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I. INTRODUCTION 
Regular expressions are declarative way of defining 

regular languages recognized by a DFA or a NFA. They are 
equivalent to one another in the sense that, for a given regular 
expression, it can be constructed a finite state automata 
recognizing the same language described by the regular 
expression, and vice–versa.  
 

All over the years, various attempts have been made to 
accomplish this task. In the year 1960, R.McNaughton and 
H.Yamada [6] provided an algorithm to construct a non – 
deterministic finite automaton from a regular expression.  

 
G.Berry and R.Sethi [1] discussed the theoretical 

background for the R.McNaughton and H.Yamada algorithm. 
V.M.Glushkov [4] has also given a similar algorithm in the 
year 1961. An elegant construction of deterministic finite 
automata based on the derivatives of regular expressions was 
proposed by J.A Brzozowski [2] in the year 1964. 
J.E.Hopcroft and J.D.Ullman [5] discussed the construction of  
  - NFA from the given regular expression. 
J.M.Champarnaud and others [3] described a variant of the 
step by step construction which associates standard and trim 
automata to regular languages.  

 
In this paper, we discuss some basic set theoretic 

properties involved in Brzozowski way of constructions of 
automata have been discussed.  

 

II. REGULAR EXPRESSIONS  

Let   be an alphabet of symbols.  A word over an 
alphabet   is a finite sequence of symbols from that 

alphabet . The set of all words over   is denoted by  . 
The empty word is denoted by  .  A regular expression is 
defined inductively as 

(i)   is a regular expression. 
(ii)  For any a , the symbol ‘a’ is a regular 

expression. 
(iii)  If E and F are regular expressions, 

then  , ,E F EF E   are all regular expressions. 

The regular expressions  , ,E F EF E 
  are called 

respectively union, concatenation, Kleene closure of the 
corresponding regular expressions. The language of a regular 
expression E is denoted as   L E ,  and defined the same for 
various regular expressions as follows. 

       
     
          

( ) ( )

( )

( ) ( )

i L ii L a a

iii L E F L E L F

iv L EF L E L F v L E L E

 



 

  

 

. 

The empty set   is also considered as a language of 
regular expression denoted by the symbol   itself. It is 
assumed that 

; ;E E E E E E E E               
 The properties of the regular languages are discussed in [9].
  

The following lemma gives some algebraic type identities 
with respect to regular expressions. 

 
2.1 Lemma 
 Let E and F are any two regular expressions. Then, 

 

 
 

   
     

   
   

, .

i E F F E

ii EF FE only when

a E F or b oneof E F is or

iii E F G E F G

iv E E

v E F G E F E G



 

  

  



 

    



  

. 

 



International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 1 – Jul  2014 

ISSN: 2231-5381                    http://www.ijcttjournal.org  Page 30 
 

 Not all algebraic type identities are hold in the case of 
regular expressions. 

 
2.2 Lemma: 
 For any two regular expressions E and F, then,  

 

   
     
i E F E F

ii EF E F iii EF FE

  

  

  

 
.   

           Provided that E and F are not equal to  or    . 
 
2.3 Lemma: 

 

   

     
 

( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )

i a a vi aa a

ii a a a vii a b a b

iii a a a viii a a

iv b a b a b ix a a a
v b ba ba x a a

 







   

   

 

 

   

   

   

     

    

   

   
 

     

( )

( ) ( )

( )

xi a b c ab ac xiv a a a

xii a b c ac bc xv

xiii a b a b a b

 

 

     

    

   

   
 

  Some of the proofs of the equivalent regular 
expressions given in the above lemmas are proved in [7]. 
 
 

III Derivatives of Regular Expressions 
3.1  Definition 

  Given a language L and a symbol ‘a’, the derivative    
                    of L with respect to a symbol a is defined as     

                              aD L b ab L  . 

The derivatives of regular expressions with respect to 
a symbol are defined as follows: 

     

 

     

 
     
 

   
      

1

2

3

4

5

6 7

a a

a

a a a

a a
a

a

a a

w a a w

D D D a a

if b a
D b

O th erw ise

D E F D E D F

D E F D F if L E
D E F

D E F o th e rw ise

D E D E E

D E E D E D D E











 

    


 
  

   




 

. 

