
Abstract

The main part of this thesis is about regular expression matching.
We shall focus on a POSIX lexer introduced by Sulzmann and Lu,
which uses Brzozowski’s Derivatives of Regular Expressions. These
derivatives can be used for a simple regular expression matching al-
gorithm. Sulzmann and Lu cleverly extended this algorithm in order
to deal with POSIX matching, which is the underlying disambigua-
tion strategy for regular expressions needed in lexers. Their algo-
rithm generates POSIX values which encode information for how a
regular expression matches a string–that is, which part of the string
is matched by which part of the regular expression. We shall give
our own inductive definition of what a POSIX value is and show
that such a value is unique (for given regular expression and string
being matched) and that Sulzmann and Lus algorithm always gen-
erates such a value (provided that the regular expression matches
the string). We also show that our inductive definition of a POSIX
value is equivalent to an alternative definition by Okui and Suzuki
which identifies POSIX values as least elements according to an or-
dering of values. We also prove the correctness of Sulzmann and
Lu’s bitcoded version of the POSIX matching algorithm and extend
the results to additional constructors for regular expressions.

In the second part, we focus on the specification of parsers for the
Transport Layer Security (TLS) protocol. We have proved in F?

language the correctness and security of the parsers’ pure specifi-
cations and derive efficient (zero-copy) and composable implemen-
tations from these specifications. The F? code is then extracted to
C-code using the recent tactics engine of F?. For this, we also cre-
ated a new library providing a unified model for bytes, replacing the
previous unsound library. We then updated the TLS parsers to use
this new byte model and enhance the functionality and verification
automation.

Contents

I POSIX Regular Expression Matching 9

1 POSIX Regular Expression Matching 10
1.1 Introduction . 11
1.2 POSIX Lexing . 19
1.3 Preliminaries . 23
1.4 POSIX Lexing Algorithm by Sulzmann and Lu 28

2 Specification of POSIX Values 36
2.1 Our POSIX Definition . 36
2.2 Ordering of Values According to Okui and Suzuki 40
2.3 GREEDY Ordering by Frisch and Cardelli 47
2.4 POSIX Ordering by Sulzmann and Lu 49

3 Optimisations, Extensions and Future Work 53
3.1 Simplification of Regular Expressions 54
3.2 Bitcoded Values and Annotated Regular Expressions 59
3.3 Extensions . 68
3.4 Summary and Future Work . 73

II TLS Message Parsers 76

4 Project Everest 77
4.1 Introduction . 78
4.2 The HTTPS Ecosystem . 78
4.3 Project Everest . 80

4.3.1 The Everest Toolchain 81
4.3.2 The Everest Runtime 83

5

Contents

5 A Pure Model of Bytes 85
5.1 TLS Message Parsers . 85
5.2 Correctness Specifications for Parsers 87
5.3 The New F? Bytes Library . 88

5.3.1 Parser . 88
5.4 Summary . 92

III Appendixes 93

A Bytes Library for TLS Message Parsers 94

Bibliography 107

6

List of Figures

1.1 The lexing algorithm by Sulzmann & Lu 33

2.1 Our inductive definition of POSIX values. 37
2.2 The reflexive version of the ordering by Frisch and Cardelli for

GREEDY matching. 48
2.3 The reflexive version of the ordering by Sulzmann and Lu for

POSIX matching. 50

3.1 Auxiliary functions for simplifying regular expressions and rec-
tifying values. 55

4.1 A rough overview over the HTTPS ecosystem given by the Ever-
est Project. 80

4.2 An overview over the Everest toolchain. 81
4.3 Overview over the reference implementation of TLS, called MiTLS. 82
4.4 Everest runtime: left is the functional runtime and right is low-

level runtime. 83

5.1 A simple TLS datatype structure. 85
5.2 TLS parser variable length data structure. 86
5.3 The TLS low-level parsing framework. 86

7

Part I

POSIX Regular Expression
Matching

9

Chapter 1

POSIX Regular Expression
Matching

This part is about regular expression matching using derivatives of regular ex-
pressions. These derivatives have been introduced by Brzozowski in 1964 in a
paper where he showed that they can be used for a very simple regular expres-
sion matching algorithm [15]. The material presented in this part is mainly based
on a paper by Sulzmann and Lu [53] published in 2014. Their paper introduces
a clever extension of Brzozowski’s algorithm which, in cases where a regular
expression matches a string, calculates also a value for indicating how the reg-
ular expression matched the string. Such a value is important when one wants
to know which substring is matched by which part of the regular expression, or
when one wants to extract substrings from a larger string. It is also important
for lexers that need to tokenise input strings. Our main contribution in this part
are Isabelle proofs for establishing the correctness of Sulzmann and Lu’s regular
expression matching algorithm. The paper by Sulzmann and Lu already presents
some “pencil-and-paper” proofs for the correctness, but these informal proofs
contain some, which we believe, unfillable gaps and even errors—some of the
errors are already acknowledged by the authors in the online version of their
paper.1 To formally prove in Isabelle/HOL the correctness of the algorithm by
Sulzmann and Lu, we introduce our own inductive definition of what a POSIX
value is. We also provide formalised proofs for some of the unproven claims by
Sulzmann and Lu about bitcoded regular expression matching [53]. Our work

1
http://www.home.hs-karlsruhe.de/˜suma0002/publications/

regex-parsing-derivatives.pdf, see for example the comment in Lemma 3 on
Page 18.

10

1.1. Introduction

draws upon earlier work by Vansummeren [58], and Okui and Suzuki [41]. In
fact we show that our own definition for POSIX values is equivalent to the one
introduced by Okui and Suzuki. The Isabelle/HOL code of our formalisation is
available from

https://github.com/fahadausaf/POSIX-Parsing

The results from Chapter 1, as well as from Sections 2.1 and 3.1 are also in the
Archive of Formal Proofs of Isabelle.2

1.1 Introduction

Regular expressions are extremely useful for many text-processing tasks, such
as finding substrings in large texts, lexing programs, syntax highlighting and so
on. They also play a central role in security related programs, such as Snort and
Bro [46, 49]. These programs employ sometimes thousands of regular expres-
sions in order to find suspicious patterns in hostile network traffic. Since even
small servers can nowadays handle large volumes of network traffic, fast regular
expression matchers have become part of the critical computing infrastructure.

Given that regular expressions were introduced by Kleene in 1950 [30], one
might think regular expressions have since been studied and implemented to
death. There are well-known and extensive textbooks about regular expressions,
for example [26, 31, 50, 51] to name just a few. Also the “academic field” ap-
pears to be extremely well-researched given the huge number of papers about
regular expressions. Therefore it might be instructive to first have a look at why
it makes sense to write a thesis about regular expressions in 2018?

One problem with regular expressions can be seen in the graph below: it plots
the running times of the regular expression libraries built into Java 8 and current
versions of Python when solving the problem whether the regular expression
(a⇤)⇤ b matches strings of the form a . . . a| {z }

n

.

2
https://www.isa-afp.org/entries/Posix-Lexing.html

11

1.1. Introduction

5 10 15 20 25 30
0

10

20

30

40

n
tim

e
in

se
cs

Python
Java 8

The matching clearly always fails, but it is surprising that it takes such a long
time to decide for even relatively small strings. After all there is classic work es-
tablishing that for a given regular expression such matching problems should be
linear in the length of strings. This assumes the matching is done by using a DFA.
But patently the graph above shows that in Java and Python the problem appears
to be exponential. For example for the string consisting of just 28 a’s, Python
and Java need approximately 30 seconds to decide whether this string is matched
or not, and for slightly longer strings one usually receives out-of-memory excep-
tions. While this particular regular expression and matching problem are slightly
contrived, it is not the only instance where this happens. In fact, there are many
more similarly simple regular expressions that show the same behaviour. There
are also several other widely-used libraries, not just in Java and Python, behaving
in similar “exponential” manner.

That this is not just an “academic” problem is shown by reports where large
software systems suddenly stopped working because of problems with regular
expressions. For example, on 20 July 2016 a regular expression brought the
popular webpage Stack Exchange to its knees.3 The purpose of the regular ex-
pression was to trim unicode space from the start and end of lines, and a user
post containing approximately 20,000 whitespaces in a comment line caused the
server to go on high CPU loads such that the webpage became inaccessible. A
similar problem was described in 2016 for a regular expression in the Atom edi-
tor.4 There the purpose of the regular expression was to calculate the indentation
of the next line. For one particular line a user had written, Atom needed to cal-
culate for half an hour before writing a new line.5 Another report from 2018
described a problem with a regular expression whose purpose is to match http-
addresses. Again for a particular http-address the matching resulted in high CPU

3The report by an engineer of Stack Exchange can be found at http://stackstatus.
net/post/147710624694/outage-postmortem-july-20-2016.

4
https://atom.io

5
http://davidvgalbraith.com/how-i-fixed-atom/

12

1.1. Introduction

loads and exception traces, rather than the expected yes/no answer.
While the textbooks mentioned above do not feature anything about this phe-

nomenon, it is somewhat well-known among engineers. Digging a bit deeper, it
turns out the phenomenon has already been given a name—catastrophic back-
tracking [24]. There are also tools, called regex debuggers, which try to test
when a regular expression is prone to catastrophic backtracking [1]. Usually
such tests are sound, but not complete—meaning engineers cannot completely
rely on them in order to recognise instances where catastrophic backtracking
might occur. Digging even a bit further reveals that there is about a handful of
research papers that take head on this issue. For example, Kirrage et al [29]
use static analysis methods in order to detect potential instances of catastrophic
backtracking. Other examples are Weideman et al [59] and Berglund et al [9].
The first two works also implement diagnostic tools for detecting potential in-
stance of catastrophic backtracking, but do not offer direct help with rewriting
the problematic regular expressions such that they are not susceptible any more
to catastrophic backtracking, or with avoiding the problem altogether.

Catastrophic backtracking does not just happen with “negative” queries, that
is when a regular expression does not match a string. It can also happen with
“positive” queries. For example (a?){n}a{n} is another candidate for catastrophic
backtracking. In this regular expression the question mark stands for an optional
match, that is match either a or the empty string, and {n} stands for matching
exactly n copies with n being a natural number. If one matches this regular
expression against strings containing n a’s, then many libraries behave in an ex-
ponential fashion. This is because they first attempt to match the a’s using the op-
tional part of the regular expression, and then need to backtrack in order to match
with the exactly-n-times part of the regular expression. Since they have to back-
track over all choices, exponential runtime behaviour ensues. Unfortunately, it
is not so easy to predict precisely which regular expression library behaves in
which way and in which instance catastrophic backtracking occurs. For exam-
ple Java (up to Version 8) and current versions of Python exhibit catastrophic
backtracking with the example (a⇤)⇤b and strings of the form a . . . a. Also Ruby
up to Version 2.2.0 struggled with this example, but in later versions the authors
introduced an adhoc “optimisation” by rewriting (a⇤)⇤ to just a⇤. While this op-
timisation seems harmless, it can actually open a can of worms: the trouble is
that such an optimisation can easily affect the correctness involving submatches
as pointed out by Kuklewicz [34]. Also regular expression matching in Java 9

13

1.1. Introduction

got much faster in instances such as (a⇤)⇤b, but the running time is still much
slower than the expected “linear behaviour”.

The root problem underlying catastrophic backtracking is that very many
regular expression libraries, like in Java and Python, do not implement regular
expression matchers based on DFAs, as one would expect, but based on NFAs.
With NFAs the algorithm for reaching an accepting state needs to search and
explore potentially alternative transitions. This search can be done in a breadth-
first fashion. The problem with this method, however, is that it can result in
rather high memory demands, as reported for example by Becchi and Crowley
[7]. The idea is that when alternative transitions need to be explored one marks
all candidate states as active and then recursively explores all transitions from
those active states. The problem is that in typical matching problems almost
all states become active resulting in a high memory bandwidth when the NFA
contains thousands or even million states. This way of finding an accepting state
is therefore not desirable in many applications. The alternative is to explore
the candidate transitions in a depth-first fashion. Since this does not require
much memory, it is often the implementation technique of choice for regular
expression matching libraries. It is also often fast. . . just sometimes there are
“outliers” which cause unexpected exponential behaviour and which can bring
systems to a grinding halt, as mentioned above.

It is well-known that regular expressions can be translated into equivalent
NFAs via the Thompson construction—this sometimes also called the McNaughton-
Yamada-Thompson algorithm [38, 56]. NFAs can then be “determised” by the
subset construction, and the resulting DFAs can be minimised via a myriad of
minimisation algorithms. One interesting minimisation algorithm is by Brzo-
zowski and has been formalised in Isabelle by Paulson [45]. This is a “well-
rehearsed” approach to regular expression matching and well-explained in in-
numerable textbooks. The question therefore is why many existing regular ex-
pression libraries do not use DFAs where matching can be fast? There are two
answers: bounded repetitions and back-references.

Bounded Repetitions

One answer to the question is the slight, but significant, disconnect between what
kind of regular expressions libraries need to support in practice, and what regular
expressions are used in textbooks. One problematic kind of regular expression

14

1.1. Introduction

from practice are bounded repetitions, written r{n} with n being a natural num-
ber. The usual unbounded repetition in regular expressions is written with the
Kleene-star as r⇤. The point is that the bounded version requires that r needs
to match exactly n times. Becchi and Crowley give an example that beautifully
illustrates the problem with such bounded repetitions [7]: Consider the regular
expression .⇤a .{n}bc where the dots (each) match any character. Therefore the
first part .⇤ effectively means that the pattern prescribed by a .{n}bc can occur at
any position of the input string. The pattern then searches for substrings starting
with an a followed by n characters and ending with the characters bc. Becchi
and Crowley give the following NFA for .⇤a .{n}bc

0start 1 2 n + 1 n + 2 n + 3

⇤
a ⇤ ⇤ ⇤ ⇤ b c

n

where the starred transitions can be performed for any input character. This is
clearly a NFA, because in state 0 we do not know whether we should follow the
transition to state 1 or remain in state 0 when receiving an a as input. Let us as-
sume the input string is of the form aaaaaaaaaaaa . . . aaaabc. If we traverse the
NFA in a breadth-first fashion, then state 0 will always be active, but also every
a will make the transition 0 ! 1 “fire” and this will activate state 1. So upon
receiving a large enough stream of characters a’s, all states from 0 to n + 1 will
be active and need to be considered for potential transitions. Becchi and Crowley
argue that this may result in unacceptable memory bandwidth requirements and
too long processing times in practice.

Generating a DFA from the NFA above is also not really an option. The rea-
son is that the subset construction, as is well-known, might blow up the size to
2n states in the worst case. Unfortunately, NFAs involving bounded repetition
will always hit this kind of blow-up because of the different values the “counter”
n may take. It is still an active research area how to extend the traditional no-
tion of automata (deterministic and non-deterministic) in order to deal more ef-
ficiently with such “boundedness constraints”. The corresponding algorithms
are deployed and relied upon in situations where processing times and memory
demands are critical, but it appears to be unclear what the state of correctness
claims and specifications are. Moreover, it is not clear what the relation of such
automata is to POSIX matching/lexing (see later on).

15

1.1. Introduction

Back-References

Another answer to why many existing regular expression libraries do not use
DFAs has to do with back-references. They are part of Perl Compatible Regu-
lar Expressions, or PCRE for short.6 Back-references are often indicated with
numbers, such as \1, \2, . . . Their idea is to match again a substring one has seen
earlier in the input. To understand them better, assume you have the regular ex-
pression a + b, which can either recognise the character a or b. Then (a + b)\1
means we can recognise either a or b as first character, but then as second we
want to have exactly the same character as again. So aa and bb would be OK,
but ab or ba would not. Therefore the above regular expression is not equivalent
to (a+ b)(a+ b) where we just copy the relevant subexpression. The number in
the back-reference refers to the corresponding “group” enclosed in parentheses.
For example (a+ b)(c+ d)\1\2 accepts the strings

acac

bcbc

adad

bdbd

A possible application for back-references is recognising well-formed HTML-
tags. These tags can be of the form \ < tag > where tag could be anything like
head, body and so on. But then the requirement is that the closing tag should be
the same tag again (just prefixed with ab). Back-references allow us to construct
for this a regular expression of the form

\ < (tag) > . . . \ <b\1 >

where the regular expression tag would prescribe which tags are to be matched
and the back-reference \1 ensures that only strings with “matching” tags match
successfully.

While adding bounded regular expressions to “normal” regular expressions is
quite innocuous from a formal language point of view—it does not bring us out-
side the set of regular languages, adding back-references is a bit more serious—it
allows us to recognise non-regular languages. Clearly back-references allow us
to recognise “squares”, such as papa or weewee, using the PCRE (.+)\1. The
point is that the language of squares is not regular and interestingly also not

6
http://www.pcre.org

16

1.1. Introduction

context-free.7 Another such example is given by Câmpeanu et al [16] who prove
that the language {anbanban | n � 1} is not context-free, but can be expressed
as (a+)b\1b\1 by a PCRE. Furthermore, the language {anbn | n � 0} is context-
free, but there is no regular expression, not even one involving back-references,
that could match it. They show that PCRE languages are properly contained in
context-sensitive languages though.

