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Abstract

Lexers and parsers are attractive targets for attackers because
they often sit at the boundary between a software system’s
internals and the outside world. Formally verified lexers can
reduce the attack surface of these systems, thus making them
more secure.
One recent step in this direction is the development of

Verbatim, a verified lexer based on the concept of Brzozowski
derivatives. Two limitations restrict the tool’s usefulness.
First, its running time is quadratic in the length of its input
string. Second, the lexer produces tokens with a simple łtag
and stringž representation, which limits the tool’s ability to
integrate with parsers that operate on more expressive token
representations.

In this work, we present a suite of extensions to Verbatim
that overcomes these limitations while preserving the tool’s
original correctness guarantees. The lexer achieves effec-
tively linear performance on a JSON benchmark through a
combination of optimizations that, to our knowledge, has
not been previously verified. The enhanced version of Verba-
tim also enables users to augment their lexical specifications
with custom semantic actions, and it uses these actions to
produce semantically rich tokensÐi.e., tokens that carry val-
ues with arbitrary, user-defined types. All extensions were
implemented and verified with the Coq Proof Assistant.

CCS Concepts: · Security and privacy→ Logic and ver-

ification; · Software and its engineering → Parsers; ·
Theory of computation → Regular languages.

Keywords: lexical analysis, formal verification, Brzozowski
derivatives, semantic actions

ACM Reference Format:

Derek Egolf, Sam Lasser, and Kathleen Fisher. 2022. Verbatim++:

Verified, Optimized, and Semantically Rich Lexing with Derivatives.

In Proceedings of the 11th ACM SIGPLAN International Conference

CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9182-5/22/01.

https://doi.org/10.1145/3497775.3503694

on Certified Programs and Proofs (CPP ’22), January 17ś18, 2022,

Philadelphia, PA, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3497775.3503694

1 Introduction

Lexers and parsers often serve as a boundary between the
internals of a software system and the outside world. For
this reason, they are attractive targets for attackers, who
seek to gain access to the system’s internals by exploiting
bugs in the outward-facing components. Recent literature
on software vulnerabilities includes many examples of this
phenomenon [8ś10, 14, 19ś21]. Formally verified lexers thus
have the potential to make software systems more secure by
reducing their attack surface.

One recent contribution in service of this goal is the devel-
opment of Verbatim [7], a verified lexer based on the concept
of Brzozowski derivatives. While this tool serves as a useful
starting point for further work on verified lexing, two limita-
tions restrict its usefulness in real-world settings. First, the
lexer’s running time is quadratic in the length of its input
string; unverified alternatives typically offer asymptotically
better performance. Second, the lexer produces tokens with
a simple łtagged stringž representation, where the tag indi-
cates which lexical rule produced the token and the string is
a portion of the input string. Ideally, a lexer should be able
to produce tokens that carry values of different types; this
feature supports easy integration with a downstream parser
that produces a result with a user-defined type.
In this work, we present a suite of optimizations and ex-

tensions to Verbatim that overcomes these limitations and
that retains Verbatim’s original correctness guarantees. Our
contributions are as follows:

• We present three verified optimizations to Verbatim:
ś Compiling regular expressions to deterministic finite
automata (DFAs) for faster regex matching

ś Memoizing the results of lexer subroutine calls to
avoid redundant computations

ś Replacing memoized strings with string lengths for
faster cache lookups

We have implemented these optimizations with the
Coq Proof Assistant. Each one comes with a mecha-
nized correctness proofÐi.e., a proof that the optimized
lexer satisifies the same high-level specification as the

This work is licensed under a Creative Commons Attribution 4.0 Interna-
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original one. To our knowledge, this combination of
optimizations has not been previously verified.

• We demonstrate that these optimizations significantly
improve the lexer’s performance on a JSON bench-
mark. The optimized lexer outperforms the naive ver-
sion in terms of both asymptotic behavior and point-
for-point lexing speed; performance improves from
quadratic to effectively linear, and the optimized lexer
is faster than the naive one by a factor of roughly 200
on the largest data point.

• We extend Verbatim with the ability to produce se-
mantically rich tokensÐtokens that carry values with
user-specified typesÐand we demonstrate empirically
that using this extension need not increase the lexer’s
performance overhead.

In addition, we believe that this work highlights the bene-
fits of a multi-stage approach to developing verified software,
in which proving functional correctness and optimizing per-
formance occur in separate stages. By gradually adding lay-
ers of optimization to an existing reference implementation,
we were able to keep the proofs about the optimizations
relatively simple and tractable. In fact, most of these proofs
simply show that the optimizations preserve the extensional
behavior of the łreferencež lexer, which is already known to
be correct.

The paper is organized as follows. ğ2 contains background
material on regular expressions and regex matching with
Brzozowski derivatives; it also outlines Verbatim’s high-level
structure and correctness specification. ğ3, ğ4, and ğ5 present
the three verified lexer optimizations that are among this
work’s main contributions. Each of these sections explains
the intuition behind one optimization, describes its imple-
mentation, sketches its mechanized correctness proof, and
presents experimental results that demonstrate the optimiza-
tion’s contribution to performance. ğ6 describes our scheme
for extending the lexer with semantic actions, which enable
the lexer to produce semantically rich tokens. We discuss
related work in ğ7 and future work in ğ8. Finally, we sum-
marize the paper and its impact in ğ9.
The Coq development that accompanies this paper is

publicly available online [6]. The development consists of
roughly 1900 lines of specification and 3100 lines of proofÐ
more than twice the size of the previous version of Verbatim.

2 Background

This paper expands on the previous work on Verbatim. The
following section explains the overhead required to under-
stand Verbatim.

2.1 Regular Expressions

Regular expressions (regexes) inductively denote regular
languages. They are commonly used to specify lexical rules.
If a string z is in the language represented by regex e , we say

Symbol a,b ∈ Σ

String z ::= λ | az

Regex e ::= ∅ | ε | [[a]] | e + e | e · e | e∗

Rule r ::= (l , e)

Token t ::= (l , z)

Figure 1. Definition of strings, regular expressions, lexical
rules, and tokens over an alphabet Σ. Metavariable l ranges
over labels, a type that the user defines as part of a lexi-
cal specification. For brevity, we write non-empty strings
without a terminal λ. For example, we write a instead of aλ.