The operator D is treated as a prefix operator with high 
precedence than “+”, “.” and “*”. The derivatives involving 
the operators intersection, and complement are defined by 

 a a aD E F D E D F    

and  a a aD E F D E D F   . 
It can be verified that 

     

     
a a a

a a a

D ab a D ab D a

D ab a D ab D a

 

 

  

  
 . 

3.2 Examples 
 

   
 

 
   
 

 

      

    

     
   
 

 

      

    

1

2

3

a

b

a

b

a a a

a

a a

b b b

b

Let E a a b

Then D E a b

D E

Let E ab a b

Then D E b a b

D E

Let E a b a

Then D E D a b a D a

D a b a b a

D a D b a b a

a b a

a b a

a b a

D E D a b a D a

D a b a b





 

 





























 

 

 

 

 

 

 

     
       

     

    

  

  

     
     

     
   
 

 

b b

a

D a D b a b a

a b a

a b a

a b a













 

    

   

 

 

 

. 
 

3.3 Definition 
Let L be a regular language. We define  

  if L
E

if L
 





  
 

It can be easily seen that 
   
     
       
   

,

,

i a fo r an y a

ii an d

iii E F E F

iv E



   

  

 

   

   

  



 

 
3.4 Definition 

Let 1 2.... nw a a a   and E be a regular expression. Then, 

    
    

1 2 2 1

1 2 3 3 1 2

a a a a

a a a a a a

D E D D E

D E D D E
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In general, we have  
   

  
1 2 3

1 2 1

....

.....

n

n n

w a a a a

a a a a

D E D E

D D E





 

3.5 Theorem 
 Let E, F are two regular expressions and the word 

1 2.... nw a a a .a string over the Kleene closure of an 

alphabet .     Then,  

     w w wD E F D E D F    
 

3.6 Theorem 
 Let E, F are two regular expressions and the word 

1 2.... nw a a a .  Then,  

        
          

   

1 1 1

1 2 1 2 1 1

1 2

a a a

a a a a a a

a a

D EF D E F E D F

D EF D E F E D E D F

E D F







 

 



 

In general, 
    

    

    

    

    
   

.... ....1 2 1 2

....1 2 1

....1 2 2 1

....1 2 3 2 1

.... .1 2 3

.... .2 3

... ..

a a a a a an n

a a a an n

a a a a an n n

a a a a a an n n n

a a a a n

a a a n

D E F D E F

D E D F

D E D F

D E D F

D E D F

P D F













 

  









 



 

 
3.7 Theorem 

Let the word 1 2.... nw a a a  . Then,  

    
    

    

1 1

1 2 1 2

1 2

a a

a a a a

a a

D E D E E

D E D E E

D E D E

 

 









 

 

    
    
     

      
       
       

1 2 3 1 2 3

1 2 3

1 2 3 1

2 3 2 3

1 2 3 1 2 3

1 2 3

a a a a a a

a a a

a a a a

a a a a

a a a a a a

a a a

D E D E E

D E D E

D E E D E

D E E D E D E

D E E D E D E E

D E D E D E









 

 





 

 







 

   

 



 

 
Similarly, we can generalize 

    
    

          

1 2 3 1 2 3

1 2 3

1 2 1

..... ....

....

.... ....

n n

n

n n

a a a a a a a a

a a a a

a a a a

D E D E E

D E D E E

D E D E D E D E



  


 









 

 
3.8 Lemma 

 
    , ,aD aw w aw where a w          

 Proof: 

   

   

    

    
   

, , , ,....

, , , ,....

, , ,....

a

L aw aw awaw awawaw

D L aw w waw wawaw

w aw awaw

w aw





 









   

   
 

 

 

  Hence the corresponding regular expression is 

 w aw  . 
 

3.9 Lemma 
 Let E be regular expression, then  

  
      ,aD L aE L E L aE where a      . 

  

   
   

  
   

, , , .. ..

, , ... .

, , , . ...

a

L aE a E a E a E

D L a E E E a E

E a E aE aE

L E L a E













   




 

 
3.10 Theorem 
 Let E be any regular expression and a be any symbol 

over the alphabet .  

       a aL D E D L E . 