While the non-regularity of back-references might be considered as an inter-
esting “quirk”, the real problem is that the resulting matching problem becomes
NP-hard! This has been shown by a reduction to the k-vertex cover problem for
graphs, which is known to be NP-hard. This reduction has been given by Aho
[3] and is also nicely described by Rosulek.8 (We shall therefore omit the details
here). In light of this NP-hardness result, the choice of a depth-first search al-
gorithm for regular expression matching, like implemented in Java and Python,
does not look like such an absurd choice. If there were a more efficient algorithm
to decide in general the matching problem involving back-references, we would
also be able to quickly compute solutions for the graph 3-colourability problem
etc, which is generally believed to be impossible.

There are a number of efficient regular expression libraries, for example
Google’s RE2, which are based on DFAs, but they do not support back-references.
Why not ditching back-references then? Well, they seem to be useful to engi-
neers: for example Snort contains around 8,000 regular expressions for monitor-
ing network traffic and around 5 to 10% of them use back-references [7]. (These
regular expressions are community curated and change from version to version
depending on known attack patterns.)

Brzozowski Derivatives of Regular Expressions

This brings us to the main topic of this thesis: Brzozowski [15] introduced the
notion of the derivative, written r\c, of a regular expression r w.r.t. a character
c, and showed that it gave a simple solution to the problem of matching a string
s with a regular expression r: if the derivative of r w.r.t. (in succession) all the
characters of the string matches the empty string, then r matches s (and vice
versa). The derivative has the property (which may almost be regarded as its
specification) that, for every string s and regular expression r and character c, one

7See https://en.wikipedia.org/wiki/Regular_expression.
8See http://www.mikero.com/misc/code/vertex-cover2.html.

17

1.1. Introduction

has cs 2 L(r) if and only if s 2 L(r\c). Because of this attractive property, the
central point in this thesis is to not use automata for regular expression matching,
rather use Brzozowski’s derivatives instead.

Brzozowski introduced derivatives of regular expressions in 1964. Since then
they have acquired a somewhat interesting “history”: Over the years derivatives
of regular expressions were certainly known in the Formal Languages commu-
nity and utilised for various purposes. An important research mile-stone, for ex-
ample, is the notion of partial derivatives for regular expressions introduced by
Antimirov in 1995 [5]. However, in the communities broadly described as Pro-
gramming Languages and as Formal Proofs, they were largely forgotten. Owens
et al wrote in 2009 that derivatives of regular expressions had been lost “in the
sands of time” [43]. However, they recently have experienced a renaissance and
become again a “hot” research topic with numerous research papers appearing
in the last ten years—[4, 18, 19, 20, 55, 57, 60] to cite a few. Krishnaswami and
Yallop even claim in a paper from 2018 that if somebody implements a regular
expression matcher using derivatives, then “you have almost surely identified a
functional programmer” [33].9

The beauty of Brzozowski’s derivatives is that they are neatly expressible in
any functional programming language—the code just consists of an algebraic
datatype for regular expressions and two simple recursive functions. This sim-
plicity and “algebraic nature” of derivatives is also the main attraction for theo-
rem provers. The simple definitions can be easily rendered into theorem prover
code and also very easily be reasoned about by performing inductions over in-
ductive datatypes and recursive definitions. A consequence is that proving the
correctness of the Brzozowski’s matcher is a nice “afternoon exercise” in mod-
ern theorem provers. For example mechanised proofs can be found in HOL4,
where a proof has been mentioned by Owens and Slind [44]. Another one can
be found in Isabelle/HOL as part of the work by Krauss and Nipkow [32]. And
another one in Coq is given by Coquand and Siles [20].

By using Brzozowski’s derivatives for matching we also benefiting from the
fact that regular expressions are more convenient for “composition”—be it se-
quential or alternative composition. The reason is that there are explicit con-
structors in regular expressions for composition. This allows us to reason com-
positionally about regular expressions—we can take them apart and put them

9
https://www.cl.cam.ac.uk/˜jdy22/papers/a-typed-algebraic-

approach-to-parsing.pdf

18

1.2. POSIX Lexing

together again. In contrast, a “formal” notion of composition in automata is not
as straightforward and also is heavily sensitive to how automata are represented
(possible representations are graphs, matrices, functions and so on). However,
Paulson [45], and also Doczkal et al [22] take a somewhat opposing view and
report that their formalisations of automata were rather “smooth”. One advan-
tage of automata, in comparison with regular expressions, however, is that there
is a standard notion of what a minimal automata is, while there is no equivalent
notion for regular expressions.

Another attraction of Brzozowski’s derivatives is that they elegantly extend
to additional constructors of regular expressions. Owens et al describe how the
not-regular expression can be easily included in the definition of derivatives [43].
They also show that this regular expression is very convenient for prescribing
patterns for recognising typical comments in programming languages, such as
C-like comments of the form /* ... */. These patterns should start with a /*,
but then the three dots should match anything except the final */. Such con-
straints can be concisely expressed via the not-regular expression. Brzozowski’s
derivatives also elegantly extend to bounded repetitions. While the details about
the complexity are not yet fully worked out, it should be possible to treat bounded
repetitions using Brzozowski derivatives without having to pay a heavy penalty in
terms of processing time, in contrast to the penalty having to be paid by standard
DFAs. Unfortunately, nothing is known yet about the relation of Brzozowski
derivatives and back-references.

One limitation of Brzozowski’s original derivative-based matcher is that it
only generates a yes/no answer for whether a regular expression matches a string
or not. Our motivation to look at this area arose from the paper by Sulzmann
and Lu [53] which cleverly extends Brzozowski’s matching algorithm to POSIX
lexing. This extended version generates additional information on how a regular
expression matches a string. We shall describe this in the next section.

1.2 POSIX Lexing

One application of regular expressions is in lexers. Lexers need to split up an
input string into a sequence of tokens, each of which is frequently defined by a
regular expression. Suppose rkey is a regular expressions for recognising key-
words such as if, then, while, for and so on; and rid a regular expression for
identifiers—a single character followed by characters or numbers. The problem

19

1.2. POSIX Lexing

is that these regular expressions often “overlap”, in the sense that a keyword
usually also satisfies the constraints for an identifier. This problem can also oc-
cur within a single regular expression, because if a regular expression matches
a string, then in general there is more than one way of how the string can be
matched. There are two commonly used disambiguation strategies in order to
generate a unique answer: one is called GREEDY matching [23] and the other is
POSIX matching [2, 34, 41, 53, 58].10

To see the difference between both strategies consider the string xy and the
regular expression (x + y + xy)⇤. Either the string can be matched in two
‘iterations’ by the single letter-regular expressions x and y, or directly in one
iteration by xy. The first case corresponds to GREEDY matching, which first
matches with the left-most symbol and only matches the next symbol in case of a
mismatch (this is greedy in the sense of preferring instant gratification to delayed
repletion). The second case is POSIX matching, which prefers the longest match.
There are four informal rules behind tokenising a string in a POSIX fashion [2]:

• The Longest Match Rule (or “maximal munch rule”):

The longest initial substring matched by any regular expression is taken as
next token.

• Rule Priority:

For a particular longest initial substring, the first regular expression that
can match determines the token.

• Star Rule:

A subexpression repeated by ⇤ shall not match an empty string unless this
is the only match for the repetition.

• Empty String Rule:

An empty string shall be considered to be longer than no match at all.

In the context of lexing, where an input string needs to be split up into a sequence
of tokens, POSIX is the more natural disambiguation strategy for what program-
mers consider basic syntactic building blocks in their programs. Consider again
rkey for recognising keywords and rid for recognising identifiers. Then we can

10POSIX matching acquired its name from the fact that the corresponding rules were described
as part of the POSIX specification for Unix-like operating systems [2].

20

1.2. POSIX Lexing

form the regular expression (rkey + rid)⇤ and use POSIX matching to tokenise
strings, say iffoo and if. For iffoo we obtain by the Longest Match Rule a single
identifier token, not a keyword followed by an identifier. For if we obtain by
the Priority Rule a keyword token, not an identifier token—even if rid matches
also. By the Star Rule we know (rkey + rid)⇤ matches iffoo, respectively if, in
exactly one ‘iteration’ of the star. The Empty String Rule is for cases where, for
example, the regular expression (a⇤)⇤ matches against the string bc. Then the
longest initial matched substring is the empty string, which is matched by both
the whole regular expression and the parenthesised subexpression.

While POSIX matching seems natural in a context of lexing, it turns out to
be much more subtle than GREEDY matching in terms of implementations and
in terms of proving properties about it. This was also noted by Kuklewicz [34]
who found that nearly all POSIX matching implementations are “buggy” [53,
Page 203] and by Grathwohl et al [25, Page 36] who wrote:

“The POSIX strategy is more complicated than the greedy because
of the dependence on information about the length of matched strings
in the various subexpressions.”

One should also not underestimate the difficulties when implementing POSIX
matching using automata: Using a naive method, one has to follow transitions
(according to the input string) until one finds an accepting state, record this state
and look for further transitions which might lead to another accepting state that
represents a longer initial substring. This might mean that one has to consider
the entire string to make sure no other accepting state can be found. Only if none
can be found, the last accepting state is returned. Yes, it can be done, but it takes
quite some “head-standing” in order to get this process to run in linear time (see
for example [47]).

Given that POSIX matching is not so straightforward to implement and only
informally defined by the rules in English shown above, Sulzmann and Lu cor-
rectly argued in [53] that this needs a formal specification. In order to establish
the correctness of their algorithm, they define an “ordering relation” between
values (possible outcomes for how a string can be matched by a regular expres-
sion) and argue that for every string and every regular expression, there is always
a maximum value, as given by the their derivative-based algorithm.

The purpose of values is to encode the information of how a string is matched
by the regular expression—that is, which part of the string is matched by which

21

1.2. POSIX Lexing

part of the regular expression. For this consider again the string xy and the
regular expression (x + (y + xy))⇤ (this time fully parenthesised). We can
view this regular expression as a tree and if the string xy is matched by two Star
‘iterations’, then the x is matched by the left-most alternative in this tree and the
y by the right-left alternative. This suggests to record this matching as

Stars [Left(Char x),Right(Left(Char y))]

where Stars , Left , Right and Char are constructors for values. Stars records
how many iterations were used; Left , respectively Right , which alternative is
used. The value for the single ‘iteration’, i.e. the POSIX value, would look as
follows

Stars [Seq (Char x) (Char y)]

where Stars has only a single-element list for the single iteration, and Seq indi-
cates that xy is matched by a sequence regular expression. This ‘tree view’ leads
naturally to the idea that regular expressions act as types and values as inhabiting
those types (see, for example, [27] where this view is taken).

The approach of establishing that the matching algorithm generates a maxi-
mum value is inspired by work by Frisch and Cardelli [23] on GREEDY match-
ing. In our formalisation effort, we made some partial attempts to formalise their
specification of GREEDY matching and did not encounter any problems. This is
in contrast with the work by Sulzmann and Lu where we hit almost immediately
upon serious difficulties. While Sulzmann and Lu give a considerable amount
of details for their correctness proof (some inside the paper and some more de-
tails in an appendix), this correctness proof is unformalised, meaning it is just
a “pencil-and-paper” proof. In fact, we believe the purported proof they give
does not work in central places. For example we were not able to establish the
transitivity and totality properties for their “order relation” (the proofs of which
were elided in [53]). We had some communication with Sulzmann about our
problems via email. For example upon pointing out one problem uncovered by
our formalisation, he commented:

“How could I miss this? Well, I was rather careless when stating this
Lemma. . . Great example [of] how formal machine checked proofs
(and proof assistants) can help to spot flawed reasoning steps.”

22

1.3. Preliminaries

This led Sulzmann to augment some of the reasoning in their paper—he pub-
lished an extended version of the paper on his website.11 However, ultimately we
abandoned the attempt to formalise Sulzmann and Lu’s pencil-and-paper proof
in Isabelle, because of the obstacles we encountered. In spite of this failure, we
were eventually able to show the correctness of Sulzmann and Lu’s matching al-
gorithm by introducing our own notion for what a correct POSIX value is. This
is an inductive definition inspired by work by Vansummeren [58]. Using this def-
inition, the correctness of the algorithm can be established without too excessive
formalisation work. We shall describe our formalisation next.

1.3 Preliminaries

In our Isabelle/HOL formalisation strings are lists of characters with the empty
string being represented by the empty list, written [], and list-cons being written
as :: ; string concatenation is @ . Often we use the usual bracket notation
for lists also for strings; for example a string consisting of just a single character
c is written [c]. We also use the usual definitions for prefixes and suffixes of
strings, as well as their strict versions. By using the type char for characters, we
have a supply of finitely many characters roughly corresponding to the ASCII
character set.

Regular Expressions are defined as an Isabelle/HOL inductive datatype. We
start here with the standard textbook regular expressions with the following six
constructors.

Definition 1. Regular expressions are given by the grammar:

r ::= 0
| 1
| c single character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r⇤ star (zero or more)

where 0 stands for the regular expression that does not match any string, 1 for
the regular expression that matches only the empty string and c for matching a
character literal (of type char). In what follows we shall sometimes omit the · in
sequence regular expressions and just write r1 r2 for brevity.

11
http://www.home.hs-karlsruhe.de/˜suma0002/

23

1.3. Preliminaries

While the 0 does not play an essential role in works that use automata for reg-
ular expression matching, it is crucial for Brzozowski’s derivatives. The regular
expressions defined above are often called basic regular expressions in order to
distinguish them from extended regular expressions which may also include con-
structors for bounded repetitions, negation, optional regular expressions, and so
on.

We next need some operations on languages, which are just sets of strings.
We shall use the operation @ for the concatenation of two languages (it is also
list-append for strings). The Star of a language, written ?, is defined inductively
by two clauses: (i) the empty string being in the star of a language and (ii) if s1
is in a language and s2 in the star of this language, then also s1@s2 is in the star
of this language. We could also easily define the star of a language via the power
operation as follows

A?
def
=

[

0n

An

Both definitions can be straightforwardly shown to be equivalent. Which def-
inition to settle on is mainly a matter of taste: some later proofs can be found
automatically in Isabelle using the former definition; other proofs are automatic
with the latter one.

Later on it will also be convenient to use the following notion of a semantic
derivative (or left quotient) of a language A with respect to a character c, defined
as

Der cA
def
= {s | c :: s 2 A}

This means in a semantic derivative we are looking for all strings in a set A
starting with a character, say c, then strip off this character, and filtering out
everything else. For semantic derivatives we have the following equations (for
example mechanically proved in [32]):

24

1.3. Preliminaries

Der c ? = ?
Der c {[]} = ?
Der c {[d]} = if c = d then {[]} else ?
Der c (A [B) = Der c A [Der c B

Der c (A@B) = (Der c A @ B) [(if [] 2 A then Der c B else ?)

Der c (A?) = Der c A @ A?
(1.1)

The main definition for regular expressions is the associated language, written
L(), and defined recursively as follows.

Definition 2. The associated language of r, written L(r), is defined as follows:

L(0) def
= ?

L(1) def
= {[]}

L(c)
def
= {[c]}

L(r1 + r2)
def
= L(r1) [L(r2)

L(r1 · r2)
def
= L(r1)@L(r2)

L(r⇤)
def
= (L(r))?

The main point of the L-function is that we can use it to precisely specify when
a string s is matched by a regular expression r, namely if and only if s 2 L(r).
This is clearly a specification because in the star-clause, the language can be
infinite and a membership test for an infinite set cannot be directly implemented.
Below we shall use the terminology that a regular expression r “matches the
language L(r)”, that is matches every string in L(r). We can also use L to define
the equivalence of two regular expressions, which will be needed when we need
to simplify regular expressions.

Definition 3. Two regular expressions are equivalent iff they match the same
language, namely

r1 ⌘ r2
def
= L(r1) = L(r2)

Central to Brzozowski’s regular expression matcher are two functions called
nullable and derivative. The latter is written r\c for the derivative of the regular
expression r w.r.t. the character c. Both functions are defined by recursion over
regular expressions.

Definition 4.

25

1.3. Preliminaries

nullable(0) def
= false

nullable(1) def
= true

nullable(c)
def
= false

nullable(r1 + r2)
def
= nullable(r1) _ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ^ nullable(r2)

nullable(r⇤)
def
= true

The derivative function takes a regular expression, say r and a character, say c,
as input and returns the derivative regular expression.

Definition 5.

0\c def
= 0

1\c def
= 0

d\c def
= if c = d then 1 else 0

(r1 + r2)\c
def
= r1\c + r2\c

(r1 · r2)\c
def
= if nullable(r1)

then (r1\c) · r2 + r2\c
else (r1\c) · r2

(r⇤)\c def
= (r\c) · r⇤

The idea behind nullable is relatively clear: it tests whether a regular expression
can match the empty string. By contrast, the idea behind the derivative might be
less clear. To see what is going on, suppose a regular expression r can match
strings of the form c :: s, then the derivative function answers the question what
does the regular expression look like that can match the string s (where the lead-
ing character c has been “chopped off”)? Let us see how this characterisation is
reflected in the clauses of the derivative function.

