
POSIX Lexing with
Derivatives of Regular Expressions

(Proof Pearl)

Fahad Ausaf, Roy Dyckhoff and Christian Urban

King’s College London, University of St Andrews

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Brzozowski’s Derivatives of Regular Expressions

Idea: If r matches the string c ::s, what is a regular expression that
matches just s?

chars: 0\c def
= 0

1\c def
= 0

d\c def
= if d = c then 1 else 0

r1 + r2\c
def
= r1\c + r2\c

r1 · r2\c
def
= if nullable r1

then r1\c · r2 + r2\c else r1\c · r2
r∗\c def

= r\c · r∗

strings: r\[] def
= r

r\c ::s
def
= (r\c)\s

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Brzozowski’s Matcher

Does r1 match string abc?

r1 r2
\a

r3
\b

r4
\c

nullable?

It leads to an elegant functional program:

matches (r , s)
def
= nullable (r\s)

It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches (r , s) if and only if s ∈ L(r)

But Brzozowski’s matcher gives only a yes/no-answer.

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Brzozowski’s Matcher

Does r1 match string abc?

r1 r2
\a

r3
\b

r4
\c

nullable?

It leads to an elegant functional program:

matches (r , s)
def
= nullable (r\s)

It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches (r , s) if and only if s ∈ L(r)

But Brzozowski’s matcher gives only a yes/no-answer.

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Brzozowski’s Matcher

Does r1 match string abc?

r1 r2
\a

r3
\b

r4
\c

nullable?

It leads to an elegant functional program:

matches (r , s)
def
= nullable (r\s)

It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches (r , s) if and only if s ∈ L(r)

But Brzozowski’s matcher gives only a yes/no-answer.

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Brzozowski’s Matcher

Does r1 match string abc?

r1 r2
\a

r3
\b

r4
\c

nullable?

It leads to an elegant functional program:

matches (r , s)
def
= nullable (r\s)

It is an easy exercise to formally prove (e.g. Coq, HOL, Isabelle):

matches (r , s) if and only if s ∈ L(r)

But Brzozowski’s matcher gives only a yes/no-answer.

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Sulzmann and Lu’s Matcher

Sulzmann and Lu added a second phase in order to answer how
the regular expression matched the string.

r1 r2
\a

r3
\b

r4
\c

nullable?

v4v3

inj c
v2

inj b
v1

inj a

mkeps

first phase

second phase

There are several possible answers for how: POSIX, GREEDY, . . .

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

POSIX Matching (needed for Lexing)

Longest Match Rule: The longest initial substring matched
by any regular expression is taken as the next token.

Rule Priority: For a particular longest initial substring, the
first regular expression that can match determines the token.

For example: rkeywords + ridentifiers (fix graphics below)

iffoo bla

if bla

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Problems with POSIX

Grathwohl, Henglein and Rasmussen wrote:

“The POSIX strategy is more complicated than the greedy
because of the dependence on information about the length of
matched strings in the various subexpressions.”

Also Kuklewicz maintains a unit-test repository for POSIX
matching, which indicates that most POSIX mathcers are buggy.

http://www.haskell.org/haskellwiki/Regex_Posix

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

http://www.haskell.org/haskellwiki/Regex_Posix

Regular Expressions and Values

Regular expressions and their corresponding values (for how a
regular expression matched string):

r ::= ∅
| ε
| c
| r1 · r2
| r1 + r2
| r∗

v ::= ∅
| Empty
| Char(c)
| Seq(v1.v2)
| Left(v)
| Right(v)
| []
| [v1, ..., vn]

There is also a notion of a string behind a value | v |

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4

mkeps

v3

inj c

v2

inj b

v1

inj a

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4

mkeps

v3

inj c

v2

inj b

v1

inj a

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4

mkeps

v3

inj c

v2

inj b

v1

inj a

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4

mkeps

v3

inj c

v2

inj b

v1

inj a

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4

mkeps

v3

inj c

v2

inj b

v1

inj a

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4

mkeps

v3

inj c

v2

inj b

v1

inj a

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4

mkeps

v3

inj c

v2

inj b

v1

inj a

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4

mkeps

v3

inj c

v2

inj b

v1

inj a

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Sulzmann and Lu Matcher

We want to match the string abc using r1

r1 r2
der a

r3
der b

r4
der c

nullable?

v4

mkeps

v3

inj c

v2

inj b

v1

inj a

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Nullable, Mkeps and Injection Functions