(MEmpty)

λ ≃ ε

(MChar)

a ≃ [[a]]

(MApp)

z1 ≃ e1 z2 ≃ e2

z1 ++ z2 ≃ e1 · e2

(MUnionL)

z ≃ e1

z ≃ e1 + e2

(MUnionR)

z ≃ e2

z ≃ e1 + e2

(MStar0)

λ ≃ e∗

(MStarApp)

z1 ≃ e z2 ≃ e∗

z1 ++ z2 ≃ e∗

Figure 2. Formal specification of string-regex matching,
where a string is a λ-terminated list of symbols from al-
phabet Σ and z1 ++ z2 is the concatenation of strings z1 and
z2.

that z matches e and write z ≃ e . Verbatim uses the canonical
definitions of regexes (Figure 1) and regex matching (Figure
2) from Software Foundations [23], a textbook on interactive
theorem proving.

We make a distinction between the empty string λ and the
empty regex ε , which denotes the language {λ}. Also, a is
the string consisting solely of symbol a, but [[a]] is the regex
that denotes {a}, the language containing only that string.
The empty language is denoted by the regex∅. Given e1 and
e2, which denote languages L1 and L2 respectively, we say
that e1 + e2 denotes L1 ∪ L2. Additionally, e1 · e2 denotes

{z1 ++ z2 | z1 ∈ L1 and z2 ∈ L2}

Finally, if e denotes L, then e∗ denotes

{ε} ∪

∞
⋃

n=1

{z1 ++ z2 ++ ... ++ zn | ∀i, zi ∈ L}

Verbatim represents a lexical rule as a label-regex pair. A
string z matches a rule (l , e) iff z ≃ e . The notation z ≃ (l , e)

represents such a match.
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(Prefix)

p ++ s = z

Prefix p z

(MaxPref)

Prefix p z r ∈ R p ≃ r

∀p ′, Prefix p ′ z ∧ len p < len p ′ → ∀r ′ ∈ R,¬(p ′ ≃ r ′)

MaxPref
R
p z

Figure 3. Definition of the maximal prefix of a string z with
respect to a list of lexical rules R.

2.2 Maximal Prefixes

The concept of a maximal prefix is central to Verbatim’s
implementation and correctness specification. If string z =
p ++ s , we say that p is a prefix of z and we write Prefix p z.
Given a list of rules R and a string z, we say that p is the
maximal prefix of z with respect to R iffp is the longest prefix
of z that matches some rule in R. Under those conditions, we
write MaxPref

R
p z. Figure 3 gives the formal definition.

2.3 Brzozowski Derivatives

Verbatim uses a regex matching algorithm based on the con-
cept of Brzozowski derivatives [3]. The derivative of a lan-
guage L with respect to symbol a is defined as follows:

∂aL = {z | az ∈ L}

Informally, the derivative operation removes the leading a
from those strings in L that begin with a and includes only
the resulting suffixes.
The operation can be extended to strings recursively:

∂λL = L

∂azL = ∂z (∂aL)

So if we have a string z and a regular language L, we can
conclude by induction on the string that

z ∈ L ⇐⇒ λ ∈ ∂zL

One can extend the concept of a derivative from a regu-
lar language to a regular expression. Intuitively, if regex e
represents language L, then ∂ae = e ′ represents ∂aL. The
following algorithm recursively computes the derivative of
a regular expression with respect to a character a:

∂a∅ := ∅

∂aε := ∅

∂a[[b]] := if a == b then ε else ∅

∂a(e1 + e2) := ∂ae1 + ∂ae2

∂a(e1 · e2) := (∂ae1 · e2)

+ (if nullable e1 then ∂ae2 else ∅)

∂a(e
∗) := ∂ae · e

∗

where nullable r evaluates to true if λ ≃ r and false

otherwise:

nullable ∅ := false

nullable ε := true

nullable [[b]] := false

nullable (e1 + e2) := nullable e1 ∨ nullable e2

nullable (e1 · e2) := nullable e1 ∧ nullable e2

nullable e∗ := true

2.4 Verbatim Definitions

The Verbatim implementation has three main components: a
top-level lex function, a maximal prefix finder, and a regex
matcher.
The top-level interface has the following signature:

lex : String -> list Rule

-> (list Token) * String

The function takes as input a string and the lexical rules with
which to lex that string, and returns as output a list of tokens
and the unprocessed suffix of the input string.

The lex function tokenizes the input by repeatedly calling
the maximal prefix finder function max_pref:

max_pref : String -> list Rule

-> Label * option (String * String)

This function takes a string and a list of lexical rules, and
it returns the longest prefix matching any rule, the comple-
mentary suffix, and the label associated with the earliest
matching rule. The function returns (∆, None)Ðwhere ∆ is a
user-defined default labelÐif no maximal prefix can be found
for any rule.
The max_pref function is defined in terms of a singleton

maximal prefix finder:

maxpref_one : Rule -> String

-> option (String * String)

which returns themaximal prefix thatmatches a single lexical
rule and its complementary suffix, or None when no prefix
matches the rule.

Finally, maxpref_one finds maximal prefixes with the help
of a regex matcher. The matcher takes a regex and a string
as input, and it recursively takes derivatives of the regex for
each character in the string. The matcher returns true if the
resulting regex is nullable and false otherwise.

