
POSIX Lexing with Derivatives
of Regular Expressions

Christian Urban
King’s College London

Joint work with Fahad Ausaf and Roy Dyckhoff

Canterbury, 22.2.2016 – p. 1/1

Isabelle interactive theorem prover; some proofs
are automatic – most however need help
the learning curve is steep; you often have to fight
the theorem prover…no different in other ITPs

Canterbury, 22.2.2016 – p. 2/1

Why Bother?
Surely regular expressions must have been
implemented and studied to death, no?

5 10 15 20 25 30
0
5

10
15

20
25
30

as

tim
e

in
 se

cs
Python
Ruby

evil regular expressions: (a?)n · an
Canterbury, 22.2.2016 – p. 3/1

Isabelle Theorem Prover
started to use Isabelle after my PhD (in 2000)
the thesis included a rather complicated
“pencil-and-paper” proof for a termination
argument (sort of λ-calculus)

me, my supervisor, the examiners did not find any
problems

Henk Barendregt Andrew Pitts

people were building their work on my result
Canterbury, 22.2.2016 – p. 4/1

Nominal Isabelle
implemented a package for the Isabelle prover in
order to reason conveniently about binders

λx. M ∀x. P x

when finally being able to formalise the proof
from my PhD, I found that the main result
(termination) is correct, but a central lemma
needed to be generalised

Canterbury, 22.2.2016 – p. 5/1

a a

Nominal Isabelle
implemented a package for the Isabelle prover in
order to reason conveniently about binders

λx. M ∀x. P x

when finally being able to formalise the proof
from my PhD, I found that the main result
(termination) is correct, but a central lemma
needed to be generalised

Canterbury, 22.2.2016 – p. 5/1

a a

Nominal Isabelle
implemented a package for the Isabelle prover in
order to reason conveniently about binders

λx. M ∀x. P x

when finally being able to formalise the proof
from my PhD, I found that the main result
(termination) is correct, but a central lemma
needed to be generalised

Canterbury, 22.2.2016 – p. 5/1

a a

Variable Convention

Variable Convention:
If M1, . . . , Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound
variables are chosen to be different from the free
variables.

Barendregt in “The Lambda-Calculus: Its Syntax and Semantics”

instead of proving a property for all bound
variables, you prove it only for some…?
feels like it is used in 90% of papers in PT and FP
(9.9% use de-Bruijn indices)
this is mostly OK, but in some corner-cases you
can use it to prove false…we fixed this!

Canterbury, 22.2.2016 – p. 6/1

Bob Harper Frank Pfenning

published a proof in
ACM Transactions on
Computational Logic,
2005, ∼31pp

Andrew Appel

relied on their proof in a
security critical
application

Canterbury, 22.2.2016 – p. 7/1

Proof-Carrying Code

Canterbury, 22.2.2016 – p. 8/1

Idea:

user:
untrusted

code
developer

—
web server

proof-
checker

code

certificate
a proof in LF

Appel’s checker is ∼2700 lines of code (1865 loc of
LF definitions; 803 loc in C including 2 library functions)
167 loc in C implement a type-checker

Proof-Carrying Code

Canterbury, 22.2.2016 – p. 8/1

Idea:

user:
untrusted

code
developer

—
web server

proof-
checker

code

certificate
a proof in LF

Appel’s checker is ∼2700 lines of code (1865 loc of
LF definitions; 803 loc in C including 2 library functions)
167 loc in C implement a type-checker

Proof-Carrying Code

Canterbury, 22.2.2016 – p. 8/1

Idea:

user:
untrusted

code
developer

—
web server

proof-
checker

code

certificate
a proof in LF

Appel’s checker is ∼2700 lines of code (1865 loc of
LF definitions; 803 loc in C including 2 library functions)
167 loc in C implement a type-checker

Canterbury, 22.2.2016 – p. 9/1

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

Each time one needs to check ∼31pp of informal paper
proofs. You have to be able to keep definitions and proofs
consistent.

Canterbury, 22.2.2016 – p. 9/1

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

Each time one needs to check ∼31pp of informal paper
proofs. You have to be able to keep definitions and proofs
consistent.

Canterbury, 22.2.2016 – p. 9/1

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

Each time one needs to check ∼31pp of informal paper
proofs. You have to be able to keep definitions and proofs
consistent.