Nullable Function
nullable (0)

def
= False

nullable (1)
def
= True

nullable (c)
def
= False

nullable (r1 + r2)
def
= nullable r1 ∨ nullable r2

nullable (r1 · r2)
def
= nullable r1 ∧ nullable r2

nullable (r∗)
def
= True

Mkeps Function

mkeps (1)
def
= ()

mkeps (r1 · r2)
def
= Seq (mkeps r1) (mkeps r2)

mkeps (r1 + r2)
def
= if nullable r1 then Left (mkeps r1)

else Right (mkeps r2)

mkeps (r∗)
def
= Stars []

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Nullable, Mkeps and Injection Functions

Injection Function

inj d c ()
def
= Char d

inj (r1 + r2) c (Left v1)
def
= Left (inj r1 c v1)

inj (r1 + r2) c (Right v2)
def
= Right (inj r2 c v2)

inj (r1 · r2) c (Seq v1 v2)
def
= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Left (Seq v1 v2))
def
= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Right v2)
def
= Seq (mkeps r1) (inj r2 c v2)

inj (r∗) c (Seq v (Stars vs))
def
= Stars (inj r c v ::vs)

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

POSIX Ordering Relation by Sulzmann & Lu

Introduce an inductive defined ordering relation v �r v
′ which

captures the idea of POSIX matching.

The algorithm returns the maximum of all possible values that
are possible for a regular expression.

The idea is from a paper by Frisch & Cardelli about GREEDY
matching (GREEDY = preferring instant gratification to
delayed repletion):

e.g. given (a + (b + ab))∗ and string ab

GREEDY: [Left(a),Right(Left(b))]
POSIX: [Right(Right(Seq(a, b)))]

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

POSIX Ordering Relation by Sulzmann & Lu

` Empty : ε ` Char(c) : c

` v1 : r1 ` v2 : r2
` Seq(v1, v2) : r1 · r2

` v : r1
` Left(v) : r1 + r2

` v : r2
` Right(v) : r1 + r2

` [] : r∗
` v1 : r . . . ` vn : r

` [v1, . . . , vn] : r∗

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Problems

Sulzmann: . . . Let’s assume v is not a POSIX value, then
there must be another one . . . contradiction.

Exists ?

L(r) 6= ∅ ⇒ ∃v . POSIX (v , r)

In the sequence case Seq(v1, v2) �r1·r2 Seq(v ′1, v
′
2), the

induction hypotheses require |v1| = |v ′1| and |v2| = |v ′2|, but
you only know

|v1|@|v2| = |v ′1|@|v ′2|

Although one begins with the assumption that the two values
have the same flattening, this cannot be maintained as one
descends into the induction (alternative, sequence)

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Problems

I have no doubt the algorithm is correct — the problem is I do
not believe their proof.

“How could I miss this? Well, I was rather careless when stating
this Lemma :)

Great example how formal machine checked proofs (and proof
assistants) can help to spot flawed reasoning steps.”

“Well, I don’t think there’s any flaw. The issue is how to come up
with a mechanical proof. In my world mathematical proof =

mechanical proof doesn’t necessarily hold.”

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Our Solution

A direct definition of what a POSIX value is, using the
relation s ∈ r → v (specification)

[] ∈ ε→ Empty c ∈ c → Char(c)

s ∈ r1 → v

s ∈ r1 + r2 → Left(v)

s ∈ r2 → v s 6∈ L(r1)

s ∈ r1 + r2 → Right(v)

s1 ∈ r1 → v1

s2 ∈ r2 → v2

¬(∃s3 s4. s3 6= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L(r1) ∧ s4 ∈ L(r2))

s1@s2 ∈ r1 · r2 → Seq(v1, v2)

...

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Properties

It is almost trival to prove:

Uniqueness

If s ∈ r → v1 and s ∈ r → v2 then v1 = v2

Correctness

lexer(r , s) = v if and only if s ∈ r → v

You can now start to implement optimisations and derive
correctness proofs for them. But we still do not know whether

s ∈ r → v

is a POSIX value according to Sulzmann & Lu’s definition (biggest
value for s and r)

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Properties

It is almost trival to prove:

Uniqueness

If s ∈ r → v1 and s ∈ r → v2 then v1 = v2

Correctness

lexer(r , s) = v if and only if s ∈ r → v

You can now start to implement optimisations and derive
correctness proofs for them. But we still do not know whether

s ∈ r → v

is a POSIX value according to Sulzmann & Lu’s definition (biggest
value for s and r)

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

Conclusions

We replaced the POSIX definition of Sulzmann & Lu by a new
definition (ours is inspired by work of Vansummeren, 2006)

Their proof contained small gaps (acknowledged) but had also
fundamental flaws

Now, its a nice exercise for theorem proving

Some optimisations need to be applied to the algorithm in
order to become fast enough

Can be used for lexing, is a small beautiful functional program

Fahad Ausaf, Roy Dyckhoff and Christian Urban POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl)