2.5 Verbatim Correctness

Verbatim is correct with respect to a standard lexer spec-
ification based on the łmaximal munchž principle [4]. In
essence, this principle says that each token should be formed
by taking a łmaximal munchž of the remaining input stringÐ
i.e., the maximal prefix that matches a lexical rule. When
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(FirstToken)

p , λ MaxPref
R
p z p ≃ (l , e) (l , e) ∈ R

∀r ′, Index
R
r ′ < Index

R
(l , e) → ¬(p ≃ r ′)

FirstToken
R
(l ,p) z

(TokensNil)

∀t ,¬FirstToken
R
t z

Tokens
R
([ ], z) z

(TokensCons)

z = p ++ s FirstToken
R
(l ,p) z Tokens

R
(ts,u) s

Tokens
R
((l ,p) :: ts,u) z

Figure 4. Formal specification of the maximal munch prin-
ciple applied to a string z and a list of lexical rules R. In
TokensCons, the unprocessed suffix is u; in TokensNil, all
of z is unprocessed.

multiple rules match the same maximal prefix, the rule that
appears first in the list of rules should apply.

Verbatim’s formalization of the maximal munch principle
appears in Figure 4. The FirstToken predicate holds for a
token (l ,p) and a string z with respect to a list of rules R
when

• p is non-empty
• p is the maximal prefix of z
• p matches some rule with label l : (l , e) ∈ R

• (l , e) is the first rule in R that matches p

in which case we write FirstToken
R
(l ,p) z.

The FirstToken predicate is used to define the Tokens in-
ductive predicate, Verbatim’s main correctness specification.
This latter predicate says that a string’s correct tokenization
consists of the initial token that FirstToken produces, fol-
lowed by the correct tokenization of the resulting suffix (see
the TokensCons rule). When no first token exists, the entire
remaining suffix should be returned unprocessed (see the
TokensNil rule). We write Tokens

R
(ts,u) z to mean that ts

are the correct tokens for some prefix z of input string z ++u,
where u is the (often empty) part of the string that could not
be processed.
With this specification in hand, we can state Verbatim’s

high-level correctness properties:

1. Soundness: If Verbatim produces a tokenization for
its input, then that tokenization is correct according
to the maximal munch specification.

2. Uniqueness: According to the specification, there is
only one way to tokenize a string with a given list of
rules.

3. Completeness: If a tokenization for a given input
string is correct according to the specification, then
Verbatim outputs exactly that tokenization.

3 Optimization #1: A DFA-Based Matcher

The singleton maximal prefix finder maxpref_one (Section
2.4) is parametric in the regexmatcher that it uses. Verbatim’s
original regex matcher computed Brzozowski derivatives at
runtime, but this approach is expensive. The first optimiza-
tion we make to the naive lexer is to replace the derivative-
basedmatcher with a DFA-basedmatcher. Because the lexical
rules are still defined with regexes, it is necessary to convert
those regular expressions to DFAs. Brzozowski gave an algo-
rithm for this conversion [3]; our verified implementation
uses a modified version of this algorithm.

3.1 DFA Representation

Recall that a DFA is typically defined as a 5-tuple

(Q, Σ,δ ,q0, F )

where

• Q is a finite set of states
• Σ is a finite alphabet
• δ : Q × Σ → Q is the transition function
• q0 ∈ Q is the start state
• F ⊆ Q is the set of accepting states

We define the DFA corresponding to a regular expression
as follows. First, our states are denoted by regular expres-
sions.We treatq0 as a pointer while doing incremental match-
ing; for example, if we want to know if the string az is ac-
cepted by the DFA (Q, Σ,δ ,q0, F ), we compute δ (q0,a) = q1
and then recursively determine if z is accepted by the up-
dated machine (Q, Σ,δ ,q1, F ). As a base case, (Q, Σ,δ ,qn , F )
accepts ε if qn is an accepting state. We also relax the usual
finiteness requirements. Namely, we say that Q is the set of
all regular expressions (an infinite set) and we define F as a
function from regular expressions to booleans, rather than
as a finite set. This function classifies a regex as an accepting
or non-accepting state. Finally, the following definitions for
the transition function and the accepting states complete the
construction of a DFA that mirrors the behavior of the naive
matcher on the input regex.

δ (e,a) = ∂ae

F (e) = nullable e

In the optimized matcher, we define δ in terms of a transi-
tion table: a 2D array whose rows are labeled with regexes
and whose columns are labeled with the elements of Σ. An
entryT [e,a] of the table is an option regexÐSome e ′ (filled)
or None (empty). If every cell of the table is filled and if every
entry appears as the label of a column, we say that the ta-
ble is complete. Otherwise we say that the table is partial. A
complete table can be used directly as the transition function:

δ (e,a) = T [e,a]
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3.2 Brzozowski’s Construction

In this section we describe Brzozowski’s procedure for con-
verting a regex into a theoretically complete transition table.
Brzozowski’s construction for converting a regex to a DFA
is based on the following correspondence:

• Regular expressions are states.
• Nullable regular expressions are accepting states.
• The Brzozowski derivative is the transition function.

The idea is to recursively label states with derivatives and
transition to those states on the appropriate symbol. States
labeled with nullable regexes are designated as accepting
states. The state diagram might look like this:

e

∂ae

a

a b

∂aae ∂abe

..
.

..
.

∂be
a b

∂bae ∂bbe

..
.

..
.

b

Some of those nodes may share the same label, so the result-
ing state diagram may not be a tree. Futhermore, Brzozowski
showed that the algorithm produces a finite number of states
modulo a notion of regex equivalence [3]. In other words, the
recursion depth is bounded by some finite number, de . There-
fore, the procedure will eventually terminate, producing a
finite state diagram.

3.3 Implementation

In this section we describe our implementation of Brzo-
zowski’s construction and explain how we soundly sidestep
arguments about the recursion depth bound. Given a regex
e , we use Brzozowski’s construction to create a transition
table T . The crux of our implementation is a function

fill_T : table -> regex -> list Σ -> N -> table

that recursively take derivatives with respect to all ele-
ments of a finite alphabet until some finite recursion depth
is achieved. We will write Σ to represent the list containing
all elements of type Σ.

Definition 3.1. The function

fill_T T e Σ n

is computed as follows. For each a ∈ Σ perform the following
operations and update T .

1. Compute ∂ae .
2. Update T so that T [e,a] = ∂ae .
3. If ∂ae appears as a row label in T , do not make a re-

cursive call. Continue iterating through Σ.