The first two clauses of the derivative are straightforward: for this recall
that r\c should calculate a regular expression so that given the “input” regular
expression can match a string of the form c :: s, we want a regular expression
for s. Since neither 0 nor 1 can match a string of the form c :: s, we return 0.
In the character clause we have to make a case-distinction: In case the regular
expression is c, then clearly it can recognise a string of the form c :: s, just that
s is the empty string. Therefore we return the 1-regular expression. In the other
case we again return 0 since no string of the form c ::s can be matched.

Elucidating the recursive clauses is a bit more involved. Fortunately, the +-
case is still relatively simple: all strings of the form c :: s are either matched by

26

1.3. Preliminaries

the regular expression r1 or r2. So we just have to recursively call the derivative
with these two regular expressions and compose the results again with +. The
·-clause is more complicated: if r1 · r2 matches a string of the form c :: s, then
the first part must be matched by r1. Consequently, it makes sense to construct
the regular expression for s by calling the derivative with r1 and “appending”
r2. There is however one exception to this simple rule: if r1 can match the
empty string, then all of c :: s can be matched by r2. Consequently in case r1 is
nullable (that is can match the empty string) we have to allow the choice r2\c
for calculating the regular expression that can match s. This means we have to
add the regular expression r2\c in the result. The ⇤-clause is again simple: if r⇤

matches a string of the form c :: s, then the first part must be “matched” by a
single copy of r. Therefore we call recursively r\c and “append” r⇤ in order to
match the rest of s.

We can extend the derivative of regular expressions from single characters to
strings as follows:

r\[] def
= r

r\(c ::s) def
= (r\c)\s

Before we go on, let us look at an example. Suppose the regular expression r0

is (a+ ab) · (b+ 1) and the input string is ab. Clearly r0 can match the input
string. In fact there are two ways for how it can match this string. Below we give
the intermediate steps for calculating the derivative r0\[a, b]:

r1 = r0\a: (1 + 1 b) · (b+ 1)

One can see that this derivative can match the string [b], again in two ways. Next
we have

r2 = r1\b : (0 + 0 b+ 1) · (b+ 1) + (1 + 0) (1.2)

The point of the last derivative is that we can decide whether it matches the
empty string: in this case it does and again in two ways. Given the idea behind
the derivative operation, it is relatively easy to convince oneself of the fact that if
the last derivative matches the empty string, then the original regular expression
matches the string that was used for building the derivative. This holds also in
the other direction.

Using nullable and the derivative operation, we can define the following sim-
ple regular expression matcher:

27

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

match s r
def
= nullable(r\s)

This is essentially Brzozowski’s algorithm from 1964. Its main virtue is that
the algorithm can be easily implemented as a functional program (either in a
functional programming language or in a theorem prover). The correctness proof
for match amounts to establishing the property

match s r if and only if s 2 L(r) (1.3)

On the left-hand side of this property is the algorithm; on the right-hand side its
specification. For this proof to go through, we need the following two auxiliary
properties.

Lemma 1.
(1) nullable(r) if and only if [] 2 L(r)

(2) L(r\c) = Der c L(r)

Proof. The first is by a simple induction on r. Given the equations in (1.1) the
second is also by a simple induction on r.

We can then prove (1.3) by an induction on s generalising over r and using
the above two properties. The ease of the these proofs is the main attraction for
theorem provers—it is a nice formalisation exercise, for example done by Owens
and Slind [44] using the HOL theorem prover, but is also part of the Archive of
Formal Proofs for Isabelle. The novel idea of Sulzmann and Lu is to append
another phase to Brzozowski’s algorithm in order to calculate a (POSIX) value.
We will explain this next.

1.4 POSIX Lexing Algorithm by Sulzmann and Lu

Sulzmann and Lu presented their POSIX lexing algorithm in 2014 [53]. This
algorithm consists of two phases: first a matching phase (which is Brzozowski’s
algorithm) and then a value construction phase. The values encode how a regu-
lar expression matches a string. The grammars below show regular expressions
together with their corresponding values:

28

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

Regular Expressions

r ::= 0
| 1
| c

| r1 · r2
| r1 + r2

| r⇤

Values

v ::=

Empty

| Char(c)

| Seq v1 v2

| Left(v)

| Right(v)

| Stars [v1, . . . vn]

As can be seen for each regular expression there is a specific value that records
how the regular expression matched the string. For example Char(c) is the value
for the character regular expression c. Similarly Seq for the sequence regular ex-
pression. The exception is the 0-regular expression, because it cannot match
anything and therefore does not need a corresponding value; and also the two
values, Left and Right , for the alternative regular expression, which correspond
to the two choices in the alternative. So if we are given a value, it will always be
clear what the corresponding (kind) of regular expression is—whether it is a se-
quence regular expression and so on. This holds also in the other direction: if we
are given a regular expression, it will be clear what the form of the corresponding
value must be.

We sometimes need to extract the string “underlying” a value. This can be
done with the flatten function written | |:

|Empty | def
= []

|Char c| def
= [c]

|Left v| def
= |v|

|Right v| def
= |v|

|Seq v1 v2|
def
= |v1|@ |v2|

|Stars []| def
= []

|Stars (v ::vs)| def
= |v1|@ |Stars vs|

We will often refer to the underlying string of a value as the flattened value. We
will also overload our notation and use |vs| for flattening a list of values and
concatenating the resulting strings.

Sulzmann and Lu [53] define inductively a kind of type inhabitation relation
that associates values to regular expressions. We define this relation as follows:12

12Note that the rule for Stars differs from our conference paper [6]. There we used the original

29

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

Definition 6 (Inhabitation Relation).

` Empty : 1 ` Char c : c

` v1 : r1

` Left v1 : r1 + r2

` v2 : r2

` Right v2 : r1 + r2

` v1 : r1 ` v2 : r2

` Seq v1 v2 : r1 · r2

8v 2 vs. ` v : r ^ |v| 6= []

` Stars vs : r⇤

In the clause for Stars we use the notation v 2 vs for indicating that v is a
member in the list vs. We require in this rule that every value in vs flattens to
a non-empty string. The idea is that Stars-values satisfy the informal Star Rule
from POSIX (see Section 1.2) where the ⇤ does not match the empty string unless
this is the only match for the repetition. Note also that no values are associated
with the regular expression 0, and that the only value associated with the regular
expression 1 is Empty . It is routine to establish how values “inhabiting” a regular
expression correspond to the language of a regular expression, namely

Proposition 1. L(r) = {|v| | ` v : r}

Given a regular expression r and a string s, we define next the set of all
Lexical Values, written LV r s, inhabited by r with the underlying string being
s.13

Definition 7 (Lexical Values).

LV r s
def
= {v | ` v : r ^ |v| = s}

The main property of the set LV r s is that it is always finite.

Lemma 2. For all r and s, finite (LV r s).

Proof. By induction on r generalising over s. The only interesting cases are
r1 · r2 and r⇤. In the first case we reason as follows: LV (r1 · r2) s is a subset of
{Seq v1 v2 | v1 2 Pre ^ v2 2 Suf } where Pre and Suf are defined as follows:

definition by Sulzmann and Lu [53] which does not require that the values v 2 vs flatten to
a non-empty string. The reason for introducing the more restricted version of lexical values is
convenience later on when reasoning about an ordering relation for values.

13Okui and Suzuki refer to our lexical values as canonical values in [41]. The notion of non-
problematic values by Cardelli and Frisch [23] is related, but not identical to our lexical values.

30

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

Pre
def
=

S
s02Prefixes s .LV r1 s0

Suf
def
=

S
s02Su�xes s .LV r2 s0

Since for a given string s, there are only finitely many prefixes and suffixes, we
know by induction hypothesis that Pre and Suf are finite sets of values. So also
LV (r1 · r2) s must be finite. In case of LV (r⇤) s we reason similarly, except
that this set is a subset of {Stars []} [{Stars (v :: vs) | v 2 Pre ^ vs 2 SSuf }
where SSuf is the set of lexical values built from the strict suffixes (suffixes that
are shorter than s). It is sufficient to only consider strict suffixes, because of the
side-condition about values not flattening to the empty string.

This finiteness property does not hold in general if we remove the side-condition
about |v| 6= [] in the Stars-rule above. For example using Sulzmann and Lu’s
less restrictive definition, LV (1⇤) [] would contain infinitely many values, but ac-
cording to our more restricted definition only a single value, namely LV (1⇤) [] =

{Stars []}. This more restricted version of lexical values will be useful later on
when we show that our POSIX specification is equivalent to the one by Okui and
Suzuki.

If a regular expression r matches a string s, then generally the set LV r s is
not just a singleton set. In case of POSIX matching the problem is to calculate the
unique lexical value that satisfies the (informal) POSIX rules from Section 1.2.
Sulzmann and Lu give such an algorithm. Graphically their POSIX value cal-
culation algorithm can be illustrated by the picture in Figure 1.1 where the path
from the left to the right involving derivatives/nullable is the first phase of the
algorithm (calculating successive Brozowski’s derivatives) and mkeps/inj , the
path from right to left, the second phase. This picture shows the steps required
when a regular expression, say r1, matches the string [a, b, c]. We first build
the three derivatives (according to a, b and c). We then use nullable to find
out whether the resulting derivative regular expression r4 can match the empty
string. If yes, we call the function mkeps that produces a value v4 for how r4

can match the empty string (taking into account the POSIX constraints in case
there are several ways—we shall explain this below). Then we call the injection
function to inject “back” the letters c, b and a in order to obtain the value v1 that
encodes how r1 matches the string abc.

The function mkeps is defined as follows:

Definition 8.

31

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

mkeps(1) def
= Empty

mkeps(r1 + r2)
def
= if nullable(r1)

then Left(mkeps(r1))

else Right(mkeps(r2))

mkeps(r1 · r2)
def
= Seq (mkeps r1) (mkeps r2)

mkeps(r⇤)
def
= Stars []

Notice how this function makes some subtle choices leading to a POSIX value:
for example if the alternative, say r1 + r2, can match the empty string and fur-
thermore r1 can match the empty string, then we return always a Left-value. The
Right-value will only be returned if r1 is not nullable. The four regular expres-
sions in mkeps are the only cases we need to consider, since the other regular
expressions cannot match the empty string. Recall the derivative r2 from (1.2):

(0 + (0 b+ 1)) · (b+ 1) + (1 + 0)

Below is the calculation of mkeps including the intermediate steps.

mkeps((0 + (0 b+ 1)) · (b+ 1) + (1 + 0))
= Left(mkeps((0 + (0 b+ 1)) · (b+ 1)))
= Left(Seq(mkeps(0 + (0 b+ 1)),mkeps(b+ 1)))
= Left(Seq(Right(mkeps(0 b+ 1)),Right(mkeps(1))))
= Left(Seq(Right(Right(mkeps(1))),Right(Empty)))

= Left(Seq(Right(Right(Empty)),Right(Empty)))

This means the value calculated by mkeps corresponds to the two underlined
1s which in r2 are responsible, according to the POSIX rules, for matching the
empty string.

(0 + (0 b+ 1)) · (b+ 1) + (1 + 0)

The function mkeps does not choose the right-most 1, which would match the
empty string as well, because this would violate the Priority Rule.

The really interesting function Sulzmann and Lu introduced in the second
phase is called injection and written inj . Remember that the derivative essen-
tially “chops off” a single character from a regular expression. The injection
function undoes this “chopping off” by injecting back a character. . . just on the
level of values, rather than regular expressions.

32

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

r1 r2
\a

r3
\b

r4
\c

nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

Figure 1.1: The two phases of the algorithm by Sulzmann & Lu [53], matching
the string [a, b, c]. The first phase (the arrows from left to right) is Brzozowski’s
matcher building successive derivatives. If the last regular expression is nullable,
then the functions of the second phase are called (the top-down and right-to-left
arrows): first mkeps calculates a value v4 witnessing how the empty string has
been recognised by v4. After that the function inj “injects back” the characters
of the string into the values.

Definition 9. The inj function takes a regular expression, a character and a value
as arguments; it produces another value. It is defined recursively as follows:

(1) inj d c (Empty)
def
= Char c

(2) inj (r1 + r2) c (Left v1)
def
= Left (inj r1 c v1)

(3) inj (r1 + r2) c (Right v2)
def
= Right (inj r2 c v2)

(4) inj (r1 · r2) c (Seq v1 v2)
def
= Seq (inj r1 c v1) v2

(5) inj (r1 · r2) c (Left (Seq v1 v2))
def
= Seq (inj r1 c v1) v2

(6) inj (r1 · r2) c (Right v2)
def
= Seq (mkeps r1) (inj r2 c v2)

(7) inj (r⇤) c (Seq v (Stars vs))
def
= Stars (inj r c v :: vs)

To better understand what is going on in this definition it might be instructive to
look first at the three sequence cases (clauses (4) – (6)). In each case we need to
construct an “injected value” for r1 ·r2. This must be a value of the form Seq .
Recall the clause of the derivative-function for sequence regular expressions:

(r1 · r2) \ c
def
= if nullable r1 then (r1 \ c) · r2 + (r2 \ c) else (r1 \ c) · r2

Consider first the else-branch where the derivative is (r1\c) ·r2. The correspond-
ing value must therefore be of the form Seq v1 v2, which matches the left-hand
side in clause (4) of inj . In the if -branch the derivative is an alternative, namely
(r1\c)·r2+(r2\c). This means we either have to consider a Left- or Right-value.
In case of the Left-value we know further it must be a value for a sequence

33

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

regular expression. Therefore the pattern we match in the clause (5) is Left (Seq v1 v2),
while in (6) it is just Right v2. One more interesting point is in the right-hand
side of clause (6): since in this case the regular expression r1 does not “con-
tribute” to matching the string, that means it only matches the empty string, we
need to call mkeps in order to construct a value for how r1 can match this empty
string. A similar argument applies for why we can expect in the left-hand side
of clause (7) that the value is of the form Seq v (Stars vs)—the derivative of a
star is (r \ c) · r⇤. Finally, the reason for why we can ignore the second argument
in clause (1) of inj is that it will only ever be called in cases where c = d, but
the usual linearity restrictions in patterns do not allow us to build this constraint
explicitly into our function definition.14

The idea of the inj -function to “inject” a character, say c, into a value can be
made precise by the first part of the following lemma: It shows that the underly-
ing string of an injected value has a prepended character c; the second part shows
that the underlying string of an mkeps-value is always the empty string (given
the regular expression is nullable since otherwise mkeps might not be defined).

Lemma 3.
(1) If ` v : r then |inj r c v| = c :: |v|.
(2) If nullable(r) then |mkeps r| = [].

Proof. Both properties are by routine inductions: the first one can, for exam-
ple, be proved by induction over the definition of derivatives; the second by an
induction on r. There are no interesting cases.

Recall the value from the above calculation, which was the result of mkeps

v = Left(Seq(Right(Right(Empty)),Right(Empty)))

and the derivative r1 which is the derivative just before the last one in our deriva-
tive calculation

r1 = (1 + 1 b) · (b+ 1)

Below are the intermediate steps for calling the inj function with r1, b and v:

14Sulzmann and Lu state this clause as inj c c (Empty)
def
= Char c, but our deviation is

harmless.

34

1.4. POSIX Lexing Algorithm by Sulzmann and Lu

inj ((1 + 1b) · (b+ 1)) b

(Left(Seq(Right(Right(Empty)),Right(Empty))))

= Seq(inj (1 + 1b) b Right(Right(Empty)),Right(Empty))

= Seq(Right(inj (1b) b Right(Empty)),Right(Empty))

= Seq(Right(Seq(mkeps(1), inj b bEmpty)),Right(Empty))

= Seq(Right(Seq(Empty ,Char(b))),Right(Empty))

While the flattened value of v is the empty string, flattening the result of injecting
b into this value (using r1) gives use the string [b], as expected. If we further inject
back a into this value using r0, which is

r0 = (a+ ab) · (b+ 1)

we obtain

Seq(Right(Seq(Char(a),Char(b))),Right(Empty))

This value corresponds to underlined parts in r0 (see above) and its flattened
value is [a, b].

Having defined the mkeps and inj function, we can extend Brzozowski’s
matcher so that a value is constructed (assuming the regular expression matches
the string). The two clauses of the Sulzmann and Lu lexer are

lexer r []
def
= if nullable(r) then Some (mkeps r) else None

lexer r (c :: s)
def
= case lexer (r \ c) s of

None) None
| Some v) Some (inj r c v)

We call this a lexer, because it produces a value that encodes how a regular
expression matched a string, as opposed to a matcher which just produces a
yes/no answer. In the lexer above, if the regular expression does not match the
string, None is returned. If the regular expression does match the string, then
Some value is returned. Like Sulzmann and Lu, we like to prove that this value is
a POSIX value. We shall do this in the next chapter by using our own definition
of what a POSIX value should be.