Canterbury, 22.2.2016 – p. 9/1

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

Each time one needs to check ∼31pp of informal paper
proofs. You have to be able to keep definitions and proofs
consistent.

Canterbury, 22.2.2016 – p. 9/1

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h

Each time one needs to check ∼31pp of informal paper
proofs. You have to be able to keep definitions and proofs
consistent.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

time0

low priority

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

time0

low priority

high priority

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

time0

low priority

high priority

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

locks a resource

time0

low priority

high priority

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

locks a resource

time0

low priority

high priority

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

locks a resource

time0

low priority

high priority

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

locks a resource

time0

low priority

high priority

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

locks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

locks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

locks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

locks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

locks a resource

…

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

a

locks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

alocks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Real-Time Scheduling

Canterbury, 22.2.2016 – p. 10/1

a

alocks a resource

time0

low priority

high priority

medium pr.

RT-Scheduling: You want to avoid that a
high-priority process is starved indefinitely.

Priority Inheritance Scheduling
Let a low priority process L temporarily inherit
the high priority of H until L leaves the critical
section unlocking the resource.

Once the resource is unlocked, L “returns to its
original priority level.”

L. Sha, R. Rajkumar, and J. P. Lehoczky.
Priority Inheritance Protocols: An Approach
to Real-Time Synchronization. IEEE Trans-
actions on Computers, 39(9):1175–1185,
1990

Proved correct, reviewed in a respectable
journal....what could possibly be wrong?

Canterbury, 22.2.2016 – p. 11/1

Priority Inheritance Scheduling
Let a low priority process L temporarily inherit
the high priority of H until L leaves the critical
section unlocking the resource.

Once the resource is unlocked, L “returns to its
original priority level.”

L. Sha, R. Rajkumar, and J. P. Lehoczky.
Priority Inheritance Protocols: An Approach
to Real-Time Synchronization. IEEE Trans-
actions on Computers, 39(9):1175–1185,
1990

Proved correct, reviewed in a respectable
journal....what could possibly be wrong?

Canterbury, 22.2.2016 – p. 11/1

Canterbury, 22.2.2016 – p. 12/1

a

a

AL BL AR BR

time0

low priority

Scheduling: You want to avoid that a high
priority process is starved indefinitely.

Canterbury, 22.2.2016 – p. 12/1

a

a

AL BL AR BR

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is starved indefinitely.

Canterbury, 22.2.2016 – p. 12/1

a

a

AL BL AR BR

A

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is starved indefinitely.

Canterbury, 22.2.2016 – p. 12/1

a

a

AL BL AR BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is starved indefinitely.

Canterbury, 22.2.2016 – p. 12/1

a

a

AL BL

AR BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is starved indefinitely.

Canterbury, 22.2.2016 – p. 12/1

a

a

AL BL

AR BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is starved indefinitely.

Canterbury, 22.2.2016 – p. 12/1

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is starved indefinitely.

Canterbury, 22.2.2016 – p. 12/1

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is starved indefinitely.

Canterbury, 22.2.2016 – p. 12/1

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is starved indefinitely.

Canterbury, 22.2.2016 – p. 12/1

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is starved indefinitely.

Canterbury, 22.2.2016 – p. 12/1

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is starved indefinitely.

Priority Inheritance Scheduling

Let a low priority process L temporarily inherit
the high priority of H until L leaves the critical
section unlocking the resource.

Once the resource is unlocked, L returns to its
original priority level. BOGUS

…L needs to switch to the highest remaining
priority of the threads that it blocks.

this error is already known since around 1999

Canterbury, 22.2.2016 – p. 13/1

Priority Inheritance Scheduling

Let a low priority process L temporarily inherit
the high priority of H until L leaves the critical
section unlocking the resource.

