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Regular Expressions
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r ::= ∅ null
| ϵ empty string
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)



The Derivative of a Rexp

If r matches the string c :: s, what is a
regular expression that matches just s?

der c r gives the answer, Brzozowski (1964), Owens (2005)
“…have been lost in the sands of time…”
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Correctness

It is a relative easy exercise in a theorem prover:

matches(r, s) if and only if s ∈ L(r)

where matches(r, s) def
= nullable(ders(r, s))
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POSIX Regex Matching
Two rules:
Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

i f f o o b l a

Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

i f b l a

Kuklewicz: most POSIX matchers are buggy
http://www.haskell.org/haskellwiki/Regex_Posix
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POSIX Regex Matching
Sulzmann & Lu came up with a beautiful idea for
how to extend the simple regular expression
matcher to POSIX matching/lexing (FLOPS
2014)

Martin Sulzmann

the idea: define an inverse operation to the
derivatives
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Regexes and Values
Regular expressions and their corresponding
values (for how a regular expression matched a
string):

r ::= ∅
| ϵ
| c
| r1 · r2
| r1 + r2

| r∗

v ::=
Empty

| Char(c)
| Seq(v1, v2)
| Left(v)
| Right(v)
| []
| [v1, . . . vn]

There is also a notion of a string behind a value: |v|
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Sulzmann & Lu Matcher

We want to match the string abc using r1:

r1 r2
der a

r3
der b r4

der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps
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Sulzmann & Lu Matcher
We want to match the string abc using r1:

r1 r2
der a r3

der b r4
der c nullable?

v4v3
inj c

v2
inj b

v1
inj a

mkeps

The original ideas of Sulzmann and Lu are the
mkeps and inj functions (ommitted here).
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Sulzmann & Lu Paper
I have no doubt the algorithm is correct — the
problem is I do not believe their proof.

“How could I miss this? Well, I was rather careless
when stating this Lemma :)
Great example how formal machine checked proofs
(and proof assistants) can help to spot flawed reasoning
steps.”

“Well, I don’t think there’s any flaw. The issue is how to
come up with a mechanical proof. In my world
mathematical proof = mechanical proof doesn’t
necessarily hold.”

ITP ???? – p. 9/17



Sulzmann & Lu Paper
I have no doubt the algorithm is correct — the
problem is I do not believe their proof.

“How could I miss this? Well, I was rather careless
when stating this Lemma :)
Great example how formal machine checked proofs
(and proof assistants) can help to spot flawed reasoning
steps.”

“Well, I don’t think there’s any flaw. The issue is how to
come up with a mechanical proof. In my world
mathematical proof = mechanical proof doesn’t
necessarily hold.”

ITP ???? – p. 9/17



Sulzmann & Lu Paper
I have no doubt the algorithm is correct — the
problem is I do not believe their proof.

“How could I miss this? Well, I was rather careless
when stating this Lemma :)
Great example how formal machine checked proofs
(and proof assistants) can help to spot flawed reasoning
steps.”

“Well, I don’t think there’s any flaw. The issue is how to
come up with a mechanical proof. In my world
mathematical proof = mechanical proof doesn’t
necessarily hold.”

ITP ???? – p. 9/17



The Proof Idea
by Sulzmann & Lu

introduce an inductively defined ordering relation
v ≻r v′ which captures the idea of POSIX
matching
the algorithm returns the maximum of all possible
values that are possible for a regular expression.

the idea is from a paper by Cardelli & Frisch about
GREEDY matching (GREEDY = preferring instant
gratification to delayed repletion):
e.g. given (a+ (b+ ab))∗ and string ab

GREEDY: [Left(a),Right(Left(b)]
POSIX: [Right(Right(Seq(a, b))))]
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⊢ Empty : ϵ ⊢ Char(c) : c

⊢ v1 : r1 ⊢ v2 : r2
⊢ Seq(v1, v2) : r1 · r2

⊢ v : r1
⊢ Left(v) : r1 + r2

⊢ v : r2
⊢ Right(v) : r1 + r2

⊢ [] : r∗
⊢ v1 : r . . . ⊢ vn : r

⊢ [v1, . . . , vn] : r∗
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Problems
Sulzmann: …Let’s assume v is not a POSIX value,
then there must be another one …contradiction.

Exists?
L(r) ̸= ∅ ⇒ ∃v. POSIX(v, r)

in the sequence case Seq(v1, v2) ≻r1·r2 Seq(v′1, v′2),
the induction hypotheses require |v1| = |v′1| and
|v2| = |v′2|, but you only know

|v1| @ |v2| = |v′1| @ |v′2|
although one begins with the assumption that the two
values have the same flattening, this cannot be maintained
as one descends into the induction (alternative, sequence)
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Our Solution
a direct definition of what a POSIX value is,
using the relation s ∈ r → v (specification):

[] ∈ ϵ → Empty c ∈ c → Char(c)

s ∈ r1 → v
s ∈ r1 + r2 → Left(v)

s ∈ r2 → v s ̸∈ L(r1)

s ∈ r1 + r2 → Right(v)

s1 ∈ r1 → v1
s2 ∈ r2 → v2
¬(∃s3 s4. s3 ̸= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L(r1) ∧ s4 ∈ L(r2))

s1@s2 ∈ r1 · r2 → Seq(v1, v2)
…
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Properties
It is almost trival to prove:
Uniqueness

If s ∈ r → v1 and s ∈ r → v2 then v1 = v2.

Correctness
lexer(r, s) = v if and only if s ∈ r → v

You can now start to implement optimisations and
derive correctness proofs for them. But we still do
not know whether

s ∈ r → v
is a POSIX value according to Sulzmann & Lu’s
definition (biggest value for s and r)
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Conclusion
we replaced the POSIX definition of Sulzmann &
Lu by a new definition (ours is inspired by work
of Vansummeren, 2006)

their proof contained small gaps (acknowledged)
but had also fundamental flaws

now, its a nice exercise for theorem proving

some optimisations need to be applied to the
algorithm in order to become fast enough

can be used for lexing, is a small beautiful
functional program
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Questions?
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