POSIX Lexing with Derivatives of Regular Expressions

Christian Urban King's College London

Joint work with Fahad Ausaf and Roy Dyckhoff

- Isabelle interactive theorem prover; some proofs are automatic most however need help
- the learning curve is steep; you often have to fight the theorem prover...no different in other ITPs

Surely regular expressions must have been implemented and studied to death, no?

evil regular expressions: $(a?)^n \cdot a^n$

Isabelle Theorem Prover

- started to use Isabelle after my PhD (in 2000)
- the thesis included a rather complicated "pencil-and-paper" proof for a termination argument (sort of λ-calculus)
- me, my supervisor, the examiners did not find any problems

Henk Barendregt Andrew Pitts

people were building their work on my result

Nominal Isabelle

• implemented a package for the Isabelle prover in order to reason conveniently about binders

Nominal Isabelle

• implemented a package for the Isabelle prover in order to reason conveniently about binders

Nominal Isabelle

• implemented a package for the Isabelle prover in order to reason conveniently about binders

• when finally being able to formalise the proof from my PhD, I found that the main result (termination) is correct, but a central lemma needed to be generalised

Variable Convention

Variable Convention:

If M_1, \ldots, M_n occur in a certain mathematical context (e.g. definition, proof), then in these terms all bound variables are chosen to be different from the free variables.

Barendregt in "The Lambda-Calculus: Its Syntax and Semantics"

- instead of proving a property for **all** bound variables, you prove it only for **some**...?
- feels like it is used in 90% of papers in PT and FP (9.9% use de-Bruijn indices)
- this is mostly OK, but in some corner-cases you can use it to prove **false**...we fixed this!

Bob Harper

Frank Pfenning

published a proof in ACM Transactions on Computational Logic, 2005, ~31pp

Andrew Appel

relied on their proof in a **security** critical application

Proof-Carrying Code

Proof-Carrying Code

Proof-Carrying Code

- Appel's checker is ~2700 lines of code (1865 loc of LF definitions; 803 loc in C including 2 library functions)
- 167 loc in C implement a type-checker

Spec Proof Alg

Spec Proof Alg

$$1$$
st Spec^{+ex} Proof Alg

Spec Proof Alg

$$Ist$$
 solution Spec Proof Alg
 $2nd$ solution Spec Proof Alg
 $2nd$ Spec Alg

Spec
$$\leftarrow$$
 Proof \rightarrow Alg
1st solution Spec \leftarrow Proof \rightarrow Alg
2nd solution Spec \leftarrow Proof \rightarrow Alg^{-ex}
3rd solution Spec \leftarrow Proof \rightarrow Alg^{-ex}
3rd solution Spec \leftarrow Proof \rightarrow Alg

Each time one needs to check \sim_{31} pp of informal paper proofs. You have to be able to keep definitions and proofs consistent.

high priority

high priority

high priority

RT-Scheduling: You want to avoid that a high-priority process is starved indefinitely.

high priority

high priority

Canterbury, 22.2.2016 - p. 10/1

Canterbury, 22.2.2016 - p. 10/1

Canterbury, 22.2.2016 - p. 10/1

Canterbury, 22.2.2016 - p. 10/1

high priority

medium pr.

Priority Inheritance Scheduling

- Let a low priority process *L* temporarily inherit the high priority of *H* until *L* leaves the critical section unlocking the resource.
- Once the resource is unlocked, *L* "returns to its original priority level."

L. Sha, R. Rajkumar, and J. P. Lehoczky. *Priority Inheritance Protocols: An Approach to Real-Time Synchronization*. IEEE Transactions on Computers, 39(9):1175–1185, 1990

Priority Inheritance Scheduling

- Let a low priority process *L* temporarily inherit the high priority of *H* until *L* leaves the critical section unlocking the resource.
- Once the resource is unlocked, *L* "returns to its original priority level."