4. Otherwise, compute T ′
= fill_T T ∂ae Σ (n − 1) and

set T = T ′.

Let⊠ be the empty table and let de be Brzozowski’s recur-
sion depth. Once we have computed T = fill_T ⊠ e Σ de ,
we can compute the set of nullable states:

E = {e | e is a row label in T and nullable e = true}

We could then define δ and F as

δ (e,a) = T [e,a]

F (e) = e ∈ E

but these definitions would complicate the proof of correct-
ness. In particular, we know that T [e,a] = ∂ae only if the
entry at [e,a] is non-empty, so the above definitions only
work when T is complete. In order to prove the table com-
plete, we would need to formalize Brzozowski’s upper bound
proof in Coq. We avoid this complication by defining δ and
F as functions of T as follows:

Definition 3.2.

δ
T
(e,a) =

{

∂ae if T [e,a] = None

T [e,a] otherwise

Definition 3.3.

F
T
(e) =

{

e ∈ E if e is a row label in T

nullable e otherwise

In other words, we use information from the table when-
ever it is present. When it is not, we compute derivatives
(or check nullability) on the fly. The only proofs required
are that T [e,a] = ∂ae when that entry is not empty and
that all elements of E are nullable. The rest follows from the
correctness of the naive matcher.

We do not prove that the initial fuel argument to fill_T

is correct (i.e., sufficient to produce a complete transition
table). Insufficient fuel would result in an incomplete table,
and would therefore require the lexer to compute derivatives
at lex time, similar to the naive implementation. This possi-
bility is an optimization concern, not a correctness concern.
In our evaluations, the DFA-based lexer does not need to
compute derivatives on the fly, and its performance improves
considerably relative to the naive version (see Section 3.5).

3.4 Sketch of Mechanized Correctness Proof

The correctness proof for this optimization shows that the
automaton-based matcher is extensionally equivalent to the
naive matcher. Therefore, because the naive matcher is cor-
rect, so too is the optimized version.

Intuitively, we use fill_T to replace entries of the empty
table with derivatives. Therefore it is necessarily true that
every entry of the table is either empty or an appropriate
derivative. We refer to this property as Brzozowski-ness.
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Definition 3.4. A tableT is a Brzozowski table if for all e,a
either

T [e,a] = None

or

T [e,a] = ∂ae

We first show that Brzozowski-ness is closed under fill_T:

Lemma 3.5. For all n, e,T , Σ, if T is a Brzozowski table,
then

T ′
= fill_T T e Σ n

is also a Brzozowski table.

Proof. By induction on n. All other terms are general in the
inductive hypothesis.
When n = 0, T ′

= T and is therefore a Brzozowski table.
Before fill_T makes a recursive call, it updates the table to
contain an appropriate derivative (step 2 of Definition 3.1).
This step is the only time the function modifies an entry
of the table, outside of recursive calls. Now suppose T ′ is a
Brzozowski table for n − 1. Then the intermediate recursive
calls (step 4 of Definition 3.1) all produce Brzozowski tables.
The last of these recursive calls is the output of the function,
so the function as a whole returns a Brzozowski table. □

It follows immediately that filling an empty table results in
a Brzozowski table.

Corollary 3.6. The table

T = fill_T ⊠ e Σ de

is a Brzozowski table.

Proof. The empty table is trivially a Brzozowski table. It fol-
lows directly from Lemma 3.5 that T is a Brzozowski ta-
ble. □

We now show that the result of δ
T
is equivalent to the deriv-

ative and that F
T
is equivalent to nullable.

Lemma 3.7. Let e be a regular expression over alphabet Σ.
Additionally, let

T = fill_T ⊠ e Σ de

Then for all e ′ and a: δ
T
(e ′,a) = ∂ae

′.

Proof. Either T [e ′,a] is None or it is not. Suppose it is not
None. Then we know from Corollary 3.6 that T is a Brzo-
zowski table and therefore that

δ
T
(e ′,a) = T [e ′,a] = ∂ae

′

But in the case thatT [e ′,a] is None, it follows immediately
from the definition of δ

T
that

δ
T
(e ′,a) = ∂ae

′

□

Figure 5. Peformance comparison between the naive and
DFA-based lexers. The benchmark contains 30 JSON inputs
of varying size. Smaller inputs are prefixes of larger inputs.
Each point represents the lexer’s average execution time
across five trials for a given input.

Lemma 3.8. Let e be a regular expression over alphabet Σ.
Additionally, let

T = fill_T ⊠ e Σ de

Then for all e ′, F
T
(e ′) = nullable e ′.

Proof. The function F
T
(e ′) is equivalent, by definition, to

nullable e ′ when e ′ is not a row label inT . Otherwise, e ′ is a
row label inT and therefore e ′ ∈ E if and only if e ′ is nullable.
So in this case F

T
(e ′) is still equivalent to nullable e ′. □

Finally, we use these equivalences to show that this auto-
maton-based matcher is equivalent to the naive matcher,
which has already been proven correct.

Theorem 3.9. Let e be a regular expression over alphabet
Σ. Additionally, let T = fill_T ⊠ e Σ de and let DFA
D = (regex, Σ,δ

T
, e, F

T
).

Then string z is in the language of e iff D accepts z.

Proof. It follows immediately from Lemmas 3.7 and 3.8 that
D behaves exactly like the naive matcher. The naive matcher
is correct, so D is as well. □

3.5 Performance

Because Verbatim no longer computes derivatives at lex time,
we expected it to be faster under this optimization. However,
its asymptotic behavior should not change because it still
needs to traverse the entire remaining input string to produce
each token.

We confirmed this hypothesis empirically by benchmark-
ing the optimized lexer on the data set from the original Ver-
batim performance evaluation, using the same methodology.
We obtained an executable lexer by using Coq’s extraction
mechanism to extract Verbatim to OCaml source code. The
benchmark consists of United States GDP data from the past
several decades, stored in JSON format [32].
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As one can see from the plot of the results (Figure 5), the
lexer’s asymptotic behavior does not change. Performance
does improve by a factor of four on the largest data point.