Once the resource is unlocked, L returns to its
original priority level. BOGUS

…L needs to switch to the highest remaining
priority of the threads that it blocks.

this error is already known since around 1999

Canterbury, 22.2.2016 – p. 13/1

by Rajkumar, 1991
“it resumes the priority it had at the point of entry into
the critical section”

Canterbury, 22.2.2016 – p. 14/1

by Jane Liu, 2000
“The job Jl executes at its inherited priority until it
releases R; at that time, the priority of Jl returns to its
priority at the time when it acquires the resource R.”
gives pseudo code and totally bogus data structures
interesting part is “left as an exercise”

Canterbury, 22.2.2016 – p. 15/1

by Laplante and Ovaska, 2011 ($113.76)
“when [the task] exits the critical section that caused the
block, it reverts to the priority it had when it entered
that section”

Canterbury, 22.2.2016 – p. 16/1

by Silberschatz, Galvin and Gagne (9th edition,
2013)
“Upon releasing the lock, the [low-priority] thread will
revert to its original priority.”

Canterbury, 22.2.2016 – p. 17/1

Priority Scheduling
a scheduling algorithm that is widely used in
real-time operating systems
has been “proved” correct by hand in a paper in
1990
but this algorithm turned out to be incorrect,
despite its “proof”

we (generalised) the algorithm and then really
proved that it is correct
we implemented this algorithm in a small OS
called PINTOS (used for teaching at Stanford)
our implementation was faster than their
reference implementation

Canterbury, 22.2.2016 – p. 18/1

Priority Scheduling
a scheduling algorithm that is widely used in
real-time operating systems
has been “proved” correct by hand in a paper in
1990
but this algorithm turned out to be incorrect,
despite its “proof”

we (generalised) the algorithm and then really
proved that it is correct
we implemented this algorithm in a small OS
called PINTOS (used for teaching at Stanford)
our implementation was faster than their
reference implementation

Canterbury, 22.2.2016 – p. 18/1

Lessons Learned

our proof-technique is adapted from security
protocols

do not venture outside your field of expertise

we solved the single-processor case; the
multi-processor case: no idea!

Canterbury, 22.2.2016 – p. 19/1

Regular Expressions

Canterbury, 22.2.2016 – p. 20/1

r ::= ∅ null
| ϵ empty string
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

The Derivative of a Rexp

If r matches the string c :: s, what is a
regular expression that matches just s?

der c r gives the answer, Brzozowski (1964), Owens (2005)
“…have been lost in the sands of time…”

Canterbury, 22.2.2016 – p. 21/1

…whether a regular expression can match the
empty string:

nullable(∅)
def
= false

nullable(ϵ) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

Canterbury, 22.2.2016 – p. 22/1

The Derivative of a Rexp
der c (∅)

def
= ∅

der c (ϵ) def
= ∅

der c (d) def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

Canterbury, 22.2.2016 – p. 23/1

The Derivative of a Rexp
der c (∅)

def
= ∅

der c (ϵ) def
= ∅

der c (d) def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

Canterbury, 22.2.2016 – p. 23/1

(a?)n · an

200 400 600 800 1,000
0
5

10
15

20
25
30

as

tim
e

in
 se

cs
Python
Ruby
Scala V1
Scala V2

Canterbury, 22.2.2016 – p. 24/1

(a?)n · an

0 3,000 6,000 9,000 12,000
0
5

10
15

20
25
30

as

tim
e

in
 se

cs

Canterbury, 22.2.2016 – p. 25/1

Correctness

It is a relative easy exercise in a theorem prover:

matches(r, s) if and only if s ∈ L(r)

matches(r, s) def
= nullable(ders(r, s))

Canterbury, 22.2.2016 – p. 26/1

POSIX Regex Matching
Two rules:
Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

i f f o o b l a

Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

i f b l a

Kuklewicz: most POSIX matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix

Canterbury, 22.2.2016 – p. 27/1

http://www.haskell.org/haskellwiki/Regex_Posix

POSIX Regex Matching
Two rules:
Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

i f f o o b l a

Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

i f b l a

Kuklewicz: most POSIX matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix

Canterbury, 22.2.2016 – p. 27/1

http://www.haskell.org/haskellwiki/Regex_Posix

POSIX Regex Matching
Sulzmann & Lu came up with a beautiful idea for
how to extend the simple regular expression
matcher to POSIX matching/lexing (FLOPS
2014)

Martin Sulzmann

the idea: define an inverse operation to the
derivatives

Canterbury, 22.2.2016 – p. 28/1

Regexes and Values
Regular expressions and their corresponding
values:

r ::= ∅
| ϵ
| c
| r1 · r2
| r1 + r2

| r∗

v ::=
Empty

| Char(c)
| Seq(v1, v2)
| Left(v)
| Right(v)
| []
| [v1, . . . vn]

