POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Fahad Ausaf, Roy Dyckhoff and Christian Urban

King's College London, University of St Andrews

Brzozowski's Derivatives of Regular Expressions

Idea: If r matches the string c::s, what is a regular expression that matches just s?

def 0 chars: **0***c* $\stackrel{\text{def}}{=}$ 0 **1***c* $d \setminus c \stackrel{\text{def}}{=}$ if d = c then **1** else **0** $r_1 + r_2 \setminus c \stackrel{\text{def}}{=} r_1 \setminus c + r_2 \setminus c$ $r_1 \cdot r_2 \setminus c \stackrel{\text{def}}{=} if nullable r_1$ then $r_1 \setminus c \cdot r_2 + r_2 \setminus c$ else $r_1 \setminus c \cdot r_2$ $\stackrel{\mathsf{def}}{=} r \backslash c \cdot r^*$ $r^* \setminus c$ strings: $r \mid []$ $\stackrel{\text{def}}{=} r$ $r \mid c :: s$ $\stackrel{\text{def}}{=} (r \mid c) \mid s$

$$r_1 \longrightarrow r_2 \longrightarrow r_3 \longrightarrow r_4$$
 nullable?

< ∃ →

$$r_1 \longrightarrow r_2 \longrightarrow r_3 \longrightarrow r_4$$
 nullable?

It leads to an elegant functional program:

$$matches(r, s) \stackrel{\text{def}}{=} nullable(r \setminus s)$$

$$r_1 \longrightarrow r_2 \longrightarrow r_3 \longrightarrow r_4$$
 nullable?

It leads to an elegant functional program:

$$matches(r, s) \stackrel{\text{def}}{=} nullable(r \setminus s)$$

It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches(r, s) if and only if $s \in L(r)$

$$r_1 \longrightarrow r_2 \longrightarrow r_3 \longrightarrow r_4$$
 nullable?

It leads to an elegant functional program:

$$matches(r, s) \stackrel{\text{def}}{=} nullable(r \setminus s)$$

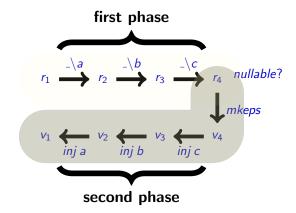
It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches(r, s) if and only if $s \in L(r)$

But Brzozowski's matcher gives only a yes/no-answer.

Sulzmann and Lu's Matcher

Sulzmann and Lu added a second phase in order to answer **how** the regular expression matched the string.



There are several possible answers for how: POSIX, GREEDY, ...

Longest Match Rule: The longest initial substring matched by any regular expression is taken as the next token.

Rule Priority: For a particular longest initial substring, the first regular expression that can match determines the token.

For example: $r_{keywords} + r_{identifiers}$ (fix graphics below)

iffoo_bla

if_bla

Grathwohl, Henglein and Rasmussen wrote:

"The POSIX strategy is more complicated than the greedy because of the dependence on information about the length of matched strings in the various subexpressions."

Also Kuklewicz maintains a unit-test repository for POSIX matching, which indicates that most POSIX mathcers are buggy.

http://www.haskell.org/haskellwiki/Regex_Posix

Regular expressions and their corresponding values (for how a regular expression matched string):

$$r_1 \xrightarrow{der a} r_2$$

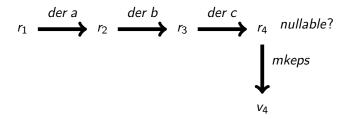
$$r_1 \xrightarrow{der a} r_2 \xrightarrow{der b} r_3$$

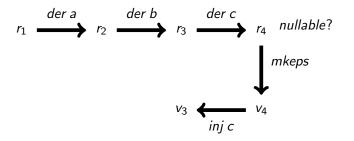
$$r_1 \xrightarrow{der a} r_2 \xrightarrow{der b} r_3 \xrightarrow{der c} r_4$$

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

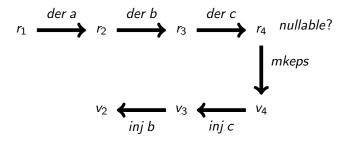
$$r_1 \xrightarrow{der a} r_2 \xrightarrow{der b} r_3 \xrightarrow{der c} r_4$$
 nullable?

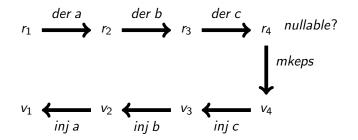
◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

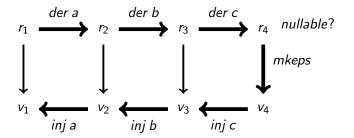




◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで







def

Nullable Function

nullable (0)	det =	False
nullable (1)	$\stackrel{def}{=}$	True
nullable (c)	$\stackrel{def}{=}$	False
nullable $(r_1 + r_2)$	$\stackrel{def}{=}$	nullat
$nullable (r_1 \cdot r_2)$	$\stackrel{def}{=}$	nullal
nullable (r*)	$\stackrel{def}{=}$	True
		mae

True
False
nullable
$$r_1 \lor$$
 nullable r_2
nullable $r_1 \land$ nullable r_2
True

Mkeps Function

mkeps (r*)