4 Optimization #2: Memoization

Reps showed that maximal munch-based lexical analysis
can always be done in linear time by caching the results
of frequent calls [25]. In the process of lexing a string z

with respect to a rule (l , e) Verbatim makes many calls to
maxpref_one. The input string to maxpref_one is always
a suffix of z and the input rule is always (l , e ′), where e ′ is
an nth derivative of e for some n. Many of the calls to max-

pref_one are made with the same arguments. Consider the
following example:

Example 4.1. Suppose we want to lex the string aaaa ac-
cording to R = [(A, [[a]])]. While determining the first two
tokens, the call stack would include the following (for brevity,
we omit the label A from the rules in calls to maxpref_one):

1.0. lex [(A, [[a]])] aaaa

1.1. maxpref_one [[a]] aaaa
1.2. maxpref_one ε aaa
1.3. maxpref_one ∅ aa

1.4. maxpref_one ∅ a

1.5. maxpref_one ∅ λ

2.1. lex [(A, [[a]])] aaa

2.2. maxpref_one [[a]] aaa

2.3. maxpref_one ε aa
2.4. maxpref_one ∅ a

2.5. maxpref_one ∅ λ

Notice that items 2.4-2.5 are the same as items 1.4-1.5. A
similar phenomenon will occur when the remaining tokens
are computed. By memoizing the results of items 1.4-1.5, we
can avoid many future recursive calls.

4.1 Implementation

The memo is a 2D lookup table M , where row labels are
regular expressions and column labels are strings. Each en-
try is of type option (option (String * String)). The
outer option indicates whether the entry is filled (Some) or
empty (None). The inner option corresponds to the output
type of maxpref_one. Therefore, if M[r , s] = Some o and
maxpref_one r s = o, we can accessM[r , s] instead of com-
puting maxpref_one r s .
We replace maxpref_one with the following function:

M_maxpref_one : Rule -> String -> Memo

-> Memo * option (String * String)

This function behaves like maxpref_one, except in the fol-
lowing ways:

1. Before making a recursive call with arguments r and s ,
the memoized version checks whetherM[r , s] is empty.
If it is, the recursive call is made. If not, the function
returns the table entry atM[r , s].

2. After making a recursive call with arguments r and s ,
the memoized version updates M[r , s] so that it con-
tains the result of the recursive call.

Figure 6. Performance comparison for three versions of
Verbatim: the original version, the DFA-based version, and
the memoized DFA-based version.

It would be insufficient to only memoize maxpref_one.
Recall from Example 4.1 that the repeated calls occur across
calls to lex. To take full advantage of memoization, we must
also create memoized functions M_lex and M_max_pref so
that the memos are passed across token computations. We
create these functions by following the pattern that we used
for maxpref_one.

4.2 Sketch of Mechanized Correctness Proof

To prove correctness, we define a property of memos called
lexiness. We say that a memo is lexy if for all r , s ,M[r , s] =

None or M[r , s] = Some o and o = maxpref_one r s . We
then show that lexiness is closed under M_maxpref_one,
M_max_pref, and M_lex.
The initial memos are empty and thus trivially lexy. We

know that M_maxpref_one operates solely on lexymemos, so
the only thing left to show is that maxpref_one is equivalent
to M_maxpref_one when the input memo is lexy. The result
of M_maxpref_one is either a recursive call on a proper suffix
of its input or it is the result of accessing a lexy memo. The
inductive hypothesis says that the recursive call is equivalent
to maxpref_one. By definition, the entry of the lexy memo is
equivalent to maxpref_one. So in either case, maxpref_one
and M_maxpref_one are equivalent.
The closure properties for the higher-level functions fol-

low directly from that for M_maxpref_one.

4.3 Performance

With memoization, Verbatim’s theoretical runtime should
change. Per Reps, we might even expect the runtime to be
linear. Once again, we test this hypothesis empirically.

Figure 6 shows that the łDFA +memož version of Verbatim
performs five times faster than the łDFA without memož
version, and 20 times faster than the naive implementation
on the largest data point. Although the plot appears to be
flatter, zooming in (Figure 7) shows that the performance is
still not linear. One possible explanation is related to the fact
that the Coq core library does not provide data structures
that support constant-time lookup. Currently, the memo is
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Figure 7. Performance of the memoized DFA-based lexer.

instantiated as a finite map whose keys have a total ordering.
This structure supports lookups inO(logm) time, wherem is
the number of items in the memo. (Note that the maximum
value ofm grows with input size, because larger input strings
have more suffixes, which correspond to more columns in
the table.) Additionally, part of the memo key is a string of
size O(n), where n is the length of the input string. These
large keys add overhead to each lookup.

5 Optimization #3: Fast Memo Lookups

In this section, we present a further optimization that greatly
reduces the overhead associated with memo lookups. The
optimization involves using the lengths of input string suf-
fixes as memo keys, instead of the suffixes themselves. This
change enables us to represent a memo with a binary trieÐa
data structure that supports more efficient lookups for our
use case.

5.1 Binary Numbers as Keys

The memo stands in for the function maxpref_one. Because
the second argument to maxpref_one is a string, it was natu-
ral for the second component of the memo key to be a string
as well. A key realization due to Reps is that this argument
is always the ith suffix of the original string, for some i .

With this correspondence in mind, we modify several com-
ponents from the previous sections. Our quick memo, Q , is
still a 2D lookup table with rows labeled by regular expres-
sions, but now the columns are labeled by binary natural
numbers. (Note that if the numbers were unaryÐCoq’s de-
fault representation of naturalsÐthe lookups would not be
any faster.) Another important change to Q is that every
non-empty entry contains the length of the maximal prefix,
in addition to the prefix itself and its complementary suffix.
Caching the length spares us from computing it after per-
forming a lookup, which would be an expensive operation.
Indeed, avoiding length computations will be a common
theme in this section.