L. Sha, R. Rajkumar, and J. P. Lehoczky. *Priority Inheritance Protocols: An Approach to Real-Time Synchronization*. IEEE Transactions on Computers, 39(9):1175–1185, 1990

• Proved correct, reviewed in a respectable journal....what could possibly be wrong?

high priority

Canterbury, 22.2.2016 - p. 12/1

Canterbury, 22.2.2016 - p. 12/1

Priority Inheritance Scheduling

- Let a low priority process *L* temporarily inherit the high priority of *H* until *L* leaves the critical section unlocking the resource.
- Once the resource is unlocked, *L* returns to its original priority level. **BOGUS**

Priority Inheritance Scheduling

- Let a low priority process *L* temporarily inherit the high priority of *H* until *L* leaves the critical section unlocking the resource.
- Once the resource is unlocked, *L* returns to its original priority level. **BOGUS**
- ...*L* needs to switch to the highest **remaining** priority of the threads that it blocks.

this error is already known since around 1999

- by Rajkumar, 1991
- *"it resumes the priority it had at the point of entry into the critical section"*

- by Jane Liu, 2000
- "The job J₁ executes at its inherited priority until it releases R; at that time, the priority of J₁ returns to its priority at the time when it acquires the resource R."
- gives pseudo code and totally bogus data structures
- interesting part is "left as an exercise"

- by Laplante and Ovaska, 2011 (\$113.76)
- "when [the task] exits the critical section that caused the block, it reverts to the priority it had when it entered that section"

Operating Systems

Internals and Design Principles

EIGHTH EDITION

William Stallings

Priority Scheduling

- a scheduling algorithm that is widely used in real-time operating systems
- has been "proved" correct by hand in a paper in 1990
- but this algorithm turned out to be incorrect, despite its "proof"

Priority Scheduling

- a scheduling algorithm that is widely used in real-time operating systems
- has been "proved" correct by hand in a paper in 1990
- but this algorithm turned out to be incorrect, despite its "proof"
- we (generalised) the algorithm and then **really** proved that it is correct
- we implemented this algorithm in a small OS called PINTOS (used for teaching at Stanford)
- our implementation was faster than their reference implementation

Lessons Learned

- our proof-technique is adapted from security protocols
- do not venture outside your field of expertise orall
- we solved the single-processor case; the multi-processor case: no idea!

Regular Expressions

<i>r</i> ::	$:= \emptyset$	null
	ϵ	empty string
	C	character
	$r_{I} \cdot r_{2}$	sequence
	$r_{\mathrm{I}}+r_{\mathrm{2}}$	alternative / choice
	r*	star (zero or more)

The Derivative of a Rexp

If *r* matches the string *c*::*s*, what is a regular expression that matches just *s*?

der c r gives the answer, Brzozowski (1964), Owens (2005) "...have been lost in the sands of time..."

...whether a regular expression can match the empty string:

 $nullable(\emptyset)$ $nullable(\epsilon)$ nullable(c) nullable(r*)

 $\stackrel{\text{def}}{=}$ false $\stackrel{\rm def}{=}$ true $\stackrel{\rm def}{=}$ false $nullable(r_1 + r_2) \stackrel{\text{def}}{=} nullable(r_1) \lor nullable(r_2)$ $nullable(r_{I} \cdot r_{2}) \stackrel{\text{def}}{=} nullable(r_{I}) \wedge nullable(r_{2})$ $\stackrel{\rm def}{=}$ true

The Derivative of a Rexp

 $\stackrel{\text{def}}{=} \emptyset$ der $c(\emptyset)$ $\stackrel{\text{def}}{\equiv} \emptyset$ der $c(\epsilon)$ $\stackrel{\text{def}}{=}$ if c = d then ϵ else \emptyset derc(d) $der c (r_1 + r_2) \stackrel{\text{def}}{=} der c r_1 + der c r_2$ der $c(r_1 \cdot r_2) \stackrel{\text{def}}{=} \text{if } nullable(r_1)$ then $(der c r_1) \cdot r_2 + der c r_2$ else $(der c r_1) \cdot r_2$ $\stackrel{\text{def}}{=} (der c r) \cdot (r^*)$ der $c(r^*)$

The Derivative of a Rexp

 $\stackrel{\text{def}}{=} \emptyset$ der $c(\emptyset)$ $\stackrel{\text{def}}{\equiv} \emptyset$ der $c(\epsilon)$ $\stackrel{\text{def}}{=}$ if c = d then ϵ else \varnothing derc(d) $der c (r_1 + r_2) \stackrel{\text{def}}{=} der c r_1 + der c r_2$ der $c(r_1 \cdot r_2) \stackrel{\text{def}}{=} \text{if } nullable(r_1)$ then $(der c r_1) \cdot r_2 + der c r_2$ else $(der c r_1) \cdot r_2$ $\stackrel{\text{\tiny def}}{=} (\operatorname{der} c r) \cdot (r^*)$ der $c(r^*)$ $\stackrel{\text{def}}{=} r$ ders [] r ders (c::s) $r \stackrel{\text{def}}{=} ders s (der c r)$