 $\begin{array}{ll} mkeps \ (\mathbf{1}) & \stackrel{\text{def}}{=} \\ mkeps \ (r_1 \cdot r_2) & \stackrel{\text{def}}{=} \\ mkeps \ (r_1 + r_2) & \stackrel{\text{def}}{=} \end{array}$

Injection Function

inj d c () inj ($r_1 + r_2$) c (Left v_1) inj ($r_1 + r_2$) c (Right v_2) inj ($r_1 \cdot r_2$) c (Seq $v_1 v_2$) inj ($r_1 \cdot r_2$) c (Left (Seq $v_1 v_2$)) inj ($r_1 \cdot r_2$) c (Right v_2) inj (r^*) c (Seq v (Stars vs)) $\begin{array}{ll} \stackrel{\text{def}}{=} & Char \ d \\ \stackrel{\text{def}}{=} & Left \ (inj \ r_1 \ c \ v_1) \\ \stackrel{\text{def}}{=} & Right \ (inj \ r_2 \ c \ v_2) \\ \stackrel{\text{def}}{=} & Seq \ (inj \ r_1 \ c \ v_1) \ v_2 \\ \stackrel{\text{def}}{=} & Seq \ (inj \ r_1 \ c \ v_1) \ v_2 \\ \stackrel{\text{def}}{=} & Seq \ (mkeps \ r_1) \ (inj \ r_2 \ c \ v_2) \\ \stackrel{\text{def}}{=} & Stars \ (inj \ r \ c \ v::vs) \end{array}$

POSIX Ordering Relation by Sulzmann & Lu

- Introduce an inductive defined ordering relation $v \succ_r v'$ which captures the idea of POSIX matching.
- The algorithm returns the maximum of all possible values that are possible for a regular expression.
- The idea is from a paper by Frisch & Cardelli about GREEDY matching (GREEDY = preferring instant gratification to delayed repletion):

■ e.g. given
$$(a + (b + ab))^*$$
 and string ab

GREEDY: [Left(a), Right(Left(b))] POSIX: [Right(Right(Seq(a, b)))]

伺下 イヨト イヨト

POSIX Ordering Relation by Sulzmann & Lu

$$\overline{\vdash Empty : \epsilon} \qquad \overline{\vdash Char(c) : c}$$

$$\frac{\vdash v_1 : r_1 \qquad \vdash v_2 : r_2}{\vdash Seq(v_1, v_2) : r_1 \cdot r_2}$$

$$\frac{\vdash v : r_1}{\vdash Left(v) : r_1 + r_2} \qquad \frac{\vdash v : r_2}{\vdash Right(v) : r_1 + r_2}$$

$$\frac{\vdash v_1 : r \qquad \dots \vdash v_n : r}{\vdash [v_1, \dots, v_n] : r^*}$$

回 と く ヨ と く ヨ と

- Sulzmann: ... Let's assume v is not a POSIX value, then there must be another one ... contradiction.
- Exists ?

$$L(r) \neq \emptyset \Rightarrow \exists v. POSIX(v, r)$$

• In the sequence case $Seq(v_1, v_2) \succ_{r_1 \cdot r_2} Seq(v'_1, v'_2)$, the induction hypotheses require $|v_1| = |v'_1|$ and $|v_2| = |v'_2|$, but you only know

$$|v_1|@|v_2| = |v_1'|@|v_2'|$$

 Although one begins with the assumption that the two values have the same flattening, this cannot be maintained as one descends into the induction (alternative, sequence)

伺い イラト イラト

I have no doubt the algorithm is correct — the problem is I do not believe their proof.

"How could I miss this? Well, I was rather careless when stating this Lemma :)

Great example how formal machine checked proofs (and proof assistants) can help to spot flawed reasoning steps."

"Well, I don't think there's any flaw. The issue is how to come up with a mechanical proof. In my world mathematical proof = mechanical proof doesn't necessarily hold."

• A direct definition of what a POSIX value is, using the relation $s \in r \rightarrow v$ (specification)

伺 ト イヨト イヨト

э

Properties

It is almost trival to prove:

Uniqueness

If
$$s \in r \rightarrow v_1$$
 and $s \in r \rightarrow v_2$ then $v_1 = v_2$

Correctness

$$lexer(r,s) = v$$
 if and only if $s \in r \rightarrow v$

< ∃ →

э

Properties

It is almost trival to prove:

Uniqueness

If
$$s \in r \rightarrow v_1$$
 and $s \in r \rightarrow v_2$ then $v_1 = v_2$

Correctness

$$lexer(r,s) = v$$
 if and only if $s \in r \rightarrow v$

You can now start to implement optimisations and derive correctness proofs for them. But we still do not know whether

$$s \in r \rightarrow v$$

is a POSIX value according to Sulzmann & Lu's definition (biggest value for s and r)

- We replaced the POSIX definition of Sulzmann & Lu by a new definition (ours is inspired by work of Vansummeren, 2006)
- Their proof contained small gaps (acknowledged) but had also fundamental flaws
- Now, its a nice exercise for theorem proving
- Some optimisations need to be applied to the algorithm in order to become fast enough
- Can be used for lexing, is a small beautiful functional program