We also modify the memoized version of maxpref_one
and name it as follows:

Q_maxpref_one :

Rule -> BinNat -> String -> Memo

-> Memo * option (String * String * BinNat)

This function works much like M_maxpref_one. The primary
difference is the BinNat elements in the signature and how
they are handled. The BinNat input represents the length of
the string input; we prove that this invariant holds in all cases
where Q_maxpref_one is called. The BinNat in the output
corresponds to the length of the maximal prefix returned; we
prove that this invariant holds as well. In this way, we thread
the lengths of input/output strings through the program.
When Q_maxpref_onemakes a recursive call it only needs to
decrement the BinNat. These changes enable us to sidestep
on-the-fly computations of string length.

We make similar changes to the signatures of the higher-
level functions to obtain Q_max_pref and Q_lex, whichmain-
tain the same length invariant between strings and BinNats.
In addition to the length invariant, we also maintain the
invariant that at any point in the computation, the current
string is a suffix of the original string. These two invariants
together say that the current string is the ith suffix of the
original string, where i is the length of the current string.

Finally, we redefine the lexiness property for quick memos.
We say that a quick memo Q is lexy with respect to the
original string z if for all i, r one of the following is true:

1. Q[r , i] = None

2. All of the following are true:
a. Q[r , i] = Some o

b. o = maxpref_one r s

c. s is the ith suffix of z

We then show that lexiness is closed under

• Q_maxpref_one

• Q_max_pref

• Q_lex

As in the previous section, these closure properties are suf-
ficient to show that Q_maxpref_one and maxpref_one are
equivalent. In turn, this fact is enough to show that the pre-
vious higher-level functions are equivalent to their quick
memo counterparts.

5.2 Binary Tries as Memos

We now consider the problem of large memos. If we continue
using Coq’s finite map library, lookups will become more
expensive as the memo grows larger. As mentioned before,
lookup time would beO(logm)wherem is the number of en-
tries in the memo. This fact is problematic, asm can certainly
be larger than the length of the original input string (because
the string’s length is equal to the number of possible suf-
fixes, and the same suffix can appear as a key with multiple
regexes). The fact that we are now using binary numbers
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as keys instead of strings does not resolve this performance
concern, but it does lend itself to the use of a different data
structure: binary tries.
A binary trie is defined inductively in terms of an under-

lying element type:

Inductive Trie {Elt : Type} : Type :=

| Leaf

| Branch (x : option Elt) (t0 t1 : Trie).

It has associated getter and setter functions:

set_Trie : Trie -> list bool -> Elt -> Trie

get_Trie : Trie -> list bool -> option Elt

These functions use a list of booleans as the key. If the list is
empty, then the current node is modified/returned. Other-
wise, we search the left or right subtrie for the tail of the list,
depending on whether the head is 0 or 1. If the necessary
subtrie is not found, then we create it in the case of the setter
and we return None in the case of the getter.
Binary trie lookups are fast: just O(b) in the size of the

boolean list. Equivalently, if b is the binary representation
of a number n, then lookups are O(logn). In addition, each
lookup is independent of unvisited nodes. This data structure
therefore has the property we want: lookup time is invariant
in the size of the memo. Binary tries also have the desirable
property that they do not require comparisons between keys;
lookups are performed simply by reading the key bit-by-bit.
The only proof obligations for this optimization involve

showing that a binary trie has the traditional properties of
lookup structures:

1. get_Trie (set_Trie t b x) b = Some x

2. get_Trie (set_Trie t b x) b′ = get_Trie t b′

(where b , b′)

We prove that our binary trie implementation satisfies these
properties.

5.3 Performance

Using this data structure in the development is straightfor-
ward. Abstractly, the memo and quick memo are both 2D
lookup tables. Concretely, though, the slower memo is imple-
mented as a finite map with tuple keys. We alter this design
only slightly for the concrete quick memo. The quick memo
is a binary trie where the element type is a finite map. The
inner finite maps use regexes as keys. Admittedly, lookups
in these maps are still expensive, but the sizes and number
of regexes in the memo are independent of the size of the
input string. We do not consider the runtime with respect
to the number of lexical rules or the size of their underlying
regular expressions; we treat the lexical rules as fixed in
our runtime analysis. In this case, lookups in this memo are
O(logn), where n is the length of the original input string.
This optimization is a significant improvement over the finite
map approach and is the best we can do without fixed-sized
integers.

Figure 8. Performance of the binary trie version of Verbatim
compared with the finite map version. The łDFA + memož
curve corresponds to the łDFA + memož curves in Figures 6
and 7.

When analyzing the lexer’s theoretical runtime complex-
ity, it is helpful to pretend that the memo is populated eagerly
(i.e., in a separate step from calls to themaximal prefix finder).
In reality, the actions of adding memo entries and finding
maximal prefixes are interleaved. The analysis is as follows:

Suppose we have a fully populated quick memo, Q . Then
every call to the maximal prefix finder will be a memo lookup.
In the worst-case scenario, there arenmaximal prefixes, each
of length 1. We will therefore perform n lookups and the
ith lookup will cost O(log(n − i)) as that is the length of the
remaining suffix at that point. The overall cost will therefore
be

O

( n−1
∑

i=0

log(n − i)

)

= O(logn!) = O(n logn)

Furthermore, the cost to populate Q eagerly is O(n · д(n)),
where д is the cost of a lookup, because there are O(n)

columns in Q and the number of rows is independent from
the length of the string. As we mentioned, our lookups are
O(logn), so the cost to populate Q is O(n logn).

Therefore, the overall runtime complexity of the lexer is
still superlinear: O(n logn).

Empirically, this optimization produces a drastic improve-
ment in performance. We evaluated the binary trie-based
lexer on a subset of points from the original benchmark, plus
a set of larger inputs to provide strong evidence of asymp-
totically superior performance. Figure 8 displays the results
of benchmarking the version of Verbatim with a trie-based
memo. The R2 value of the linear regression for this plot
is 0.94, suggesting that a linear equation effectively models
Verbatim’s performance in this experiment.

