r2)→ Seq v1 v2
PS

([], r?)→ Stars []
P[]

(s1, r)→ v (s2, r?)→ Stars vs |v| 6= []
@ s3 s4. s3 6= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r ∧ s4 ∈ L (r?)

(s1 @ s2, r?)→ Stars (v :: vs)
P?

Figure 2 Our inductive definition of POSIX values.

0\c def= 0

1\c def= 0

d\c def= if c = d then 1 else 0

(r1 + r2)\c def= (r1\c) + (r2\c)
(r1 · r2)\c def= if nullable r1

then (r1\c) · r2 + (r2\c)
else (r1\c) · r2

(r?)\c def= (r\c) · r?

nullable (0) def= False

nullable (1) def= True

nullable (c) def= False

nullable (r1 + r2) def= nullable r1 ∨ nullable r2

nullable (r1 · r2) def= nullable r1 ∧ nullable r2

nullable (r?) def= True

2 Background

Sulzmann-Lu algorithm with inj. State that POSIX rules. metion slg is correct.

mkeps 1 def= Empty

mkeps (r1 · r2) def= Seq (mkeps r1) (mkeps r2)
mkeps (r1 + r2) def= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)
mkeps (r?) def= Stars []

C. Tan and C. Urban XX:3

(1) inj d c (Empty) def= Char d

(2) inj (r1 + r2) c (Left v1) def= Left (inj r1 c v1)
(3) inj (r1 + r2) c (Right v2) def= Right (inj r2 c v2)
(4) inj (r1 · r2) c (Seq v1 v2) def= Seq (inj r1 c v1) v2

(5) inj (r1 · r2) c (Left (Seq v1 v2)) def= Seq (inj r1 c v1) v2

(6) inj (r1 · r2) c (Right v2) def= Seq (mkeps r1) (inj r2 c v2)
(7) inj (r?) c (Seq v (Stars vs)) def= Stars (inj r c v :: vs)

3 Bitcoded Regular Expressions and Derivatives

bitcoded regexes / decoding / bmkeps gets rid of the second phase (only single phase) correctness

code (Empty) def= []
code (Char c) def= []
code (Left v) def= Z :: code v

code (Right v) def= S :: code v

code (Seq v1 v2) def= code v1 @ code v2

code (Stars []) def= [S]
code (Stars (v :: vs)) def= Z :: code v @ code (Stars vs)

The idea of the bitcodes is to annotate them to regular expressions and generate values incrementally.
The bitcodes can be read off from the breg and then decoded into a value.

breg ::= ZERO
| ONE bs
| CHAR bs c
| ALTs bs rs
| SEQ bs r1 r2

| STAR bs r

retrieve (ONE bs) (Empty) def= bs

retrieve (CHAR bs c) (Char d) def= bs

retrieve (ALTs bs [r]) v
def= bs @ retrieve r v

retrieve (ALTs bs (r :: rs)) (Left v) def= bs @ retrieve r v

retrieve (ALTs bs (r :: rs)) (Right v) def= bs @ retrieve (ALTs [] rs) v

retrieve (SEQ bs r1 r2) (Seq v1 v2) def= bs @ retrieve r1 v1 @ retrieve r2 v2

retrieve (STAR bs r) (Stars []) def= bs @ [S]
retrieve (STAR bs r) (Stars (v :: vs)) def= bs @ [Z] @ retrieve r v @ retrieve (STAR [] r) (Stars vs)

I Theorem 1. blexer r s = lexer r s

4 Simplification

Sulzmann & Lu apply simplification via a fixpoint operation; also does not use erase to filter out
duplicates.

XX:4 POSIX Lexing with Bitcoded Derivatives

(SEQ bs ZERO r2) (ZERO) (SEQ bs r1 ZERO) (ZERO) (SEQ bs1 ONE bs2 r) fuse (bs1 @ bs2) r
r1 r2

(SEQ bs r1 r3) (SEQ bs r2 r3)
r3 r4

(SEQ bs r1 r3) (SEQ bs r1 r4)

(ALTs bs []) (ZERO) (ALTs bs [r]) fuse bs r
rs1 s rs2

(ALTs bs rs1) (ALTs bs rs2)

[] s []
rs1 s rs2

(r :: rs1) s (r :: rs2)
r1 r2

(r1 :: rs) s (r2 :: rs)

(ZERO :: rs) s rs (ALTs bs rs1 :: rs2) s (map (fuse bs) rs1 @ rs2)
r1

↓ = r2
↓

(rs1 @ [r1] @ rs2 @ [r2] @ rs3) s (rs1 @ [r1] @ rs2 @ rs3)

Figure 3 ???

not direct correspondence with PDERs, because of example problem with retrieve
correctness

5 Bound - NO

6 Bounded Regex / Not

7 Conclusion

[2]

References

1 The Open Group Base Specification Issue 6 IEEE Std 1003.1 2004 Edition, 2004. http://pubs.opengroup.
org/onlinepubs/009695399/basedefs/xbd_chap09.html.

2 F. Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives of Regular Expressions (Proof
Pearl). In Proc. of the 7th International Conference on Interactive Theorem Proving (ITP), volume 9807
of LNCS, pages 69–86, 2016.

3 J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481–494, 1964.
4 T. Coquand and V. Siles. A Decision Procedure for Regular Expression Equivalence in Type Theory. In

Proc. of the 1st International Conference on Certified Programs and Proofs (CPP), volume 7086 of LNCS,
pages 119–134, 2011.

5 A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In Proc. of the 31st International
Conference on Automata, Languages and Programming (ICALP), volume 3142 of LNCS, pages 618–629,
2004.

6 A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence and Relation Algebra. Journal of
Automated Reasoning, 49:95–106, 2012.

7 C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex_Posix.
8 S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching via Position Automata with

Augmented Transitions. In Proc. of the 15th International Conference on Implementation and Application
of Automata (CIAA), volume 6482 of LNCS, pages 231–240, 2010.

http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
https://wiki.haskell.org/Regex_Posix

C. Tan and C. Urban XX:5

9 S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order and
Symbolic Computation, 21(4):377–409, 2008.

10 M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of the 12th
International Conference on Functional and Logic Programming (FLOPS), volume 8475 of LNCS, pages
203–220, 2014.

11 S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on Programming
Languages and Systems, 28(3):389–428, 2006.

	1 Introduction
	2 Background
	3 Bitcoded Regular Expressions and Derivatives
	4 Simplification
	5 Bound - NO
	6 Bounded Regex / Not
	7 Conclusion