There is also a notion of a string behind a value: |v|

Canterbury, 22.2.2016 – p. 29/1

Regexes and Values
Regular expressions and their corresponding
values:

r ::= ∅
| ϵ
| c
| r1 · r2
| r1 + r2

| r∗

v ::=
Empty

| Char(c)
| Seq(v1, v2)
| Left(v)
| Right(v)
| []
| [v1, . . . vn]

There is also a notion of a string behind a value: |v|
Canterbury, 22.2.2016 – p. 29/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a

r3
der b r4

der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Canterbury, 22.2.2016 – p. 30/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b

r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Canterbury, 22.2.2016 – p. 30/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c

nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Canterbury, 22.2.2016 – p. 30/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Canterbury, 22.2.2016 – p. 30/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4

v3
inj c

v2
inj b

v1
inj a

mkeps

Canterbury, 22.2.2016 – p. 30/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Canterbury, 22.2.2016 – p. 30/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Canterbury, 22.2.2016 – p. 30/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Canterbury, 22.2.2016 – p. 30/1

Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Canterbury, 22.2.2016 – p. 30/1

Sulzmann & Lu Paper
I have no doubt the algorithm is correct — the
problem, I do not believe their proof.

“How could I miss this? Well, I was rather careless
when stating this Lemma :)
Great example how formal machine checked proofs
(and proof assistants) can help to spot flawed reasoning
steps.”

“Well, I don’t think there’s any flaw. The issue is how to
come up with a mechanical proof. In my world
mathematical proof = mechanical proof doesn’t
necessarily hold.”

Canterbury, 22.2.2016 – p. 31/1

Sulzmann & Lu Paper
I have no doubt the algorithm is correct — the
problem, I do not believe their proof.

“How could I miss this? Well, I was rather careless
when stating this Lemma :)
Great example how formal machine checked proofs
(and proof assistants) can help to spot flawed reasoning
steps.”

“Well, I don’t think there’s any flaw. The issue is how to
come up with a mechanical proof. In my world
mathematical proof = mechanical proof doesn’t
necessarily hold.”

Canterbury, 22.2.2016 – p. 31/1

Sulzmann & Lu Paper
I have no doubt the algorithm is correct — the
problem, I do not believe their proof.

“How could I miss this? Well, I was rather careless
when stating this Lemma :)
Great example how formal machine checked proofs
(and proof assistants) can help to spot flawed reasoning
steps.”

“Well, I don’t think there’s any flaw. The issue is how to
come up with a mechanical proof. In my world
mathematical proof = mechanical proof doesn’t
necessarily hold.”

Canterbury, 22.2.2016 – p. 31/1

The Proof Idea
by Sulzmann & Lu

introduce an inductively defined ordering relation
v ≻r v′ which captures the idea of POSIX
matching
the algorithm returns the maximum of all possible
values that are possible for a regular expression.

the idea is from a paper by Cardelli & Frisch about greedy
matching (greedy = preferring instant gratification to
delayed repletion):
e.g. given (a + (b + ab))∗ and string ab

greedy: [Left(a), Right(Left(b)]
POSIX: [Right(Right(a, b)))]

Canterbury, 22.2.2016 – p. 32/1

The Proof Idea
by Sulzmann & Lu

introduce an inductively defined ordering relation
v ≻r v′ which captures the idea of POSIX
matching
the algorithm returns the maximum of all possible
values that are possible for a regular expression.

the idea is from a paper by Cardelli & Frisch about greedy
matching (greedy = preferring instant gratification to
delayed repletion):
e.g. given (a + (b + ab))∗ and string ab

greedy: [Left(a), Right(Left(b)]
POSIX: [Right(Right(a, b)))]

Canterbury, 22.2.2016 – p. 32/1

⊢ Empty : ϵ ⊢ Char(c) : c

⊢ v1 : r1 ⊢ v2 : r2
⊢ Seq(v1, v2) : r1 · r2

⊢ v : r1
⊢ Left(v) : r1 + r2

⊢ v : r2
⊢ Right(v) : r1 + r2

⊢ [] : r∗
⊢ v1 : r . . . ⊢ vn : r

⊢ [v1, . . . , vn] : r∗

Canterbury, 22.2.2016 – p. 33/1

Canterbury, 22.2.2016 – p. 34/1

Problems
Sulzmann: …Let’s assume v is not a POSIX value,
then there must be another one …contradiction.