6 Semantic Actions

The versions of Verbatim described thus far produce tokens
that are label-string pairs. The label is simply a tag indicat-
ing which lexical rule produced the token, and the string is
a literal value taken from the input string. Henceforth, we

35



CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA Derek Egolf, Sam Lasser, and Kathleen Fisher

will refer to this type of token as a literal token. This sim-
ple token representation places an unnecessary burden on
downstream parsers, which must convert the string values
into values of other types to produce an expressive abstract
syntax tree (AST). In this section, we describe the concept
of a semantic token, and we extend Verbatim to output such
tokens. We then discuss the correctness properties that this
extension requires and that our implementation satisifies. Fi-
nally, we convert an existing łliteralž JSON lexer (a lexer that
produces literal tokens) to a semantic lexer, and we compare
the performance of the two versions.

6.1 Semantic Tokens

Suppose Verbatim tokenizes the input string ‘2 + 2’ as fol-
lows:

[ (NUM, ‘2’); (PLUS, ‘+’); (NUM, ‘2’) ]

Now consider a parser tasked with converting these tokens
into an AST for an arithmetic expression. Presumably, the
parser does not need to know that ‘+’ is the literal value
in the PLUS tokenÐthe PLUS label conveys the fact that the
expression is an addition. However, it would be preferable
for the NUM leaves of the tree to contain the numeric value 2
instead of the string value ‘2’ so that a downstream applica-
tion can evaluate the arithmetic expression. Therefore, the
following token representation is preferable:

[ (NUM, 2 : nat); (PLUS, () : unit); (NUM, 2 : nat) ]

Verbatim cannot determine such semantics a priori. Rather,
the user must provide them as part of the lexical specifica-
tion. Therefore, this extension to Verbatim requires the user
to include a new component of the specification: a sem_ty
(semantic type) function from label values to semantic types.
For example, if the two labels in a given specification are
NUM and PLUS, then the function might map NUM to nat and
PLUS to unit. Note that Verbatim cannot infer this mapping
automatically; for example, the user might want to map NUM

to int instead.
The notion of a semantic type for a label enables us to

define semantic tokens. A semantic token is a dependently
typed pair

{x : label & sem_ty x}

where the first element is a label, and the second element is
a semantic value with a type determined by the label.

6.2 Semantic Actions for Verbatim

In addition to defining the sem_ty function, the user defines
a semantic action function sem_action that maps literal
tokens to option semantic tokens. When provided with a
literal token t = (x, s), the function attempts to produce
a semantic token t’ : {x & sem_ty x} by converting s

into a value of the appropriate semantic type. If s is not well-
formed, the action returns None. For example, a semantic

action that converts strings to integers would return None if
given a string that does not represent a valid integer.

A desirable property of this scheme might be that a lexical
rule’s regex and the semantic actions łagreež as follows:
whenever a string matches the regex, applying the action to
the string will succeed (not return None). For example, if a
string matches a regex that represents valid integers, then
converting the string to an integer should succeed. While
some users might be interested in proving this property for
their lexical specifications, we do not require such a proof
because it would impose a heavy burden on users who are
less familiar with Coq. Instead, we opt to fail safely; a None
result is enough to stop a user from passing ill-formed tokens
to a parser.

Another property, whichwe do require the user to prove, is
that labels carry: each token that a semantic action produces
must have the same label as the original literal token. In
our experience, this property is easy to prove for typical
semantic actions.
Once the user provides a labels-to-type mapping, seman-

tic actions, and a proof that labels carry, Verbatim is able to
return semantic tokens instead of literal tokens. An auxiliary
function sem_lex′ computes a list of semantic tokens, possi-
bly containing None if a literal was ill-formed. The function
sem_lex calls sem_lex′ and returns None if any of the tokens
are None; otherwise, it simply returns the list of semantic
tokens.

The function sem_lex′ operates by first calling the literal
lexer, lex. It then applies a semantic action to each literal
token to obtain the list of semantic tokens.

6.3 Correctness

We say that a list of semantic tokens tokenizes an input string
z if the following conditions are satisfied:

1. A list of literal tokens t tokenizes z (as defined previ-
ously).

2. Let sn and ln be the nth semantic and literal tokens, re-
spectively. Then for all n, sn = sem_action ln , where
sem_action is the user-defined semantic action func-
tion.

We also say that z does not have a semantic tokenization if
sem_action ln = None for some n.
In the development, we prove soundness and complete-

ness for the semantic lexer. Additionally, we prove that our
definition of semantic tokenization is unambiguous. Because
sem_lex′ is a simple map operation over the literal tokens,
these proofs depend largely on the corresponding theorems
for the literal lexer.

6.4 A Semantic JSON Lexer and Its Performance

To confirm that semantic actions can add relatively little
overhead, we created a semantic version of the JSON lexer
used in previous benchmarks and measured its performance.
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Figure 9. Performance comparison of the literal and seman-
tic versions of Verbatim.

It is hard to make general runtime guarantees about seman-
tic lexers because in principle, users could define semantic
actions of arbitrary time complexity. The semantic actions
that we use to tokenize JSON are, in the worst case, linear in
the size of the token. Therefore, we should not expect these
actions to add substantial overhead.
We define the sem_ty function for JSON as follows:

Definition sem_ty (l : Label) : Type :=

match l with

| INT => Z

| FLOAT => Z

| STRING => string

| _ => unit

end.

Coq’s integer type is Z.1 The labels mapped to unit include
braces, brackets, white space, and keywords. The semantics
of these tokens can be determined by their label.
We then define the sem_action function for JSON. For

the most part, the actions are defined in terms of built-in
Coq functions for converting strings to other types. A few
edge cases required careful attention: for example, correctly
handling −0 and leading zeros. An implementation that han-
dles floats would require even finer attention to detail if it
did not rely on external libraries.
Figure 9 shows that there is no significant performance

difference between the literal JSON lexer and the version
augmented with semantic actions.