 $(a?)^n \cdot a^n$

 $(a?)^n \cdot a^n$

It is a relative easy exercise in a theorem prover:

matches(r,s) if and only if $s \in L(r)$

 $matches(r,s) \stackrel{\text{def}}{=} nullable(ders(r,s))$

Canterbury, 22.2.2016 - p. 26/1

POSIX Regex Matching Two rules:

• Longest match rule ("maximal munch rule"): The longest initial substring matched by any regular expression is taken as the next token.

iffoo_lbla

• Rule priority: For a particular longest initial substring, the first regular expression that can match determines the token.

i f _ b l a

POSIX Regex Matching Two rules:

• Longest match rule ("maximal munch rule"): The longest initial substring matched by any regular expression is taken as the next token.

iffoo_lbla

• Rule priority: For a particular longest initial substring, the first regular expression that can match determines the token.

if_bla

Kuklewicz: most POSIX matchers are buggy http://www.haskell.org/haskellwiki/Regex_Posix

POSIX Regex Matching

 Sulzmann & Lu came up with a beautiful idea for how to extend the simple regular expression matcher to POSIX matching/lexing (FLOPS 2014)

Martin Sulzmann

• the idea: define an inverse operation to the derivatives

Regexes and Values Regular expressions and their corresponding

values:

Regexes and Values Regular expressions and their corresponding values:

There is also a notion of a string behind a value: |v|

We want to match the string *abc* using r_1 :

We want to match the string *abc* using r_{I} :

$$r_{1} \xrightarrow{der a} r_{2} \xrightarrow{der b} r_{3}$$

We want to match the string *abc* using r_{I} :

$$r_1 \xrightarrow{der a} r_2 \xrightarrow{der b} r_3 \xrightarrow{der c} r_4$$

We want to match the string *abc* using r_{I} :

$$r_1 \xrightarrow{der a} r_2 \xrightarrow{der b} r_3 \xrightarrow{der c} r_4$$
 nullable?

We want to match the string *abc* using r_1 :

Sulzmann & Lu Paper

• I have no doubt the algorithm is correct — the problem, I do not believe their proof.

"How could I miss this? Well, I was rather careless when stating this Lemma :) Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

Sulzmann & Lu Paper

• I have no doubt the algorithm is correct — the problem, I do not believe their proof.

"How could I miss this? Well, I was rather careless when stating this Lemma :) Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

"Well, I don't think there's any flaw. The issue is how to come up with a mechanical proof. In my world mathematical proof = mechanical proof doesn't necessarily hold."

Sulzmann & Lu Paper

• I have no doubt the algorithm is correct — the problem, I do not believe their proof.

"How could I miss this? Well, I was rather careless

Lemma 3 (Projection and Injection). Let r be a regular expression, l a letter and v a parse tree.

1. If
$$\vdash v : r$$
 and $|v| = lw$ for some word w, then $\vdash proj_{(r,l)} v : r \setminus l$.

2. If
$$\vdash v : r \setminus l$$
 then $(proj_{(r,l)} \circ inj_{r \setminus l}) v = v$

3. If $\vdash v : r$ and |v| = lw for some word w, then $(inj_{r\setminus l} \circ proj_{(r,l)}) v = v$.

MS:BUG[Come accross this issue when going back to our constructive reg-ex work] Consider $\vdash [Right (), Left a] : (a + \epsilon)^*$. However, $proj_{((a+\epsilon)^*,a)}$ [Right (), Left a] fails! The point is that proj only works correctly if applied on POSIX parse trees.

MS:Possible fixes We only ever apply proj on Posix parse trees.

For convenience, we write " $\vdash v : r$ is POSIX" where we mean that $\vdash v : r$ holds and v is the POSIX parse tree of r for word |v|.

Lemma 2 follows from the following statement.

necessarily nord

The Proof Idea by Sulzmann & Lu

- introduce an inductively defined ordering relation
 v ≻_r v' which captures the idea of POSIX
 matching
- the algorithm returns the maximum of all possible values that are possible for a regular expression.