35

Chapter 2

Specification of POSIX Values

In this chapter, we will give our own inductive definition for POSIX values and
show that the lexer discussed in the previous chapter always generates POSIX
values. Our definition is inspired by work by Vansummeren [58]. We were un-
able to use the original definition by Sulzmann and Lu, because we could not
establish some central properties for this definition. To give more confidence
that our own definition captures the “spirit” of POSIX, we also show that it is
in fact equivalent to a definition given by Okui and Suzuki [41] (their defini-
tion uses a different technique). Next, we shall discuss the GREEDY ordering
rules by Firsch and Cardelli [23] which Sulzmann and Lu cite as the place where
they have taken their main idea from for their correctness proof. We shall subse-
quently argue why the correctness proof by Sulzmann and Lu contains unfillable
gaps.

2.1 Our POSIX Definition

Recall the informal POSIX rules described in Section 1.2. We shall formalise
them in an inductive definition for a ternary relation. Our definition is inspired
by the matching relation given by Vansummeren [58], where the corresponding
rules incorporate the POSIX-specific choices about which value to prefer into
the side-conditions (some of the side-conditions might need further explanation,
which we shall give later). Our POSIX relation is written (s, r) ! v relating
strings, regular expressions and (POSIX) values. The corresponding inductive
rules are given in Figure 2.1.

We can prove that given a string s and a regular expression r, the value v is

36

2.1. Our POSIX Definition

([], 1) ! Empty
P1

([c], c) ! Char c
PC

(s, r1) ! v

(s, r1 + r2) ! Left v
P + L

(s, r1) ! v s /2 L(r1)

(s, r1 + r2) ! Right v
P + R

(s1, r1) ! v1 (s2, r2) ! v2
@s3 s4. s3 6= [] ^ s3@s4 = s2 ^ s1@s3 2 L(r1) ^ s4 2 L(r2)

(s1@s2, r1 · r2) ! Seq v1 v2
PS

([], r⇤) ! Stars []
P[]

(s1, r) ! v (s2, r
⇤) ! Stars vs |v| 6= []

@s3 s4. s3 6= [] ^ s3@s4 = s2 ^ s1@s3 2 L(r) ^ s4 2 L(r⇤)

(s1@s2, r
⇤) ! Stars (v :: vs)

P⇤

Figure 2.1: Our inductive definition of POSIX values.

uniquely determined by (s, r) ! v. Therefore we use the suggestive notation
using an arrow (for “yields”) in our POSIX specification.

Theorem 1.
(1) If (s, r) ! v then s 2 L(r) and |v| = s.
(2) If (s, r) ! v and (s, r) ! v0 then v = v0.

Proof. Both are by induction on the definition of (s, r) ! v. The second parts
follows by a case analysis of (s, r) ! v0 and the first part.

We claim that (s, r) ! v captures the idea behind the four informal POSIX rules
described in Section 1.2. Consider for example the rules P + L and P + R

where the POSIX value for a string and an alternative regular expression, that
is (s, r1 + r2), is specified—it is always a Left-value, except when the string
to be matched is not in the language of r1; only then it is a Right-value (see
the side-condition in P + R). Interesting is also the rule for sequence regular
expressions (PS). The first two premises state that v1 and v2 are the POSIX
values for (s1, r1) and (s2, r2) respectively. Consider now the third premise and
note that the POSIX value of this rule should match the string s1 @ s2. According
to the Longest Match Rule, we want that the s1 is the longest initial split of
s1 @ s2 such that s2 is still recognised by r2. Let us assume, contrary to the third
premise, that there exist an s3 and s4 such that s2 can be split up into a non-empty

37

2.1. Our POSIX Definition

string s3 and a possibly empty string s4. Moreover the longer string s1 @ s3 can
be matched by r1 and the shorter s4 can still be matched by r2. In this case s1

would not be the longest initial split of s1 @ s2 and therefore Seq v1 v2 cannot be
a POSIX value for (s1 @ s2, r1 · r2). The main point is that our side-condition
ensures the Longest Match Rule is satisfied.

A similar condition is imposed on the POSIX value in the P⇤-rule. Also
there we want that s1 is the longest initial split of s1 @ s2 and furthermore the
corresponding value v cannot be flattened to the empty string. In effect, we
require that in each “iteration” of the star, some non-empty substring needs to
be “chipped” away; only in case of the empty string we accept Stars [] as the
POSIX value. Indeed we can show that our POSIX values are lexical values
which exclude those Stars that contain “impropper” subvalues that flatten to the
empty string.

Lemma 4. If (s, r) ! v then v 2 LV r s.

Proof. By a straightforward induction on the POSIX definition.

Next is the lemma that shows the function mkeps by Sulzmann and Lu calculates
the POSIX value for the empty string and a nullable regular expression.

Lemma 5. If nullable r then ([], r) ! mkeps(r).

Proof. By routine induction on r.

The central lemma for our POSIX relation is that the inj -function preserves
POSIX values.

Lemma 6. If (s, r\c) ! v then (c :: s, r) ! inj r c v.

Proof. By induction on r. We explain two cases:

• Case r = r1 + r2. There are two subcases, namely (a) v = Left v0 and
(s, r1\c) ! v0; and (b) v = Right v0, s /2 L(r1\c) and (s, r2\c) ! v0.
In (a) we know (s, r1\c) ! v0, from which we can infer (c :: s, r1) !
inj r1 c v0 by induction hypothesis and hence (c :: s, r1+ r2) ! inj (r1+

r2) c (Left v0) as needed. Similarly in subcase (b) where, however, in
addition we have to use Proposition 1(2) in order to infer c :: s /2 L(r1)

from s /2 L(r1\c).

• Case r = r1 · r2 and s = s1 @ s2. There are three subcases:

38

2.1. Our POSIX Definition

(a) v = Left (Seq v1 v2) and nullable r1

(b) v = Right v1 and nullable r1

(c) v = Seq v1 v2 and ¬ nullable r1

For (a) we know (s1, r1\c) ! v1 and (s2, r2) ! v2 as well as

@ s3 s4 · s3 6= [] ^ s3@s4 = s2 ^ s1@s3 2 L(r1) ^ s4 2 L(r2)

From the latter we can infer by Proposition 1(2):

@ s3 s4 · s3 6= [] ^ s3@s4 = s2 ^ c :: s1@s3 2 L(r1) ^ s4 2 L(r2)

We can use the induction hypothesis for r1 to obtain (c :: s1, r1) !
inj r1 c v1. Putting this all together allows us to infer (c :: s1 @ s2, r1 ·
r2) ! Seq (inj r1 c v1) v2. The case (c) is similar.

For (b) we know (s, r2\c) ! v1 and s1@s2 /2 L((r1\c) · r2). From the
former we have (c :: s, r2) ! inj r2 c v1 by induction hypothesis for r2.
From the latter we can infer

@ s3 s4 · s3 6= [] ^ s3@s4 = c :: s ^ s3 2 L(r1) ^ s4 2 L(r2)

By Lemma 5 we know ([], r1) ! mkeps r1 holds. Putting this all together,
we can conclude with

(c :: s, r1 · r2) ! Seq (mkeps r1) (inj r2 c v1)

as required.

• Case r = r⇤1. This case is very similar to the sequence case, except that we
need to also ensure that |inj r1 c v1| 6= []. This follows from Lemma 3 and
(c :: s1, r1) ! inj r1 c v1 (which in turn follows from (s1, r1\c) ! v1

and the induction hypothesis).

39

2.2. Ordering of Values According to Okui and Suzuki

With Lemma 6 in place, it is completely routine to establish that the Sulzmann
and Lu lexer satisfies our specification (returning the null value None iff the string
is not in the language of the regular expression, and returning a POSIX value iff
the string is in the language):

Theorem 2.
(1) s /2 L(r) if and only if lexer r s = None
(2) s 2 L(r) if and only if 9 v. lexer r s = Some v ^ (s, r) ! v

Proof. By induction on s using Lemma 5 and 6.

In (2) we further know by Theorem 1 that the value returned by the lexer must
be unique. A simple corollary of our two theorems therefore is:

Corollary 1.
(1) lexer r s = None if and only if @ v. (s, r) ! v

(2) lexer r s = Some v if and only if (s, r) ! v

This concludes our correctness proof. Note that we have not changed the al-
gorithm of Sulzmann and Lu,1 but introduced our own specification for what a
correct result—a POSIX value—should be. Unfortunately, even with this result
in place, we were unable to make any progress with formalising the original
proof approach by Sulzmann and Lu. In the next section we shall show that our
POSIX specification coincides with another one given by Okui and Suzuki using
a different technique. This gives us more confidence that our definition really
captures the idea behind the POSIX rules.

2.2 Ordering of Values According to Okui and Suzuki

While in the previous section we have defined POSIX values directly in terms
of a ternary relation (see inference rules in Figure 2.1), Sulzmann and Lu took a
different approach in [53]: they introduced an ordering for values and identified
POSIX values as the maximal elements. A somewhat similar ordering was intro-
duced by Okui and Suzuki [41, 42], which they use to establish the correctness of
their automata-based algorithm for POSIX matching. Their ordering resembles
some aspects of the one given by Sulzmann and Lu, but overall is quite differ-
ent. To begin with, Okui and Suzuki identify POSIX values as minimal, rather

1All deviations we introduced are harmless.

40

2.2. Ordering of Values According to Okui and Suzuki

than maximal, elements in their ordering. A more substantial difference is that
the ordering by Okui and Suzuki uses positions in order to identify and compare
subvalues.

Positions are lists of natural numbers. They allow one to easily identify sub-
trees by following individual branches in each level of trees. This is a well-
known technique, for example in term rewriting [11], in order to identify sub-
terms in larger terms. The position technique allows Okui and Suzuki to quite
naturally formalise the Longest Match and Priority rules of the informal POSIX
standard. Consider for example a value v of the form

Stars [Seq (Char x) (Char y),Char z]

At position [0] of this value is the subvalue Seq (Char x) (Char y); at position
[0, 1] is Char y and at position [1] the subvalue Char z. At the ‘root’ position,
or empty list [], is the whole value v. Positions such as [0, 1, 0] or [2] are outside
of v. If it exists, the subvalue of v at a position p, written v⇡p, can be recursively
defined by

v⇡[] def
= v

Left v⇡0::ps def
= v⇡ps

Right v⇡1::ps def
= v⇡ps

Seq v1 v2⇡0::ps def
= v1⇡ps

Seq v1 v2⇡1::ps def
= v2⇡ps

Stars vs⇡n::ps def
= vs[n]⇡ps

In the last clause we use Isabelle’s notation vs[n] for the nth element in a list. The
set of positions inside a value v, written Pos v, is given by

Pos (Empty) def
= {[]}

Pos (Char c) def
= {[]}

Pos (Left v) def
= {[]} [{0 :: ps | ps 2 Pos v}

Pos (Right v) def
= {[]} [{1 :: ps | ps 2 Pos v}

Pos (Seq v1 v2)
def
= {[]} [{0 :: ps | ps 2 Pos v1}

[{1 :: ps | ps 2 Pos v2}
Pos (Stars vs) def

= {[]} [(
S

n<len vs{n :: ps | ps 2 Pos vs[n]})

41

2.2. Ordering of Values According to Okui and Suzuki

whereby len in the last clause stands for the length of a list. Clearly for every
position inside a value there exists a subvalue at that position.

To help understanding the ordering of Okui and Suzuki, consider again the
earlier value v and compare it with the following w:

v
def
= Stars [Seq (Char x)(Char y), Char z]

w
def
= Stars [Char x, Char y, Char z]

Both values match the string xyz, that means if we flatten these values at their
respective root position, we obtain xyz. However, at position [0], v matches
xy whereas w matches only the shorter x. So according to the Longest Match
Rule, we should prefer v, rather than w as POSIX value for the string xyz (and
corresponding regular expression). In order to formalise this idea, Okui and
Suzuki introduce a measure for subvalues at position p, called the norm of v at
position p. We can define this measure in Isabelle/HOL as an integer as follows:

Definition 10 (The Norm of a Value). Given v and p, the norm is defined as

kvkp
def
= if p 2 Pos v then len |v⇡p| else �1

where we take the length of the flattened value at position p, provided the position
is inside v; if it is not inside, then the norm is �1.

The default �1 for outside positions is crucial for the POSIX requirement of
preferring a Left-value over a Right-value (if they can match the same string—
see the Priority Rule from Section 1.2). To see this, consider

v
def
= Left (Char x) and w

def
= Right (Char x)

Both values match x. At position [0] the norm of v is 1 (the subvalue matches x),
but the norm of w is -1 (the position is outside w according to how we defined the
‘inside’ positions of Left- and Right-values). Of course at position [1], the norms
kvk[1] and kwk[1] are reversed, but the point is that subvalues will be analysed
according to lexicographically ordered positions. According to this ordering, the
position [0] takes precedence over [1] and thus also v will be preferred over w.
The lexicographic ordering of positions, written �lex , can be conveniently
formalised by three inference rules

[] �lex p :: ps

p1 < p2

p1 :: ps1 �lex p2 :: ps2

ps1 �lex ps2

p1 :: ps1 �lex p :: ps2

42

2.2. Ordering of Values According to Okui and Suzuki

With the norm and lexicographic order in place, we can state the key defini-
tion of Okui and Suzuki [41]:

Definition 11. A value v1 is smaller at position p than v2, written v1 �p v2, if
and only if (i) the norm at position p is greater in v1 (that is the string |v1⇡p| is
longer than |v2⇡p|) and (ii) all subvalues at positions that are inside v1 or v2 and
that are lexicographically smaller than p, we have the same norm, namely

v1 �p v2
def
=

8
<

:
(i) kv2kp < kv1kp and

(ii) 8q 2 Pos v1 [Pos v2. q �lex p ! kv1kq = kv2kq

The position p in this definition acts as the first distinct position of v1 and v2,
where both values match strings of different length. Since at p the values v1 and
v2 match different strings, the ordering is irreflexive. Derived from the definition
above are the following two auxiliary orderings:

v1 � v2
def
= 9 p. v1 �p v2

v1 4 v2
def
= v1 � v2 _ v1 < v2

While clearly the definition of POSIX values being the minimal values ac-
cording to this ordering is a “bit more complicated”, the point for us is that it is
another, independent, specification for POSIX values, and we can actually show
that Okui and Suzuki’s definition is equivalent to our slightly “less complicated”
definition. This is what we shall show next.

Whereas we encountered a number of obstacles for establishing properties
like transitivity for the ordering of Sulzmann and Lu (and which we ultimately
failed to overcome), it is relatively straightforward to establish this property for
the orderings � and 4 by Okui and Suzuki.

Lemma 7 (Transitivity). If v1 � v2 and v2 � v3 then v1 � v3

Proof. From the assumption we obtain two positions p and q, where the values
v1 and v2 (respectively v2 and v3) are ‘distinct’. Since �lex is trichotomous, we
need to consider three cases, namely p = q, p �lex q and q �lex p. Let us
look at the first case. Clearly kv2kp < kv1kp and kv3kp < kv2kp imply that
kv3kp < kv1kp. It remains to show that for a p0 2 Pos v1[Pos v3 with p0 �lex p

that kv1kp0 = kv3kp0 holds. Suppose p0 2 Pos v1, then we can infer from the
first assumption that kv1kp0 = kv2kp0 . But this means that p0 must be in Pos v2

43

2.2. Ordering of Values According to Okui and Suzuki

too (the norm cannot be -1 given p0 2 Pos v1). Hence we can use the second
assumption and infer kv2kp0 = kv3kp0 , which concludes this case with v1 � v3.
The reasoning in the other cases is similar.

The proof for transitivity of 4 is similar and omitted. It is also straightforward
to show that � and 4 are partial orders. Okui and Suzuki [41] furthermore show
that they are linear orderings for lexical values of a given regular expression and
a given string, but we have not formalised this in Isabelle as it is a bit “hairy” ar-
gument. This property is not essential for our result. What we are going to show
below is that for a given r and s, the orderings have a unique minimal element
in the set LV r s, which is the POSIX value we defined in the previous section
by an inductive definition (and which we have already shown to be generated by
Sulzmann an Lu’s algorithm). We start with two properties that show how the
length of a flattened value relates to the �-ordering.

Proposition 2.
(1) If v1 � v2 then len |v2|  len |v1|.
(2) If len |v2| < len |v1| then v1 � v2.