7 Related Work

In addition to Verbatim [7], on which the current work
builds, there have been several other successful efforts to
produce verified lexers. Ausaf et al. [1] present a derivative-
based lexer that is similar to Verbatim in its algorithmic
approach and correctness specification. The tool is imple-
mented and verified with Isabelle/HOL. The authors do not

1Our JSON lexer does not currently handle full-blown floats. Correctly

parsing floats is a difficult problem with its own literature and is not a

contribution of this work. Our benchmark data set does not contain floats.

discuss the tool’s theoretical complexity or empirical per-
formance. Hardin [11] uses the HOL4 theorem prover to
verify an implementation of Brzozowski’s regex-to-DFA al-
gorithm, which is incorporated into a lexer. Lopes et al. [16]
present a regex matcher based on Brzozowski derivatives.
The matcher takes a regular expression e and a string s as
input; if s matches e , the tool produces a proof of the match.
The matcher does not employ a disambiguation policy or
produce labeled tokens. Nipkow [18] uses Isabelle/HOL to
prove the correctness of a regex-to-DFA translation and an
accompanying lexer, but the implementation does not corre-
spond to an executable program and thus is not immediately
suitable for programmatic lexing.

As for slightly different applications of Brzozowski deriva-
tives, the RockSalt security policy checker [17] features a
verified regex-to-DFA conversion algorithm. The resulting
DFA is used for a recognition task rather than for lexing in
the usual sense. Derivatives have also been used for checking
regular expression equivalence in a verified manner [5, 13].
Our memoization optimizations (Sections 4 and 5) were

inspired by Reps’s technique for linear-time lexing [25].
There is an extensive literature on verified parsing and

its applications [2, 24, 26ś31]. In particular, our dependently
typed representations of semantic tokens and semantic ac-
tions (Section 6) were inspired by similar schemes that sev-
eral verified parsers employ [12, 15]. Indeed, one of our goals
in choosing this representation was to make the lexer inter-
operable with existing verified parsers, and thereby enable
users to create fully verified front ends for their applications.

8 Future Work

We envision three areas of future work: further evaluations,
additional optimizations, and integration with a parser as
part of a usable, verified toolchain.

8.1 Further Evaluation

This work would benefit from at least three types of experi-
ments. The first type is evaluation of memory usage.We have
drastically improved Verbatim’s execution speed, but much
of this improvement came from various forms of caching. It
would be useful to see how these improvements affected the
tool’s memory efficiency, and to determine whether the tool
could be improved on this front.
We would also like to compare Verbatim’s performance

to that of unverified state-of-the-art lexers. Understanding
and bridging the differences in performance between veri-
fied tools and their unverified counterparts is an important
step towards the adoption of verified software in real-world
systems.

Finally, wewould like to evaluate Verbatim onmore bench-
marks across more domains. Verbatim is a general-purpose
tool; for every list of well-formed lexical rules, it produces
a correct maximal munch lexer. We would like to further

37



CPP ’22, January 17ś18, 2022, Philadelphia, PA, USA Derek Egolf, Sam Lasser, and Kathleen Fisher

explore Verbatim’s performance characteristics across the
range of domains that it supports.

8.2 Further Optimization

There is at least one other optimization that would improve
Verbatim’s runtimewith respect to the size of the input string.
There is also an opportunity to improve the lexer’s runtime
with respect to the lexical rules.

As mentioned in Section 5, the current version of Verbatim
has theoretical complexity O(n logn) in the size of the input
string. Reps explains how maximal munch lexing can be
done in linear time [25]. The factor of logn comes from
lookups in the quick memo Q . In particular, the smallest
representation of the length of an input string prefix has
size logn. Regardless of which data structure we use, this
logn factor will remain as long as we have to look up keys
of this size. It turns out that we can avoid looking up such
keys from scratch; every time we index intoQ with key i , the
next lookup is guaranteed to use key i ± 1. So, we can avoid
looking up these keys from scratch if we maintain a cursor
in Q that moves to the next or previous column depending
on the nature of the following lookup. Implementing and
verifying the correctness of this optimization would result
in true linear runtime.
This paper captures our focus on optimizing Verbatim

with respect to the size of the input string. Indeed, this is
a reasonable preoccupation given that the lexical rules are
usually static for a given application. That said, there is at
least one optimization that can be made to our DFA rep-
resentation. We currently construct a DFA for each lexical
rule and find a maximal prefix for each DFA. Prior work on
Brzozowski derivatives [22] suggests a way to construct just
one DFA. This change would result in constant runtime with
respect to the number of lexical rules.

8.3 Integration and Usability

As mentioned, our use of semantic actions and tokens was
inspired by existing verified parsers. In a related line of re-
search, we are working on verifying semantically aware
parsers that are compatible with broad classes of context-
free grammars. Verbatim outputs the type of tokens that such
parsers consume; we look forward to integrating Verbatim
with downstream verified parsers.

Currently, the user must provide Verbatim with lexical
rules in the form of Coq code. Verbatim would be more
accessible if the user could provide lexical rules as plaintext
input in a familiar syntax. One exciting direction we see
for this project involves bootstrapping Verbatim, along with
a verified parser; in other words, we could build a verified
front end for Verbatim’s input format. In this way, we could
leverage our tools to improve their own usability.

9 Conclusion

Previous work on Verbatim focused on formalizing, imple-
menting, and verifying a tool for performing lexical analysis.
This paper expands on that work in two ways. First, we have
gone to great lengths to optimize Verbatim. Lexical analy-
sis is expected to be fast; the work described in this paper
is a necessary step in making verified software more com-
petitive with unverified state-of-the-art tools. Additionally,
parsers often expect to consume tokens with an expressive
type; to increase Verbatim’s utility, we have given the user
finer-grained control over the tool’s output type by way of
semantic actions. We believe this work highlights the effec-
tiveness of an incremental verification strategy, in which an
initial prototype and subsequent optimizations are verified
in separate phases. We hope the work serves as a small step
towards the widespread use of verified, usable, and practical
language-processing pipelines.
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