The Proof Idea by Sulzmann & Lu

- introduce an inductively defined ordering relation
 v ≻_r v' which captures the idea of POSIX
 matching
- the algorithm returns the maximum of all possible values that are possible for a regular expression.
- the idea is from a paper by Cardelli & Frisch about greedy matching (greedy = preferring instant gratification to delayed repletion):
- e.g. given $(a + (b + ab))^*$ and string ab

greedy: [Left(a), Right(Left(b)] POSIX: [Right(Right(a,b)))]

Canterbury, 22.2.2016 - p. 33/1

Canterbury, 22.2.2016 – p. 34/1

• Sulzmann: ...Let's assume v is not a *POSIX* value, then there must be another one ...contradiction.

- Sulzmann: ...Let's assume v is not a *POSIX* value, then there must be another one ...contradiction.
- Exists?

$$L(\mathbf{r}) \neq \varnothing \Rightarrow POSIX(\mathbf{v},\mathbf{r})$$

- Sulzmann: ...Let's assume v is not a *POSIX* value, then there must be another one ...contradiction.
- Exists?

$$L(r) \neq \varnothing \Rightarrow POSIX(v,r)$$

• in the sequence case, the induction hypotheses require $|v_1| = |v'_1|$ and $|v_2| = |v'_2|$, but you only know

$$|v_{\scriptscriptstyle \mathrm{I}}| @ |v_{\scriptscriptstyle 2}| = |v_{\scriptscriptstyle 1}'| @ |v_{\scriptscriptstyle 2}'|$$

- Sulzmann: ...Let's assume v is not a *POSIX* value, then there must be another one ...contradiction.
- Exists?

$$L(\mathbf{r}) \neq \varnothing \Rightarrow POSIX(\mathbf{v},\mathbf{r})$$

• in the sequence case, the induction hypotheses require $|v_1| = |v'_1|$ and $|v_2| = |v'_2|$, but you only know

$$|v_{\scriptscriptstyle \rm I}| @ |v_{\scriptscriptstyle 2}| = |v_{\scriptscriptstyle \rm I}'| @ |v_{\scriptscriptstyle 2}'|$$

• although one begins with the assumption that the two values have the same flattening, this cannot be maintained as one descends into the induction (alternative, sequence)

Our Solution

• direct definition of what a POSIX value is, using $s \in r \rightarrow v$:

 $[] \in \epsilon \rightarrow Empty$ $c \in c \rightarrow Cbar(c)$ $s \in r_2 o v \quad s \notin L(r_1)$ $s \in r_{I} \rightarrow v$ $s \in r_1 + r_2 \rightarrow Right(v)$ $s \in r_1 + r_2 \rightarrow Left(v)$ $s_{\mathrm{I}} \in r_{\mathrm{I}} \rightarrow v_{\mathrm{I}}$ $s_2 \in r_2 \rightarrow v_2$ $\neg(\exists s_1 s_4, s_3 \neq [] \land s_3 @ s_4 = s_2 \land s_1 @ s_3 \in L(r_1) \land s_4 \in L(r_2))$ $s_1@s_2 \in r_1 \cdot r_2 \rightarrow Seq(v_1, v_2)$

Pencil-and-Paper Proofs in CS are normally incorrect

• case in point, in one of Roy's proofs he made the incorrect inference

if $\forall s. |v_2| \notin L(\operatorname{der} c r_1) \cdot s$ then $\forall s. c |v_2| \notin L(r_1) \cdot s$

while

if $\forall s. |v_2| \in L(\operatorname{der} c r_1) \cdot s$ then $\forall s. c |v_2| \in L(r_1) \cdot s$

is correct

Canterbury, 22.2.2016 - p. 37/1

Proofs in Math vs. in CS My theory on why CS-proofs are often buggy

Math:

in math, "objects" can be "looked" at from all "angles"; non-trivial proofs, but it seems difficult to make mistakes

Code in CS: the call-graph of the seL4 microkernel OS; easy to make mistakes

Conclusion

- we strengthened the POSIX definition of Sulzmann & Lu in order to get the inductions through, his proof contained small gaps but had also fundamental flaws
- its a nice exercise for theorem proving
- some optimisations need to be aplied to the algorithm in order to become fast enough
- can be used for lexing, small little functional program

Thank you very much again for the invitation! Questions?

Canterbury, 22.2.2016 - p. 40/1