Both properties follow from the definition of Okui and Suzuki’s ordering. Note
that (2) entails that a value, say v2, whose underlying string is a strict prefix of
another flattened value, say v1, then v1 must be smaller than v2. Put in another
way, for a given string and a regular expression, a shorter flattened value can-
not be a POSIX value. For our proofs it will be useful to have the following
properties—in each case the underlying strings of the compared values are the
same:

44

2.2. Ordering of Values According to Okui and Suzuki

Proposition 3.
(1) If |v1| = |v2| then Left v1 � Right v2
(2) If |v1| = |v2| then Left v1 � Left v2 iff v1 � v2

(3) If |v1| = |v2| then Right v1 � Right v2 iff v1 � v2

(4) If |v2| = |w2| then Seq v v2 � Seq v w2 iff v2 � w2

(5) If |v1| @ |v2| = |w1| @ |w2| and v1 � w1 then
Seq v1 v2 � Seq w1 w2

(6) If |vs1| = |vs2| then
Stars (vs @ vs1) � Stars (vs @ vs2) iff Stars vs1 � Stars vs2

(7) If |v1 :: vs1| = |v2 :: vs2| and v1 � v2 then
Stars (v1 :: vs1) � Stars (v2 :: vs2)

One might prefer that statements (4) and (5) (respectively (6) and (7)) are com-
bined into a single iff -statement (like the ones for Left and Right). Unfortunately
this cannot be done easily: such a single statement would require an additional
assumption about the two values Seq v1v2 and Seq w1w2 being inhabited by the
same regular expression. The complexity of the proofs involved seems to not
justify such a ‘cleaner’ single statement. The statements given above are just
the properties that allow us to establish our theorems without any difficulty. The
proofs for our version of Proposition 3 are routine.

Next we establish how Okui and Suzuki’s orderings relate to our definition
of POSIX values. Given a POSIX value v1 for r and s, then any other lexical
value v2 in LV r s is greater or equal than v1, namely:

Theorem 3. If (s, r) ! v1 and v2 2 LV r s then v1 4 v2.

Proof. By induction on our POSIX rules. By Theorem 1 and the definition of LV,
it is clear that v1 and v2 have the same underlying string s. The three base cases
are straightforward: for example for v1 = Empty, we have that v2 2 LV 1 []

must also be of the form v2 = Empty. Therefore we have v1 4 v2. The inductive
cases for r being of the form r1 + r2 and r1 · r2 are as follows:

• Case P +L with (s, r1 + r2) ! Left w1: In this case the value v2 is either
of the form Left w2 or Right w2. In the latter case we can immediately
conclude with v1 4 v2 since a Left-value with the same underlying string
s is always smaller than a Right-value by Proposition 3(1). In the former
case we have w2 2 LV r1 s and can use the induction hypothesis to infer

45

2.2. Ordering of Values According to Okui and Suzuki

w1 4 w2. Because w1 and w2 have the same underlying string s, we can
conclude with Left w1 4 Left w2 using Proposition 3(2).

• Case P + R with (s, r1 + r2) ! Right w1: This case is similar to the
previous case, except that we additionally know s /2 L(r1). This is needed
when v2 is of the form Left w2. Since |v2| = |w2| = s and ` w2 : r1, we
can derive a contradiction for s /2 L(r1) using Proposition 1. So also in
this case v1 4 v2.

• Case PS with (s1 @ s2, r1 · r2) ! Seq w1 w2: We can assume v2 = Seq
u1 u2 with u1 : r1 and u2 : r2. We have s1 @ s2 = |u1| @ |u2|. By the side-
condition of the PS-rule we know that either s1 = |u1| or that |u1| is a strict
prefix of s1. In the latter case we can infer w1 � u1 by Proposition 2(2) and
from this v1 4 v2 by Proposition 3(5) (as noted above v1 and v2 must have
the same underlying string). In the former case we know u1 2 LV r1 s1

and u2 2 LV r2 s2. With this we can use the induction hypotheses to infer
w1 4 u1 and w2 4 u2. By Proposition 3(4,5) we can again infer v1 4 v2.

The case for P ⇤ is similar to the PS-case and omitted.

This theorem shows that our POSIX value for a regular expression r and a string
s is in fact a minimal element of the values in LV r s. By Proposition 2(2)
we also know that any value in LV r s0, with s0 being a strict prefix, cannot be
smaller than v1.

The next theorem shows the opposite—namely any minimal element in LV r s

must be a POSIX value. This can be established by induction on r, but the proof
can be drastically simplified by using the fact from the previous section about
the existence of a POSIX value whenever a string s 2 L(r).

Theorem 4. If v1 2 LV r s and (8 v2 2 LV r s. v2 ⌃ v1) then (s, r) ! v1.

Proof. If v1 2 LV r s then s 2 L(r) by Proposition 1. Hence by Theorem 2(2)
there exists a POSIX value vp with (s, r) ! vp and by Lemma 4 we also have
vp 2 LV r s. By Theorem 3 we therefore have vp 4 v1. If vp = v1 then we
are done. Otherwise we have vp � v1, which however contradicts the second
assumption about v1 being the smallest element in LV r s. So we are done in
this case too.

46

2.3. GREEDY Ordering by Frisch and Cardelli

From this we can also show that if LV r s is non-empty (or equivalently s 2
L(r)) then it has a unique minimal element and it is in fact the one returned by
the lexer.

Corollary 2. If LV r s 6= ? then
9!vmin 2 LV r s. lexer = Some (vmin) ^ (8v 2 LV r s. vmin 4 v)

To sum up, we have shown that the (unique) minimal elements of the ordering
by Okui and Suzuki are exactly the POSIX values we defined inductively in
Section 2.1. This provides an independent confirmation that our ternary relation
formalises indeed the informal POSIX rules.

Since the idea behind the ordering by Okui and Suzuki is somewhat similar
to the idea behind the ordering of Sulzmann and Lu, our hope was we would
finally be in a position to make some progress with formalising their correctness
proof. Alas this turned out not to be true. Therefore let us next go back to the
GREEDY ordering introduced by Frisch and Cardelli from where the Sulzmann
and Lu took the proof idea. And then analyse in detail where we think Sulzmann
and Lu’s proof breaks down.

2.3 GREEDY Ordering by Frisch and Cardelli

Frisch and Cardelli [23] introduced an ordering, written <gr, for values and they
show that their GREEDY matching algorithm always produces a maximal ele-
ment according to this ordering (from all possible solutions). Their ordering <gr

is defined by the rules shown in Figure 2.2. The only difference between our ver-
sion of their rules and their original rules is that we made the relation reflexive
by including rules GC and GE. But this is a harmless addition.

That these rules realise a GREEDY ordering can be seen in the GLR rule
where a Left-value is always bigger than (or preferred over) a Right-value. What
is interesting for our purposes here is that the properties reflexivity, totality and
transitivity for this GREEDY ordering can be proved relatively easily by induc-
tions. This is illustrated next:

Lemma 8 (Reflexivity). If ` v : r then v <gr v.

Proof. This is by a straightforward induction on the definition of ` v : r.

Lemma 9 (Totality). If ` v1 : r and ` v2 : r then v1 <gr v2 or v2 <gr v1.

47

2.3. GREEDY Ordering by Frisch and Cardelli

v1 <gr v
0
1

Seq(v1, v2) <gr Seq(v
0
1, v

0
2)
GS1

v2 <gr v
0
2

Seq(v1, v2) <gr Seq(v1, v
0
2)
GS2

v1 <gr v2

Left v1 <gr Left v2
GLL

v1 <gr v2

Right v1 <gr Right v2
GRR

Left v2 <gr Right v1
GLR

v1 <gr v2

Stars (v1 ::vs1) <gr Stars (v2 ::vs2)
G⇤1

vs1 <gr vs2

Stars (v ::vs1) <gr Stars (v ::vs2)
G⇤2

Stars (v ::vs) <gr Stars []
G⇤3

Char c <gr Char c
GC

Empty <gr Empty
GE

Figure 2.2: The reflexive version of the ordering by Frisch and Cardelli for
GREEDY matching.

Proof. This is again by a straightforward induction on the definition of ` v1 : r

and a case-analysis of ` v2 : r.

We can also show transitivity by induction on r.

Lemma 10 (Transitivity). Suppose ` v1 : r, ` v2 : r and ` v3 : r. If v1 <gr v2

and v2 <gr v3 then v1 <gr v3.

Proof. By induction on r analysing all cases of ` v1 : r and so on. The only
interesting case is for sequences, where we can assume v1 = Seq(v1l, v1r), v2 =
Seq(v2l, v2r), and v3 = Seq(v3l, v3r). We need to show that

Seq(v1l, v1r) <gr Seq(v3l, v3r)

holds under the assumptions that Seq(v1l, v1r) <gr Seq(v2l, v2r) holds and that
Seq(v2l, v2r) <gr Seq(v3l, v3r) holds. There are two rules which could have
derived each assumption. For example v1l <gr v2l and v2l <gr v3l. In this case
we can apply the induction hypothesis and derive v1l <gr v3l from this we obtain
Seq(v1l, v1r) <gr Seq(v3l, v3r). The other three cases are similar (where in one
case we need to appeal to the reflexivity property).

48

2.4. POSIX Ordering by Sulzmann and Lu

It should not come as a surprise that if we make changes to the ordering rules
(unless they are really harmless, like our addition of rules GC and GE), the
proof ideas behind these proofs might not necessarily transfer to the modified
rules. That is what we shall show in the next section about the POSIX ordering
rules introduced by Sulzmann and Lu.

2.4 POSIX Ordering by Sulzmann and Lu

As mentioned before, the rules by Sulzmann and Lu [53] are a variant of the
GREEDY rules by Frisch and Cardelli. One difference is that Sulzmann and Lu’s
ordering, written <r

PX , also includes a regular expression. The rules are shown
in Figure 2.3. The only difference between the original rules by Sulzmann and
Lu, and the ones shown is the inclusion of the rules C and E which make the
ordering reflexive (that is reflexivity is directly built into the inductive definition
of the ordering, rather than an auxiliary definition as in Sulzmann and Lu). We
also slightly adapted their notation to fit our conventions.

The interesting rules are A1 and A2. For this remember that the GREEDY
ordering always prefers a Left-value over a Right-value. This is different in the
POSIX rules: there a Right-value is preferred provided it can match a longer
string (the A1 rule); a Left-value is only preferred when it can match a longer or
equal string than the Right-value (the A2 rule). Perhaps surprisingly, but perhaps
not, this “small” change in the Sulzmann and Lu’s rules has drastic consequences
for the proofs.

To start with, transitivity does not hold anymore in the “normal” formulation,
that is:

Property 1. Suppose ` v1 : r, ` v2 : r and ` v3 : r. If v1 <r
PX v2 and v2 <r

PX v3

then v1 <r
PX v3.

If formulated like this, then there are various counter examples: Suppose r is
a+ ((a+ a) · (a+ 1)) then the v1, v2 and v3 below are values of r:

v1 = Left(Char a)

v2 = Right(Seq(Left(Char a),Right(Empty)))

v3 = Right(Seq(Right(Char a),Left(Char a)))

Moreover v1 <r
PX v2 and v2 <r

PX v3, but not v1 <r
PX v3! The reason is that

although v3 is a Right-value, it can match a longer string, namely |v3| = aa,

49

2.4. POSIX Ordering by Sulzmann and Lu

v1 <r1
PX v01

Seq(v1, v2) <r1·r2
PX Seq(v01, v

0
2)
C2

v2 <r2
PX v02

Seq(v1, v2) <r1·r2
PX Seq(v1, v

0
2)
C1

len |v2| > len |v1|
Right v2 <r1+r2

PX Left v1
A1

len |v1| � len |v2|
Left v1 <r1+r2

PX Right v2
A2

v2 <r2
PX v02

Right v2 <r1+r2
PX Right v02

A3
v1 <r1

PX v01
Left v1 <r1+r2

PX Left v01
A4

|v ::vs| = []

Stars [] <r⇤

PX Stars (v ::vs)
K1

|v ::vs| 6= []

Stars (v ::vs) <r⇤

PX Stars []
K2

v1 <r
PX v2

Stars (v1 ::vs1) <r⇤

PX Stars (v2 ::vs2)
K3

Stars vs1 <r⇤

PX Stars vs2

Stars (v ::vs1) <r⇤

PX Stars (v ::vs2)
K4

Char c <c
PX Char c

C
Empty <1

PX Empty
E

Figure 2.3: The reflexive version of the ordering by Sulzmann and Lu for POSIX
matching.

while |v1| (and |v2|) matches only a. So transitivity in this formulation does not
hold—in this example actually v3 <r

PX v1!
Sulzmann and Lu “fix” this problem by weakening the transitivity property.

They require in addition that the underlying strings are of the same length. This
excludes the counter example above and any counter-example we could find with
an implementation. Thus the transitivity lemma in [53] is:

Property 2. Suppose ` v1 : r, ` v2 : r and ` v3 : r, and also |v1| = |v2| = |v3|.
If v1 <r

PX v2 and v2 <r
PX v3 then v1 <r

PX v3.

While we agree with Sulzmann and Lu that this property probably holds, proving
it seems not so straightforward. Sulzmann and Lu do not give an explicit proof
of the transitivity property, but give a closely related property about the existence
of maximal elements. They state that this can be verified by an induction on r.
We disagree with this as we shall show next in case of transitivity.

The case where the reasoning breaks down is the sequence case, say r1 · r2.
The induction hypotheses in this case are

50

2.4. POSIX Ordering by Sulzmann and Lu

IH r1:
8v1, v2, v3. ` v1 : r1 ^

` v2 : r1 ^
` v3 : r1 ^
|v1| = |v2| = |v3| ^
v1 <r1

PX v2 ^ v2 <r1
PX v3

) v1 <r1
PX v3

IH r2:
8v1, v2, v3. ` v1 : r2 ^

` v2 : r2 ^
` v3 : r2 ^
|v1| = |v2| = |v3| ^
v1 <r2

PX v2 ^ v2 <r2
PX v3

) v1 <r2
PX v3

We can assume that

Seq(v1l, v1r) <r1·r2
PX Seq(v2l, v2r) and Seq(v2l, v2r) <r1·r2

PX Seq(v3l, v3r)

(2.1)
hold, and furthermore that the values have equal length, namely:

|Seq(v1l, v1r)| = |Seq(v2l, v2r)| and |Seq(v2l, v2r)| = |Seq(v3l, v3r)| (2.2)

We need to show that

Seq(v1l, v1r) <r1·r2
PX Seq(v3l, v3r)

holds. We can proceed by analysing how the assumptions in (2.1) have arisen.
There are four cases. Let us assume we are in the case where we know

v1l <r1
PX v2l and v2l <r1

PX v3l

and also know the corresponding typing judgements. This is exactly a case where
we would like to apply the induction hypothesis IH r1. But we cannot! We still
need to show that |v1l| = |v2l| and |v2l| = |v3l|. We know from (2.2) that the
lengths of the sequence values are equal, but from this we cannot infer anything
about the lengths of the component values. Indeed in general they will be un-
equal, that is

|v1l| 6= |v2l| and |v1r| 6= |v2r|

but still (2.2) will hold. Now we are stuck, since the IH does not apply. This
problem where the induction hypothesis does not apply arises in several places
in the proof of Sulzmann and Lu, not just for proving transitivity.

The immediate effect is that the existence of a unique maximal value cannot

51

2.4. POSIX Ordering by Sulzmann and Lu

be inferred. We know totality of <r
PX and know that for every regular expression

there are only a finite number of (proper) values. But without transitivity it seems
hard to establish that given a regular expression and given a string, there exists
always a unique maximal value. . . which the algorithm is supposed to calculate.
Without this basic property, the whole correctness proofs already collapses. To
sum up, the weakening of the properties by requiring that values need to have
equal length seems to make the properties to hold, but destroys all inductive
properties in the sequence case. The result is we were not able to formalise any
substantial part of Sulzmann and Lu’s “pencil-and-paper” proof.

52

Chapter 3

Optimisations, Extensions and
Future Work

Having been able to prove the correctness of Sulzmann & Lu’s algorithm accord-
ing to Okui & Suzuki’s specification and also our own (equivalent) specification
of POSIX values, we should now have look at how the algorithm performs in
terms of speed. Transliterating (manually) the Isabelle code of the algorithm
into Scala, for example, is pleasantly straightforward—this is a major attraction
of the algorithm by Brzozowski, and Sulzmann and Lu. Alas, trying out the code
on our standard example from the Introduction involving (a⇤)⇤ · b and strings of
the form a . . . a leads to sobering news:

5 10 15 20 25 30
0

10

20

30

40

n

tim
e

in
se

cs

Python
Java 8
Sulzmann & Lu in Scala

In this rough comparison, the algorithm actually performs worse than the regu-
lar expression matchers in Python and Java, which we heavily criticised in the
Introduction for their abysmal runtime behaviour. In fact we can only take mea-
surements for strings up to the length of 21 a’s, because with longer strings one
consistently obtains “out of memory” exceptions. The problem is that deriva-
tives as calculated by Definition 5 can grow very big and as a result slow down
the matching process: every time we call nullable or the derivative function we

53

3.1. Simplification of Regular Expressions

essentially need to traverse the corresponding regular expression trees and value
trees. Therefore, large trees (regular expressions) lead to slow matching. We
shall look next at how this problem can be addressed.