Proof: 
Case (i): Let E  , then     L E  ., and   aD L E   . 

 Also  aD    , and   aL D     . 

 On the other hand, if  E  , then 

  
     a aL D E D L E   . 

 Hence the theorem is true when E  and E   . 
Case (ii): Let E a . 

  Then,  aD a  .  Hence     aL D E   .   

 Also    L E a ., and     aD L E   . 



International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 1 – Jul  2014 

ISSN: 2231-5381                    http://www.ijcttjournal.org  Page 32 
 

 If E b a  , then      a aL D E D L E   . 

Case (iii):Let E F G   . We prove first 

     a a aD E D F D G  . 

 Suppose, if 'F aF and 'G aG  ,then 

  ' 'aD E F G   .and  

 
      ' 'aL D E L F L G   

 Let F and G are two regular expressions begin with a 
symbol other than ‘a’. Then  

    a aD F D G   

 Hence  aD E  and   aL D E    . 

 In the first case,    L F aw w   ,  

 and    L G au u    . 

 Hence    , ,L E aw au w u   . 

 Hence      ' 'L E aL F aL G  . 

 i.e.,       ' 'aD L E L F L G  . 

 In the second case,    ,L F bw b a w      

 .and    ,L G bu b a u    . 

 
   , , ,L E bw bu b a w u    . 

 Therefore,   aD L E   . 

 Hence      a aL D E D L E ,  

    When  E F G  . 
 
Case (iv): 
 Let E FG . Suppose if F and G are two regular 

expressions begin with a symbol ‘a’, then it can be found 
as in the case (iii), that 

         ' 'a aL D E D L E L F L G  . 

 Similarly, if F and G are regular expressions begin with 
other than ‘a’, it can be found as  

     a aL D E D L E . 

Case (v): 
 Let      , a a aE F then D E D F D F F     . 

Again there are two possibilities, say 
' 'F aF or F bF when a b   . 

 In the first case,   'aD F F and   'aD F F F  . 

In the second case,  aD F   . Therefore  aD E   . 

 Hence the statement      a aL D E D L E  is 

trivially true. 
 If   'aD F F F   , then   

      
    

'

'

aL D E L F L F

L F L F








. 

On the other hand, if E F  and 'F aF aw   . Then 

      'L E L F L aF    

Hence 

     
    

'

'

a aD L E D L aF

L F L F








. 

Hence      a aL D E D L E . 

 This proves the theorem. 
 
3.11 Theorem 
Let 1 2.... nw a a a , and E be a regular expression over an  

alphabet  . Then     1 2 3 1....n nw a a a a aD E D D E


 . 

Suppose if w  then wD E E , 

As an illustration, let w aba  and  E a b ab   .then  

 

    
  

     
  

 

w aba

a ab

a b a a

a b

a

D E D a b ab

D D a b a b

D D D a D b ab

D D a b

D ab a b



 

 

 

  

     

. 

 Generalizing the above illustration, the following 
theorems are obtained. 

 
3.12 Theorem 
 Let w n and ;E m n m   ; . then  

 wD E  . 

 
3.13 Theorem 
 If  E w  , then  wD E   . 
 
3.14 Theorem 
 If ,w au u    , and  ,E av v   . Then 

    ,w uD E D v where a   . 
Proof: 
 Let 1 2.... nu a a a . Then 
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1 2 3 1

1 1 2 3 2

1 2

1 2

1 1

1 2 3

.. ..

... .

... .

. ...

....

....

n n

n n n

n n n

n n n

n n

n

w a a a a a

a a a a a a

a a a a

a a a

a a a

a a a a

u

D E D D E

D D D E

D D D D E

D D D v

D D v

D v

D v



 

 

 

















 

 
3.15 Theorem 
 If ; , , ,w au E bv where a b and u v      , 

Then  wD E   . 
 

III. CONCLUSION 
  Brzozowski derivatives of the regular expressions are 

always helpful tool for constructing DFA. The 
generalizations of the derivatives are useful for transforming 

the size of the derivatives of the expressions research 
oriented work. 
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