Exists?
L(r) ̸= ∅ ⇒ POSIX(v, r)

in the sequence case, the induction hypotheses
require |v1| = |v′

1| and |v2| = |v′
2|, but you only

know
|v1| @ |v2| = |v′

1| @ |v′
2|

although one begins with the assumption that the two
values have the same flattening, this cannot be maintained
as one descends into the induction (alternative, sequence)

Canterbury, 22.2.2016 – p. 35/1

Problems
Sulzmann: …Let’s assume v is not a POSIX value,
then there must be another one …contradiction.

Exists?
L(r) ̸= ∅ ⇒ POSIX(v, r)

in the sequence case, the induction hypotheses
require |v1| = |v′

1| and |v2| = |v′
2|, but you only

know
|v1| @ |v2| = |v′

1| @ |v′
2|

although one begins with the assumption that the two
values have the same flattening, this cannot be maintained
as one descends into the induction (alternative, sequence)

Canterbury, 22.2.2016 – p. 35/1

Problems
Sulzmann: …Let’s assume v is not a POSIX value,
then there must be another one …contradiction.

Exists?
L(r) ̸= ∅ ⇒ POSIX(v, r)

in the sequence case, the induction hypotheses
require |v1| = |v′

1| and |v2| = |v′
2|, but you only

know
|v1| @ |v2| = |v′

1| @ |v′
2|

although one begins with the assumption that the two
values have the same flattening, this cannot be maintained
as one descends into the induction (alternative, sequence)

Canterbury, 22.2.2016 – p. 35/1

Problems
Sulzmann: …Let’s assume v is not a POSIX value,
then there must be another one …contradiction.

Exists?
L(r) ̸= ∅ ⇒ POSIX(v, r)

in the sequence case, the induction hypotheses
require |v1| = |v′

1| and |v2| = |v′
2|, but you only

know
|v1| @ |v2| = |v′

1| @ |v′
2|

although one begins with the assumption that the two
values have the same flattening, this cannot be maintained
as one descends into the induction (alternative, sequence)

Canterbury, 22.2.2016 – p. 35/1

Our Solution
direct definition of what a POSIX value is, using
s ∈ r → v:

[] ∈ ϵ → Empty c ∈ c → Char(c)

s ∈ r1 → v
s ∈ r1 + r2 → Left(v)

s ∈ r2 → v s ̸∈ L(r1)

s ∈ r1 + r2 → Right(v)

s1 ∈ r1 → v1
s2 ∈ r2 → v2
¬(∃s3 s4. s3 ̸= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L(r1) ∧ s4 ∈ L(r2))

s1@s2 ∈ r1 · r2 → Seq(v1, v2)
…

Canterbury, 22.2.2016 – p. 36/1

Pencil-and-Paper Proofs
in CS are normally incorrect

case in point, in one of Roy’s proofs he made the
incorrect inference
if ∀s. |v2| ̸∈ L(der c r1) · s then ∀s. c |v2| ̸∈ L(r1) · s

while
if ∀s. |v2| ∈ L(der c r1) · s then ∀s. c |v2| ∈ L(r1) · s
is correct

Canterbury, 22.2.2016 – p. 37/1

Proofs in Math vs. in CS
My theory on why CS-proofs are often buggy

Math:
in math, “objects” can be
“looked” at from all “angles”;
non-trivial proofs, but it seems
difficult to make mistakes

Code in CS:
the call-graph of the seL4
microkernel OS;
easy to make mistakes

Canterbury, 22.2.2016 – p. 38/1

Conclusion

we strengthened the POSIX definition of
Sulzmann & Lu in order to get the inductions
through, his proof contained small gaps but had
also fundamental flaws

its a nice exercise for theorem proving
some optimisations need to be aplied to the
algorithm in order to become fast enough
can be used for lexing, small little functional
program

Canterbury, 22.2.2016 – p. 39/1

Thank you very much again
for the invitation!

Questions?

Canterbury, 22.2.2016 – p. 40/1