3.1 Simplification of Regular Expressions

Derivatives as calculated by Brzozowski’s method are usually more complex
regular expressions than the initial one; the result is that the derivative-based
matching and lexing algorithms are often abysmally slow (see graph above).
However, as Sulzmann and Lu wrote, various optimisations are possible, such
as the simplifications of 0 + r, r + 0, 1 · r and r · 1 to r. These simplifications
can speed up the algorithms considerably [53]. One of the advantages of having
a simple specification and correctness proof is that the latter can be extended to
also establish the correctness of such simplification steps.

While the simplification of regular expressions according to rules such as

0 + r) r

r + 0) r

1 · r) r

r · 1) r

0 · r) 0
r · 0) 0

(3.1)

is well-understood, there is an obstacle with the POSIX value calculation algo-
rithm by Sulzmann and Lu: if we build a derivative regular expression and then
simplify it, we will calculate a POSIX value for the simplified derivative regular
expression, not for the original (unsimplified) derivative regular expression. This
produces incorrect results. Sulzmann and Lu overcome this obstacle in an early
version of [53]1 by not just calculating a simplified regular expression, but also
calculating a rectification function that “repairs” the incorrect value.

The idea behind the rectification functions is as follows: if we have a regular
expression of the form, say, 0 + r, then we simplify it to just r and calculate
the POSIX value for how r matched the corresponding string. Suppose this
gives the value v. Then in order to obtain a POSIX value for 0 + r we have
to rectify v to be Right(v). This would be the same, for example, for regular

1
https://sites.google.com/site/luzhuomi/file/icfp13.pdf

54

3.1. Simplification of Regular Expressions

FRight f v
def
= Right (f v)

FLeft f v
def
= Left (f v)

FAlt f1 f2 (Right v) def
= Right (f2 v)

FAlt f1 f2 (Left v) def
= Left (f1 v)

FSeq1 f1 f2 v
def
= Seq (f1 Empty)(f2 v)

FSeq2 f1 f2 v
def
= Seq (f1 v)(f2 Empty)

FSeq f1 f2 (Seq v1 v2)
def
= Seq (f1 v1)(f2 v2)

simpAlt(0,)(r2, f2)
def
= (r2, FRight f2)

simpAlt(r1, f1)(0,)
def
= (r1, FLeft f1)

simpAlt(r1, f1)(r2, f2)
def
= (r1 + r2, FAlt f1 f2)

simpSeq(1, f1)(r2, f2)
def
= (r2, FSeq1 f1 f2)

simpSeq(r1, f1)(1, f2)
def
= (r1, FSeq2 f1 f2)

simpSeq(0, f1)(r2, f2)
def
= (0, undefined)

simpSeq(r1, f1)(0, f2)
def
= (0, undefined)

simpSeq(r1, f1)(r2, f2)
def
= (r1 · r2, FSeq f1 f2)

Figure 3.1: Auxiliary functions for simplifying regular expressions and rectify-
ing values. In the cases where the simplification yields 0, we can specify the
rectification function as undefined as it will never been called during matching.

expressions of the form r + 0. In this case we would have to rectify the value
from v to Left(v). Similarly for r ·1 where we have to rectify a v to Seq v Empty .
The only difficulty is that such simplifications can occur deep inside the regular
expressions and we need to compose, or “stage”, the rectification functions in
the right way. Otherwise we break the correctness of the algorithm.

The rectification functions can be (slightly clumsily) implemented in Isabelle
using the auxiliary functions shown in Figure 3.1. The functions simpAlt and
simpSeq encode the simplification rules shown in (3.1) on page 54 and compose
the rectification functions (recall simplifications can occur deep inside a regular
expression). The main simplification function simp is then defined as

simp (r1 + r2)
def
= simpAlt (simp r1) (simp r2)

simp (r1 · r2)
def
= simpSeq (simp r1) (simp r2)

simp r
def
= (r, id)

where id stands for the identity function. As can be seen, the function simp re-
turns a simplified regular expression and also a corresponding rectification func-

55

3.1. Simplification of Regular Expressions

tion. Note that we do not simplify under stars: this seems to slow down the
algorithm, rather than speed it up. The optimised lexer can then be given by the
clauses:

slexer r [] def
= if nullable r then Some (mkeps r) else None

slexer r (c :: s) def
= let (rsimp, frect) = simp (r\c) in

case slexer rsimp s of
None) None

| Some v) Some (inj r c (frect v))

The first clause is unchanged from lexer. In the second clause we first calcu-
late the derivative r\c and then simplify the result. This gives us a simplified
derivative rsimp and a rectification function frect. The lexer is then recursively
called with the simplified derivative and the shorter string where the character c
is chopped off. The point is that when we receive back a value, say v, for the sim-
plified derivative, we need to rectify v (that is construct frect v) before injecting
the character c back into the rectified value.

In order to establish the correctness of slexer , we need to show that simpli-
fication preserves the language and simplification preserves our POSIX relation,
provided the value is rectified. To see what is going on in the next lemma, re-
call that simp generates a (regular expression, rectification function) pair. In the
first property we show that every regular expression is equivalent to its simplified
version (that is matches the same language). In the second we show that if we
obtain a value for a simplified regular expression and it is a POSIX value, then
if we rectify the value, it will be a POSIX value for the original (unsimplified)
regular expression.

Lemma 11.
(1) L (fst (simp r)) = L(r)
(2) If (s, fst (simp r)) ! v then (s, r) ! snd (simp r) v.

Proof. Both are by induction on r. There is no interesting case for the first
statement. For the second statement, of interest are the r = r1+r2 and r = r1 ·r2
cases. In each case we have to analyse four subcases whether fst (simp r1) and
fst (simp r1) equals 0 (respectively 1). For example for r = r1 + r2, consider the
subcase fst (simp r1) = 0 and fst (simp r2) 6= 0. By assumption we know (s, fst
(simp (r1 + r2))) ! v. From this we can infer (s, fst (simp r2)) ! v and by IH
also (⇤)(s, r2) ! snd (simp r2) v. Given fst (simp r1) = 0, we know L (fst (simp

56

3.1. Simplification of Regular Expressions

r1)) = ?. By the first statement L(r1) is the empty set, meaning (**) s /2 L(r1).
Taking (*) and (**) together gives by the P+R-rule (s, r1 + r2) ! Right (snd
(simp r2) v). In turn this gives (s, r1 + r2) ! snd (simp (r1 + r2)) v as we need
to show. The other cases are similar.

We can now prove relatively straightforwardly that the optimised lexer produces
the expected result:

Theorem 5. slexer r s = lexer r s

Proof. By induction on s generalising over r. The [] case is trivial. For the cons-
case suppose the string is of the form c :: s. By induction hypothesis we know
slexer r s = lexer r s holds for all r (in particular for r being the derivative r\c).
Let rs be the simplified derivative regular expression, that is fst (simp (r\c)), and
fr be the rectification function, that is snd (simp (r\c)). We distinguish the cases
whether (*) s 2 L(r\c) or not. In the first case we have by Theorem 2(2) a value
v so that lexer (r\c) s = Some v and (s, r\c) ! v hold. By Lemma 11(1) we
can also infer from (*) that s 2 L(rs) holds. Hence we know by Theorem 2(2)
that there exists a v0 with lexer rs s = Some v0 and (s, rs) ! v0. From the latter
we know by Lemma 11(2) that (s, r\c) ! fr v0 holds. By the uniqueness of
the POSIX relation (Theorem 1) we can infer that v is equal to fr v0—that is the
rectification function applied to v0 produces the original v. Now the case follows
by the definitions of lexer and slexer.

In the second case where s /2 L (r\c) we have that lexer (r\c) s = None
by Theorem 2(1). We also know by Lemma 11(1) that s /2 L (rs). Hence lexer
rs s = None by Theorem 2(1) and by IH then also slexer rs s = None. With this
we can conclude in this case too.

Having this correctness result under our belt, we can perform again some
rough calculations with slexer in Scala. This time we obtain more promising
results. In the example with (a⇤)⇤ · b we can now process strings up to 5.5 Mil-
lion(!) a’s in just under 20 seconds (in Java and Python we were only able to
process strings up to 30 a’s).

57

3.1. Simplification of Regular Expressions

0 1 2 3 4 5
·106

0
5
10
15
20
25
30

n

tim
e

in
se

cs

Graph: (a⇤)⇤ · b and strings a . . . a| {z }
n

S & L slexer

The reason for this good performance is that in this example the simplification
process keeps the derivative regular expression to a nearly constant size (there
is usually an initial small growth until a “fix point” is reached after which the
size of the derivatives is either constant or decreases). Trying out slexer on more
examples and even lexing some small toy programming languages shows that
it gives decent processing times in many instances. Unfortunately there are ex-
amples where the picture is not as rosy as one might wish. For instance in the
small example (a + aa)⇤ the derivative after 31 a’s contains already more than
20 Million nodes (despite the simplification in slexer) and this clearly affects the
running time as shown in the graph below:

5 10 15 20 25 30 35
0

5

10

15

n

tim
e

in
se

cs

Graph: (a+ aa)⇤ and strings a . . . a| {z }
n

S & L slexer

The reason for this disappointing result is that our simplification is “local” in the
sense that it descends regular expressions towards the inside, but only simpli-
fies locally on the way up. It does not perform “global” rewrites, because then
defining appropriate rectification functions and staging them correctly becomes
significantly harder. Unfortunately the derivative function and the local simplifi-
cation method produce in the example (a+aa)⇤ intermediate regular expressions
of the form

58

3.2. Bitcoded Values and Annotated Regular Expressions

(r + r0) + r

To deal with such instances the simplification function would have to find out
whether there is a r and then later on (to the right) there is another regular ex-
pression of exactly the same shape. Since it comes later, or more precisely further
to the right-hand side, we know that the second occurrence of r cannot contribute
to the POSIX value, because of the Priority Rule in POSIX. So it could be safely
deleted. But even if we include a simplification rule like r+ r) r in slexer this
problem cannot be solved, because there can be “anything” in between the first
and second occurrence of r, as indicated above.

While we have managed to make some initial progress towards a more en-
hanced simplification of regular expressions in Scala(!) code, we have not man-
aged to obtain anything simple enough in order to start proving the correctness
for such a more enhanced simplification function. Also we are not sure (that
is we have no proof) whether this Scala code satisfies the property that for ev-
ery regular expression and for every string there is a kind of “fixpoint” after
which derivatives do not grow bigger. This is a property one ultimately wants
to achieve in order to have an efficient derivative-based lexing algorithm. After
some intellectual “zig-zagging”, we found that going back to Sulzmann and Lu’s
paper [53] helped us with addressing this “speed” problem by using bitcoded
values and annotated regular expressions.

3.2 Bitcoded Values and Annotated Regular Expres-
sions

In the second part of their paper [53],2 Sulzmann and Lu introduce a bitcoded
version of their lexing algorithm. They make some claims about the correctness
and speed of this version, but do not provide any supporting proof arguments,
not even “pencil-and-paper” arguments. They wrote about their bitcoded “incre-
mental parsing method” (that is the algorithm to be studied in this section):

“Correctness Claim: We further claim that the incremental parsing
method in Figure 5 in combination with the simplification steps in

2This refers to the “final” version of the paper that appeared in the FLOPS’14 conference
proceedings. There is also a more recent and extended version available from the first author’s
webpage where some of our concerns about the proof are addressed.

59

3.2. Bitcoded Values and Annotated Regular Expressions

Figure 6 yields POSIX parse trees. We have tested this claim exten-
sively by using the method in Figure 3 as a reference but yet have to
work out all proof details.”

We shall make partial progress in this section by supplying one important part
of the missing proofs. We shall show that the incremental construction of values
without simplification is correct. There is already recent work by Ribeiro and
Du Bois [48] in Agda on this topic. They present some formalised proofs about
bitcoded regular expression matching and derivatives, but we found they do not
address the more important problem of whether Sulzmann and Lu’s bitcoded
algorithm produces correct results.

The values generated by Sulzmann and Lu’s original algorithm can be seen as
trees that need to be represented appropriately in memory. If they are represented
as trees (or inductive datatypes) then clearly this results in significant memory
requirements. So it seems self-evident that a more compact representation, for
example, as bitcoded sequences, is preferable. While the bitcoding of values
introduced by Sulzmann and Lu looks at first glance as just an improvement in
terms of memory, rather than speed, this first appearance is deceiving. In fact,
the idea of representing values as bit-sequences and annotating them in regular
expressions is a very clever design that makes proving the correctness of a more
powerful simplification method feasible. That is probably also the reason why
Sulzmann and Lu switched from the simplification/rectification technique, which
we have discussed and proved correct in the previous section, to the technique
of using bitcoded values/annotated regular expressions in their published version
of [53].

We shall provide here a proof for the claim by Sulzmann and Lu that the
unsimplified version of their bitcoded algorithm produces correct results. This
is a key stepping stone for establishing the correctness of an algorithm involv-
ing more “aggressive” simplification rules. While this is only a partial result,
it is still significant progress, because the bitcoded algorithm builds values in-
crementally and from the “wrong” end, in comparison with the “standard” way
how lexer constructs values. To see the difference, recall that Sulzmann and Lu’s
lexer consists of two phases, see Figure 1.1 on Page 33—a derivative building
phase and a subsequent value building phase. The bitcoded algorithm, in con-
trast, only consist of a single phase. Each derivative step will already generate,
incrementally, some parts of the final value (represented as bit-sequence).

60

3.2. Bitcoded Values and Annotated Regular Expressions

For giving our proof, let us start with an auxiliary function flex that allows us
to recast the rules of lexer (with its two phases) in terms of a single phase.

Definition 12.

flex r f []
def
= f

flex r f (c ::s)
def
= flex (r\c) (�v. f (inj r c v)) s

The point of this function is to do lexing in a “forward” manner where we stack
up injection functions while building derivatives. When reaching the end of the
string, we just need to apply the stacked injection functions to the value generated
by mkeps . Using this function we can recast the definition of lexer as follows:

Lemma 12.

lexer r s = if nullable(r\s)
then Some(flex r id s (mkeps(r\s)))
else None

Proof. By routine induction on s and generalisation over r. We need to use
auxiliary properties about flex such as

g (flex r f s v) = flex r (g � f) s v

which can be easily established by induction on s.

Note we did not redefine lexer, we just established that the value generated by
lexer can also be obtained by a different method. While this different method is
not efficient (we essentially need to traverse the string s twice, once for building
the derivative r\s and another time for stacking up injection functions using flex),
it will help us later with proving that incrementally building up values as done in
Sulzmann and Lu’s bitcoded version of the lexing algorithm is correct.

For convenience we use the following simple Isabelle/HOL datatype for rep-
resenting bit-sequences (list of bits).

bit ::= Z | S

The coding function for translating values into bit-sequences is relatively straight-
forward.

61

3.2. Bitcoded Values and Annotated Regular Expressions

Definition 13 (Bitcoding of Values).

code(Empty)
def
= []

code(Char c) def
= []

code(Left v) def
= Z :: code(v)

code(Right v) def
= S :: code(v)

code(Seq v1 v2)
def
= code(v1)@ code(v2)

code(Stars []) def
= [S]

code(Stars (v ::vs)) def
= Z :: code(v) @ code(Stars vs)

As can be seen, this coding is “lossy” in the sense that we do not record explic-
itly character values and also not sequence values (for them we just append two
bit-sequences). We do, however, record the different alternatives for Left , re-
spectively Right , as Z and S followed by some bit-sequence. Similarly, we use
Z to indicate if there is still a value coming in the list of Stars , whereas S indi-
cates the end of the list. The lossiness makes the process of decoding a bit more
involved, but the point is that if we have a regular expression and a bit-sequence
of a corresponding value, then we can always decode the value accurately. The
decoding can be defined by using two functions called decode0 and decode:

Definition 14 (Bitdecoding of Values).

decode0 bs (1) def
= (Empty , bs)

decode0 bs (c) def
= (Char c, bs)

decode0 (Z ::bs) (r1 + r2)
def
= let (v, bs1) = decode0 bs r1 in (Left v, bs1)

decode0 (S ::bs) (r1 + r2)
def
= let (v, bs1) = decode0 bs r2 in (Right v, bs1)

decode0 bs (r1 · r2)
def
= let (v1, bs1) = decode0 bs r1 in

let (v2, bs2) = decode0 bs1 r2
in (Seq v1 v2, bs2)

decode0 (Z ::bs) (r⇤)
def
= (Stars [], bs)

decode0 (S ::bs) (r⇤)
def
= let (v, bs1) = decode0 bs r in

let (Stars vs, bs2) = decode0 bs1 r⇤

in (Stars v ::vs, bs2)

decode bs r def
= let (v, bs0) = decode0 bs r in

if bs0 = [] then Some v else None
62

3.2. Bitcoded Values and Annotated Regular Expressions

Note, we can only detect from the 1 regular expressions, respectively char reg-
ular expression, that an Empty or, respectively, a character value needs to be
generated. This is because the empty string and characters are not encoded into
the bit-sequence. Since there is no “in-between marker” for when two values
have to be calculated for a sequence, decoding needs to thread the bit-sequence
through different calls (see clauses for sequence and star regular expressions).
This means that decode0 attempts to “nibble” off parts of the bit-sequence ac-
cording to the shape of the regular expression and leaves something as left-over
bit-sequence that has not yet been decoded.

The function decode0 is well-defined because either the size of the regular
expression decreases in each call, or if not, then the bit-sequence gets shorter. In
the main decoding function decode we explicitly record that decoding can fail,
producing None. For example in instances where the “left-over” bit-sequence
is not completely consumed. This can be the case when the bit-sequence does
not correspond to the regular expression with which decode is called. We can
establish that for a value v inhabited by a regular expression r, the decoding of
its bit-sequence never fails.

Lemma 13. If ` v : r then decode (code v) r = Some v.

Proof. This follows from the property that decode0 ((code v)@ bs) r = (v, bs)

holds for any bit-sequence bs and ` v : r. This property can by easily proved by
induction on ` v : r.

Sulzmann and Lu also introduce annotated regular expressions, which are
the usual regular expressions plus an extra bit-sequence annotated to each con-
structor (except 0). Annotated regular expressions are the main data structure
over which the bitcoded algorithm works and which can be defined as an Is-
abelle/HOL datatype as follows:

areg ::= ZERO
| ONE bs

| CHAR bs c

| ALT bs a1 a2

| SEQ bs a1 a2

| STAR bs a

63

3.2. Bitcoded Values and Annotated Regular Expressions

where bs are bit-sequences and the as are annotated regular expressions. In what
follows, we shall use the convention that r will stand for “standard” regular ex-
pressions, and a for annotated regular expressions.

Sulzmann and Lu define the function internalise in order to transform stan-
dard regular expressions into annotated regular expressions. We write this oper-
ation as r". This internalisation uses the following fuse function.

Definition 15 (Fuse Function).

fuse bs (ZERO)
def
= ZERO

fuse bs (ONE bs0)
def
= ONE (bs@ bs0)

fuse bs (CHAR bs0 c)
def
= CHAR (bs@ bs0) c

fuse bs (ALT bs0 a1 a2)
def
= ALT (bs@ bs0) a1 a2

fuse bs (SEQ bs0 a1 a2)
def
= SEQ (bs@ bs0) a1 a2

fuse bs (STAR bs0 a)
def
= STAR (bs@ bs0) a

Definition 16 (Internalisation).

(0)" def
= ZERO

(1)" def
= ONE []

(c)"
def
= CHAR [] c

(r1 + r2)"
def
= ALT [] (fuse [Z] r"1) (fuse [S] r"2)

(r1 · r2)"
def
= SEQ [] r"1 r

"
2

(r⇤)"
def
= STAR [] r"

There is also an erase-function, written a#, which transforms an annotated regu-
lar expression into a (standard) regular expression by just erasing the annotated
bit-sequences. We omit the straightforward definition. For defining the algo-
rithm, we also need the functions bnullable and bmkeps, which are the “lifted”
versions of nullable and mkeps acting on annotated regular expressions, instead
of regular expressions.

Definition 17 (bnullable).

64

3.2. Bitcoded Values and Annotated Regular Expressions

bnullable (ZERO)
def
= false

bnullable (ONE bs)
def
= true

bnullable (CHAR bs c)
def
= false

bnullable (ALT bs a1 a2)
def
= bnullable a1 _ bnullable a2

bnullable (SEQ bs a1 a2)
def
= bnullable a1 ^ bnullable a2

bnullable (STAR bs a)
def
= true

Definition 18 (bmkeps).

bmkeps (ONE bs)
def
= bs

bmkeps (ALT bs a1 a2)
def
= if bnullable a1

then bs@ bmkeps a1
else bs@ bmkeps a2

bmkeps (SEQ bs a1 a2)
def
= bs@ bmkeps a1 @ bmkeps a2

bmkeps (STAR bs a)
def
= bs@ [S]

The key function in the bitcoded algorithm is the derivative of an annotated regu-
lar expression. This derivative calculates the derivative but at the same time also
the incremental part that contributes to constructing a value.

Definition 19 (Derivative of Annotated Regular Expressions).

(ZERO)\c def
= ZERO

(ONE bs)\c def
= ZERO

(CHAR bs d)\c def
= if c = d then ONE bs else ZERO

(ALT bs a1 a2)\c
def
= ALT bs (a1\c) (a2\c)

(SEQ bs a1 a2)\c
def
= if bnullable a1

then ALT bs (SEQ [] (a1\c) a2)
(fuse (bmkeps a1) (a2\c))

else SEQ bs (a1\c) a2
(STAR bs a)\c def

= SEQ bs (fuse [Z](r\c)) (STAR [] r)

This function can also be extended to strings, written a\s, just like the standard
derivative. We omit the details. Finally we can define Sulzmann and Lu’s bit-
coded lexer, which we call blexer:

65

3.2. Bitcoded Values and Annotated Regular Expressions

Definition 20.
blexer r s def

= let a = (r")\s in
if bnullable(a)
then decode (bmkeps a) r
else None

This bitcoded lexer first internalises the regular expression r and then builds the
annotated derivative according to s. If the derivative is nullable, then it extracts
the bitcoded value using the bmkeps function. Finally it decodes the bitcoded
value. If the derivative is not nullable, then None is returned. The task is to show
that this way of calculating a value generates the same result as with lexer.

Before we can proceed we need to define a function, called retrieve, which
Sulzmann and Lu introduced for helping with the proof argument.

Definition 21 (Retrieve).

retrieve (ONE bs)Empty
def
= bs

retrieve (CHAR bs c) (Char d)
def
= bs

retrieve (ALT bs a1 a2) (Left v)
def
= bs@ retrieve a1 v

retrieve (ALT bs a1 a2) (Right v)
def
= bs@ retrieve a2 v

retrieve (SEQ bs a1 a2) (Seq v1 v2)
def
= bs@ retrieve a1 v1 @ retrieve a2 v2

retrieve (STAR bs a) (Stars [])
def
= bs@ [S]

retrieve (STAR bs a) (Stars (v ::vs))
def
=

bs@ [Z] @ retrieve a v@ retrieve (STAR [] a) (Stars vs)

The idea behind this function is to retrieve a possibly partial bitcode from an
annotated regular expression, where the retrieval is guided by a value. For exam-
ple if the value is Left then we descend into the left-hand side of an alternative
(annotated) regular expression in order to assemble the bitcode. Similarly for
Right . The property we can show is that for a given v and r with ` v : r,
the retrieved bitsequence from the internalised regular expression is equal to the
bitcoded version of v.

Lemma 14. If ` v : r then code v = retrieve (r") v.

Proof. By induction on ` v : r. There are no interesting cases.

We also need some auxiliary facts about how the bitcoded operations relate to the
“standard” operations on regular expressions. For example if we build a bitcoded
derivative and erase the result, this is the same as if we first erase the annotated
regular expression and then perform the “standard” derivative operation.

66

3.2. Bitcoded Values and Annotated Regular Expressions

Lemma 15.
(1) (a\s)# = (a#)\s
(2) bnullable(a) iff nullable(a#)
(3) bmkeps(a) = retrieve a (mkeps (a#)) provided nullable(a#).

Proof. All properties are by induction on annotated regular expressions. There
are no interesting cases.

This brings us to our main lemma in this section: if we build a derivative, say
r\s and have a value, say v, inhabited by this derivative, then we can produce
the result lexer generates by applying this value to the stacked-up injection func-
tions flex assembles. The lemma establishes that this is the same value as if we
build the annotated derivative r"\s and then retrieve the corresponding bitcoded
version, followed by a decoding step.

Lemma 16 (Main Lemma). If ` v : r\s then

Some (flex r id s v) = decode(retrieve (r"\s) v) r

Proof. This can be proved by induction on s and generalising over v. The in-
teresting point is that we need to prove this in the reverse direction for s. This
means instead of cases [] and c ::s, we have cases [] and s@ [c] where we unravel
the string from the back.3

The case for [] is routine using Lemmas 13 and 14. In the case s@ [c], we
can infer from the assumption that ` v : (r\s)\c holds. Hence by Lemma 6 we
know that (*) ` inj (r\s) c v : r\s holds too. By definition of flex we can unfold
the left-hand side to be

Some (flex r id (s@ [c]) v) = Some (flex r id s (inj (r\s) c v))

By induction hypothesis and (*) we can rewrite the right-hand side to

decode (retrieve (r"\s) (inj (r\s) c v)) r

which is equal to decode (retrieve (r"\(s@ [c])) v) r as required. The last rewrite
step is possible because we generalised over v in our induction.

With this lemma in place, we can prove the correctness of blexer such that it
produces the same result as lexer.

3Isabelle/HOL provides an induction principle for this way of performing the induction.

67

3.3. Extensions

Theorem 6. lexer r s = blexer r s

Proof. We can first expand both sides using Lemma 12 and the definition of
blexer. This gives us two if -statements, which we need to show to be equal. By
Lemma 15(2) we know the if -tests coincide:

bnullable(r"\s) iff nullable(r\s)

For the if -branch suppose a
def
= r"\s and d

def
= r\s. We have (*) nullable d. We

can then show by Lemma 15(3) that

decode(bmkeps a) r = decode(retrieve a (mkeps d)) r

where the right-hand side is equal to Some (flex r id s (mkeps d)) by Lemma 16
(we know ` mkeps d : d by (*)). This shows the if -branches return the same
value. In the else-branches both lexer and blexer return None. Therefore we can
conclude the proof.

To sum up, we have established that the bitcoded algorithm by Sulzmann and
Lu without simplification produces correct results. This was only conjectured
in their paper [53]. The next step would be to implement a more aggressive
simplification procedure on annotated regular expressions and then prove the
corresponding algorithm generates the same values as blexer. Alas due to time
constraints we are unable to do so here.

3.3 Extensions

A strong point in favour of Sulzmann and Lu’s algorithm is that it can be ex-
tended in various ways. If we are interested in tokenising a string, then we need
to not just split up the string into tokens, but also “classify” the tokens (for exam-
ple whether it is a keyword or an identifier). This can be done with only minor
modifications to the algorithms by introducing record regular expressions and
record values (see for example [54]). For this recall our definitions of regular
expressions and values on Pages 23 and 28 and extend them as follows:

r := ... | (l : r) v := ... | (l : v)

where l is a label, say s a string, r a regular expression and v a value. All func-
tions can be smoothly extended to this additional regular expression and value.

68

3.3. Extensions

For example (l : r) is nullable iff r is; the derivative, that is (l : r)\c, is de-
fined as (l : r\c) and so on. The purpose of the record regular expression is to
mark certain parts of a regular expression and then record in the calculated value
which parts of the strings were matched by this part. The label can then serve as
classification for the tokens. For this recall the regular expression (rkey + rid)⇤

for keywords and identifiers from the Introduction. With the record regular ex-
pression we can form ((key : rkey) + (id : rid))⇤ and then traverse the calculated
value and only collect the underlying strings in record values. With this we ob-
tain finite sequences of pairs of labels and strings, for example

(l1 : s1), ..., (ln : sn)

from which tokens with classifications (keyword-token, identifier-token and so
on) can be extracted. One way to do this is to traverse a value and collect all
flattened strings of marked subvalues and associate them with the labels. This
can be defined as follows:

env(Empty)
def
= []

env(Char c) def
= []

env(Left v) def
= env(v)

env(Right v) def
= env(v)

env(Seq v1 v2)
def
= env(v1)@ env(v2)

env(Stars vs) def
= concat(map env vs)

env(l : v) def
= (l, |v|) :: env(v)

where concat “flattens” a list of lists to just a single list and where |v| produces
the underlying string of a value. This is how we envisage a lexer can be imple-
mented based on Sulzmann and Lu’s algorithm.

In the context of POSIX matching, it is also interesting to study additional
constructors about bounded repetitions of regular expressions. For this let us
extend the results from the previous sections to the following four additional
regular expression constructors:

r := ... | r{n} exactly-n-times
| r{..n} upto-n-times
| r{n..} from-n-times
| r{n..m} between-nm-times

69

3.3. Extensions

In what follows we shall call them bounded regular expressions. With the help of
the power operator (definition omitted) on languages, the associated languages
recognised by these regular expressions can be defined in Isabelle as follows:

L(r{n})
def
= L(r)n

L(r{..n})
def
=

S
i2{..n} . L(r)

i

L(r{n..})
def
=

S
i2{n..} . L(r)

i

L(r{n..m})
def
=

S
i2{n..m} . L(r)

i

This definition uses of the convenient interval definitions in Isabelle/HOL. For
example {n..m} stands for the interval n  i  m; similarly {..n} stands for
0  i  n and so on. The definition in Isabelle/HOL implies that in the last
clause r{n..m} matches no string if m < n, because then the interval {n..m} is
empty.

Note that we are a bit over-generous in our use of primitives: for exam-
ple exactly-n-times r{n} could be substituted with r{n..n}; similarly upto-n-times
r{..n} could be substituted with r{0..n}. We could even drop the Kleene star by
substituting r⇤ with r{0..}. But for the sake of argument, let us explain the details
for all bounded repetition constructors.

While the language recognised by these regular expressions is straightfor-
ward, some care is needed when defining the corresponding lexical values. First
with a slight abuse of language, we will (re)use values of the form Stars vs for
values inhabited by bounded regular expressions.4 Second, we need to introduce
rules for extending our inhabitation relation given in Definition 6 on Page 30,
from which we then derived our notion of lexical values, LV . Given the rule
for r⇤, the rule for r{..n} is relatively straightforward: it just requires additionally
that the length of the list of values must be smaller or equal to n, that is

8v 2 vs. ` v : r ^ |v| 6= [] len vs  n

` Stars vs : r{..n}

Like in the r⇤-rule, we ensure with the left-premise that some non-empty part of
the string is “chipped” away by every value in vs, that means the corresponding
values do not flatten to the empty string.

Matters are bit more complicated in the rule for r{n} (that is exactly n-times
r). We clearly need to require that the length of the list of values equals to n.

4The alternative would be to introduce a separate constructor, for example List vs. But this
seems overkill given the relatively little benefit from such a naming scheme.

70

3.3. Extensions

But requiring that every of these n values “chips” away some non-empty part
of a string would be too strong. According to the informal POSIX rules we
have to allow that there is an “initial segment” that needs to chip away some
parts of the string, but if this segment is too short for satisfying the exactly-n-
times constraint, it can be followed by a segment where every value flattens to
the empty string. We found that the only way for expressing this constraint in
Isabelle is by rules of the form:

8v 2 vs1. ` v : r ^ |v| 6= []

8v 2 vs2. ` v : r ^ |v| = []

len (vs1 @ vs2) = n

` Stars (vs1 @ vs2) : r
{n}

The vs1 is the initial segment with non-empty flattened values, whereas vs2 is
the segment where all values flatten to the empty string. This idea gets even
more complicated for the r{n..} regular expression. The reason is that we need
to distinguish the case where we use fewer repetitions than n. In this case we
need to “fill” the end with values that match the empty string to obtain at least n
repetitions. But in case we need more than n repetitions, then all values should
match a non-empty string. This leads to two rules:

8v 2 vs1. ` v : r ^ |v| 6= []

8v 2 vs2. ` v : r ^ |v| = []

len (vs1 @ vs2) = n

` Stars (vs1 @ vs2) : r
{n..}

8v 2 vs. ` v : r ^ |v| 6= []

len vs > n

` Stars vs : r{n..}

Note that these two rules “collapse” in case n = 0 to just the single rule given
for r⇤ in Definition 6. We have similar rules for the between-nm-times operator.
These rules ensure that our definition for sets lexical values LV r s is still finite
and also fits with the ordering given by Okui and Suzuki (which require minimal
values over the sets LV r s).

Fortunately, the other definition extend “smoother” to bounded repetitions.
For example the rules for derivatives are:

71

3.3. Extensions

r{n}\c def
= if n = 0 then 0 else (r\c) · r{n�1}

r{..n}\c def
= if n = 0 then 0 else (r\c) · r{..n�1}

r{n..}\c def
= if n = 0 then (r\c) · r⇤ else (r\c) · r{n�1..}

r{n..m}\c def
= if m < n then 0

else if n = 0 then
if m = 0 then 0 else (r\c) · r{..m�1}

else (r\c) · r{n�1..m�1}

For mkeps we need to generate the shortest list of values we can get “away with”.
This means for example in the case r{..n} we can return the empty list, like for
stars. In the other cases we have to generate a list of exactly n copies of the
mkeps-value, because n is the smallest number of repetitions.

mkeps (r{..n}) def
= Stars []

mkeps (r{n}) def
= Stars (replicate n (mkeps r))

mkeps (r{n..}) def
= Stars (replicate n (mkeps r))

mkeps (r{n..m})
def
= Stars (replicate n (mkeps r))

In this definition we use Isabelle’s replicate-function in order to generate a list
of n copies of a value. The injection function also extends straightforwardly to
the bounded regular expressions as follows:

inj (r{n}) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

inj (r{n..}) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

inj (r{..n}) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

inj (r{n..m}) c (Seq v (Stars vs)) def
= Stars (inj r c v :: vs)

Similarly our POSIX definition can be easily extended to the additional construc-
tors. For example for r{n} we have two rules:

8v 2 vs. ([], r) ! v len vs = n

([], r{n}) ! Stars vs

(s1, r) ! v (s2, r
{n�1}) ! Stars vs |v| 6= [] 0 < n

@s3 s4. s3 6= [] ^ s3@s4 = s2 ^ s1@s3 2 L(r) ^ s4 2 L(r{n�1})

(s1@s2, r
{n}) ! Stars (v :: vs)

The first rule deals with the case when an empty string needs to be recognised.
The second when the string is non-empty. In this case the “initial segment” must

72

3.4. Summary and Future Work

match non-empty strings only. The idea behind this formulation is to avoid situa-
tions where an earlier value matches the empty string, while it is actually possible
to “nibble away” some parts of the string. The rules for the other bounded regu-
lar expressions are similar. We shall omit them. With these definitions in place,
our proofs given in the previous sections extend to the bounded repetitions. The
main point is that there are no surprises.

Unfortunately, in our formal proofs we need to give the proofs all over again
in a separate theory, since there is no way of making Isabelle to accept proofs for
the basic regular expressions (defined as inductive datatype) and then augment-
ing the datatype with new constructors. This would be a really “cool” feature for
Isabelle, but we have no idea how this could be achieve without too much effort.
Unfortunately, what is also not known is what a “complete” set of simplification
rules should be for bounded repetitions. It seems with the derivatives we have
given earlier, the regular expressions are prone to a linear growth in size. It seems
what is needed is that bounded repetition need to be “compactified”. For example
if one has instances of r{n} and r{n�1} inside an alternative regular expression—
in such cases, it seems, we need to replace them with r{n�1..n} in order to keep
the size of derivatives “small” and thus make the algorithm efficient.

3.4 Summary and Future Work

We set out in this work to implement in Isabelle/HOL the lexing algorithm by
Sulzmann and Lu and formalise the extensive “pencil-and-paper” notes given by
them for establishing the correctness of their algorithm [53]. In our opinion, the
extension of Brzozowski’s matching algorithm by a second phase that generates
a POSIX value for how a regular expression matched a string is really clever
and beautiful. The hope was that the formalisation of the extension would be
similarly simple as the formalisation of the correctness for Brzozowski’s reg-
ular expression matching algorithm from 1964 [15]. We were therefore rather
surprised, even dumbstruck, that no matter what we attempted, the arguments
Sulzmann and Lu did not enable us to make any progress with a formalisation in
Isabelle/HOL. We have (on and off) explored mechanisations as soon as first ver-
sions of [53] appeared, but made little or no progress with turning the relatively
detailed proof sketches in [53] into a formalised proof. Having seen the work
by Vansummeren [58] and adapting his POSIX definition for the algorithm by
Sulzmann and Lu made all the difference: the proofs then were nearly straight-

73

3.4. Summary and Future Work

forward. We also appreciate very much the work by Okui and Suzuki [41] which
allowed us to gain more confidence that our definition really captures the “spirit”
of the informal POSIX rules. There are also alternative definitions which capture
the informal rules in a distinct way, for example [8]. Our Isabelle/HOL code is
available from

https://github.com/fahadausaf/POSIX-Parsing

The results from Chapter 1, as well as from Sections 2.1 and 3.1 are also in the
Archive of Formal Proofs of Isabelle.5

Having proved the correctness of the POSIX lexing algorithm in [53], which
lessons have we learned? Well, we feel this is a perfect example for the impor-
tance of the right definitions and formalised proofs. Our proofs were done both
done by hand and checked in Isabelle/HOL. The experience of doing our proofs
in this way has been that the mechanical checking was absolutely essential: de-
spite the apparent maturity, this subject area has hidden snares. If we had only
relied on “pencil-and-paper” proofs we would have also been overwhelmed with
faulty reasoning—in particular in one instance, only the formalisation saved us
from serious errors and wrong statements.

There are many avenues for future research. The most ambitious research
goal would be, in our opinion, to make progress with back-references and deriva-
tive based regular expression matching. Back-references seem indispensable in
application, such as Snort and Bro. While the overall (matching) problem is then
NP-complete, users who employ back-references are clearly not interested in the
full generality of the problem. Rather they seem to be interested in subproblems
that can be solved efficiently. Alas nothing is known about how to restrict the
problem using the derivatives approach, or any other approach for that matter.
Moreover, given the example by Aho [3] for establishing the NP-completeness,
it seems challenging to make any progress soon.

More feasible seems to be to make progress with the bitcoded algorithm and
finding a set of simplification rules that keep the sizes of derivatives small (with
some appropriate definition what “small” means). Our conjecture is that one
needs to mimic with simplification rules the partial derivatives for regular ex-
pression introduced by Antimirov [5]. He established an upper bound for how
much partial derivatives can grow in terms of the size of the regular expression,

5
https://www.isa-afp.org/entries/Posix-Lexing.html

74

3.4. Summary and Future Work

but is independent from the length of strings. The idea would be to adapt his
bound to the case of “standard” derivatives by having rather “aggressive” sim-
plification rules. The ones described in Section 3.1 are clearly not aggressive
enough in order to obtain such an upper bound.

However, there seem to be also a number of rather low-hanging fruits that
can be investigated in order to make the Sulzmann and Lu algorithm faster. For
example Murugesan and Shanmuga Sundaram describe an idea that the usual
derivative operation, which iterates the derivative character-by-character, can be
defined bigger “chunks” [40]. For example if we want to calculate (r1 + r2)\s
we can immediately replace this by (r1\s) + (r2\s) rather that having to iterate
the derivative character-by-character, as in Definition 5, in order to obtain the
same result. They also give some details about how to do this for sequence
and star regular expressions, but whether they improve efficiency remains to be
seen. However, it would be interesting to see if such an idea can also be made
to work with the injection function by Sulzmann and Lu, which also just iterates
the injection character-by-character (at least for alternative regular expressions).
Alas due to time constraints we were not able to consider this. Similarly we were
not able to fully work out the details of the not-derivative from [43]. This should
be relatively straightforward (the only real change would be to have to define the
inhabitation relation as recursive function, rather than as inductive predicate).

Another area of interest is to short-circuit the lexing algorithm outlined in
Section 3.3 using record regular expressions and record values. Since in a lexer
one is only interested in the token sequence, it seems overkill to calculate the
complete value first and then extract the token sequence from the calculated
value. In our opinion there must be a way to calculate the token sequence more
directly without the detour of calculating the value first. We leave all these ques-
tions as further work.

75

Part II

TLS Message Parsers

76

Bibliography

[1] https://regex101.com.

[2] The open group base specification issue 6 ieee std 1003.1 2004 edi-
tion. http://pubs.opengroup.org/olinepubs/009695399/
basedefs/xbd_chap09.html, 2004.

[3] A. V. Aho. Algorithms for Finding Patterns in Strings. In J. van Leeuwen,
editor, Algorithms and Complexity, Handbook of Theoretical Computer
Science, pages 255–300. Elsevier, 1990.

[4] J. B. Almeida, N. Moriera, D. Pereira, and S. M. de Sousa. Partial Deriva-
tive Automata Formalized in Coq. In Proc. of the 15th International Con-
ference on Implementation and Application of Automata (CIAA), volume
6482 of LNCS, pages 59–68, 2010.

[5] V. Antimirov. Partial Derivatives of Regular Expressions and Finite Au-
tomata Constructions. Theoretical Computer Science, 155:291–319, 1995.

[6] F. Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives
of Regular Expressions (Proof Pearl). In Proc. of the 7th International
Conference on Interactive Theorem Proving (ITP), volume 9807 of LNCS,
pages 69–86, 2016.

[7] M. Becchi and P. Crowley. Extending Finite Automata to Efficiently Match
Perl-compatible Regular Expressions. In Proceedings of the 2008 ACM
CoNEXT Conference, pages 25:1–25:12. ACM, 2008.

[8] M. Berglund, W. Bester, and B. van der Merwe. Formalising Boost POSIX
Regular Expression Matching. Accepted for publication at ICTAC’18.

[9] M. Berglund, F. Drewes, and B. van der Merwe. Analyzing Catastrophic
Backtracking Behavior in Practical Regular Expression Matching. In

107

Bibliography

Proc. of the 14th International Conference on Automata and Formal Lan-
guages, pages 109–123. Springer Verlag, 2014.

[10] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud,
Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub,
and Jean Karim Zinzindohoue. A messy state of the union: Taming the
composite state machines of tls. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 535–552. IEEE, 2015.

[11] M. Bezem, J.W. Klop, and R. de Vrijer. Term Rewriting Systems. Cam-
bridge Tracts in Theoretica. Cambridge University Press, 2003.

[12] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub. Imple-
menting TLS with Verified Cryptographic Security. In Security and Privacy
(SP), 2013 IEEE Symposium on, pages 445–459. IEEE, 2013.

[13] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P. Y. Strub, and
S. Zanella-Béguelin. Proving the TLS Handshake Secure (as it is). In
International Cryptology Conference, pages 235–255. Springer, 2014.

[14] W. Bokslag. The Problem of Popular Primes: Logjam. arXiv preprint
arXiv:1602.02396, 2016.

[15] J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM,
11(4):481–494, 1964.

[16] C. Campeanu, K. Salomaa, and S. Yu. A Formal Study of Practical Regular
Expressions. International Journal of Foundations of Computer Science,
14:1007–1018, 2003.

[17] G. Carlucci, L. De Cicco, and S. Mascolo. HTTP over UDP: an Exper-
imental Investigation of QUIC. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing, pages 609–614. ACM, 2015.

[18] P. Caron, J.-M. Champarnaud, and L. Mignot. A General Framework for
the Derivation of Regular Expressions. RAIRO - Theoretical Informatics
and Applications, 48(3):281–305, 2014.

[19] H. Chen and S. Yu. Derivatives of Regular Expressions and an Application.
In Proc. in the International Workshop on Theoretical Computer Science
(WTCS), volume 7160 of LNCS, pages 343–356, 2012.

108

Bibliography

[20] T. Coquand and V. Siles. A Decision Procedure for Regular Expression
Equivalence in Type Theory. In Proc. of the 1st Conference on Certified
Programs and Proofs (CPP), volume 7086 of LNCS, pages 119–134, 2011.

[21] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, N. Swamy,
and S. Zanella-Beguelin. Towards a Provably Secure Implementation of
TLS 1.3. July 2016.

[22] C. Doczkal, J.-O. Kaiser, and G. Smolka. A Constructive Theory of Regular
Languages in Coq. In Proc. of the International Conference on Certified
Programs and Proofs, volume 8307, pages 82–97. Springer, 2013.

[23] A. Frisch and L. Cardelli. Greedy Regular Expression Matching. In Proc. of
the 31st International Conference on Automata, Languages and Program-
ming (ICALP), volume 3142 of LNCS, pages 618–629, 2004.

[24] J. Goyvaerts. Regular Expressions Cookbook: Detailed Solutions in Eight
Programming Languages. O’Reilly Media, 2012.

[25] N. B. B. Grathwohl, F. Henglein, and U. T. Rasmussen. A Crash-Course in
Regular Expression Parsing and Regular Expressions as Types. Technical
report, University of Copenhagen, 2014.

[26] J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relation to
Automata. Addison-Wesley, 1969.

[27] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular Expression Types
for XML. ACM Transactions on Programming Languages and Systems
(TOPLAS), 27(1):46–90, 2005.

[28] IETF.org. The transport layer security protocol version 1.2.

[29] J. Kirrage, A. Rathnayake, and H. Thielecke. Static Analysis for Regular
Expression Denial-of-Service Attacks. In In Proc. of the International Con-
ference on Network and System Security, pages 135–148. Springer Verlag,
2013.

[30] S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata.
Annals of Mathematics Studies, 34:3–41, 1951.

[31] D. Kozen. Automata and Computability. Springer Verlag, 1997.

109

Bibliography

[32] A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence
and Relation Algebra. Journal of Automated Reasoning, 49:95–106, 2012.

[33] N. R. Krishnaswami and J. Yallop. A Typed, Algebraic Approach to Pars-
ing. unpublished.

[34] C. Kuklewicz. Regex Posix. https://wiki.haskell.org/

Regex_Posix.

[35] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,
F. Kouranov, I. Swett, J. Iyengar, et al. The QUIC Transport Protocol:
Design and Internet-Scale Deployment. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, pages 183–
196. ACM, 2017.

[36] J. Lawall, B. Laurie, R. R. Hansen, N. Palix, and G. Muller. Finding Error
Handling Bugs in OpenSSL using Coccinelle. In Dependable Computing
Conference (EDCC), 2010 European, pages 191–196. IEEE, 2010.

[37] P. Libič, L. Bulej, V. Horký, and P. Tůma. Estimating the Impact of Code
Additions on Garbage Collection Overhead. In M. Beltrán, W. Knottenbelt,
and J. Bradley, editors, Computer Performance Engineering, pages 130–
145, Cham, 2015. Springer International Publishing.

[38] F. McNaughton and H. Yamada. Regular expressions and state graphs for
automata. EC-9:39–47, 1960.

[39] P. Morrissey, N. P. Smart, and B. Warinschi. A Modular Security Analysis
of the TLS Handshake Protocol. In International Conference on the The-
ory and Application of Cryptology and Information Security, pages 55–73.
Springer, 2008.

[40] N. Murugesan and O. V. Shanmuga Sundaram. Some Properties of Brzo-
zowski Derivatives of Regular Expressions. International Journal of Com-
puter Trends and Technology, 13(1):29–33, 2014.

[41] S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching
via Position Automata with Augmented Transitions. In Proc. of the 15th
International Conference on Implementation and Application of Automata
(CIAA), volume 6482 of LNCS, pages 231–240, 2010.

110

Bibliography

[42] S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching
via Position Automata with Augmented Transitions. Technical report, Uni-
versity of Aizu, 2013.

[43] S. Owens, J. H. Reppy, and A. Turon. Regular-Expression Derivatives Re-
Examined. Journal of Functional Programming, 19(2):173–190, 2009.

[44] S. Owens and K. Slind. Adapting Functional Programs to Higher Order
Logic. Higher-Order and Symbolic Computation, 21(4):377–409, 2008.

[45] L. C. Paulson. A Formalisation of Finite Automata Using Hereditarily Fi-
nite Sets. In Proc. of the 25th International Conference on Automated De-
duction (CADE), volume 9195 of LNAI, pages 231–245, 2015.

[46] V. Paxson. Bro. https://www.bro.org, 1994–2018.

[47] T. Reps. “Maximal-Munch” Tokenization in Linear Time. ACM Transac-
tion of Programming Language Systems, 20(2):259–273, 1998.

[48] R. Ribeiro and A. Du Bois. Certified Bit-Coded Regular Expression Pars-
ing. In Proceedings of the 21st Brazilian Symposium on Programming Lan-
guages, SBLP 2017, pages 4:1–4:8. ACM, 2017.

[49] M. Roesch. Snort. https://www.snort.org, 1998–2018.

[50] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009.

[51] J. Shallit. A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, 2008.

[52] P. Sirohi, A. Agarwal, and S. Tyagi. A Comprehensive Study on Security
Attacks on the SSL/TLS Protocol. In Next Generation Computing Tech-
nologies (NGCT), 2016 2nd International Conference on, pages 893–898.
IEEE, 2016.

[53] M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Deriva-
tives. In Proc. of the 12th International Conference on Functional and
Logic Programming (FLOPS), volume 8475 of LNCS, pages 203–220,
2014.

111

Bibliography

[54] M. Sulzmann and P.V. Steenhoven. A Flexible and Efficient ML Lexer Tool
Based on Extended Regular Expression Submatching. Compiler Construc-
tion, pages 174–191, 2014.

[55] M. Sulzmann and P. Thiemann. Derivatives for Regular Shuffle Expres-
sions. In Proc. of the 9th International Conference on Language and Au-
tomata Theory and Applications (LATA), volume 8977 of LNCS, pages
275–286, 2015.

[56] K. Thompson. Programming Techniques: Regular Expression Search Al-
gorithm. Communications of the ACM, 11(6):419–422, 1968.

[57] D. Traytel and T. Nipkow. A Verified Decision Procedure for MSO on
Words Based on Derivatives of Regular Expressions. In Proc. of the
18th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP), pages 3–12, 2013.

[58] S. Vansummeren. Type Inference for Unique Pattern Matching. ACM
Transactions on Programming Languages and Systems, 28(3):389–428,
2006.

[59] N. Weideman, B. van der Merwe, M. Berglund, and B. Watson. Analyzing
Matching Time Behavior of Backtracking Regular Expression Matchers
by Using Ambiguity of NFA. In In Proc. of the International Conference
on Implementation and Application of Automata, pages 322–334. Springer
Verlag, 2016.

[60] C. Wu, X. Zhang, and C. Urban. A Formalisation of the Myhill-Nerode
Theorem based on Regular Expressions. Journal of Automatic Reasoning,
52(4):451–480, 2014.

112

