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Regular Expressions

ﬁm&

ry-r,
r+r,

null

empty string
character
sequence
alternative / choice
star (zero or more)



The Derivative of a Rexp

If » matches the string c::s, what is a
regular expression that matches just s?

der cr gives the answer, Brzozowski (1964), Owens (2005)
“...have been lost in the sands of time...”



Correctness

It is a relative easy exercise in a theorem prover:

matches(r,s) if and only if s € L(r)

where matches(r, 5) © wullable (ders(r,s))



POSIX Regex Matching

Two rules:

o Longest match rule (“maximal munch rule”): The
longest initial substring matched by any regular
expression is taken as the next token.

iffoo.bla

@ Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

ilf|_.bll]a
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POSIX Regex Matching

e Sulzmann & Lu came up with a beautiful idea for
how to extend the simple regular expression
matcher to POSIX matching/lexing (FLOPS
2014)

Martin Sulzmann

o the idea: define an inverse operation to the
derivatives



Regexes and Values
Regular expressions and their corresponding
values (for how a regular expression matched a
string):

r o= 9 v on=
| € Empty
| ¢ | Char(c)
| ooy | Seq(v,,v,)
| it | Left(v)
| Right(v)
| } I

(U1, ... O]
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There is also a notion of a string behind a value: |7|
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Sulzmann & Lu Matcher

We want to match the string @bc using 7;:

7 derd) s der b) rs ﬂ) ry nullable?

T

V) e U i V3 i T

inja inj b injc

The original ideas of Sulzmann and Lu are the
mkeps and inj functions (ommitted here).



Sulzmann & Lu Paper

e I have no doubt the algorithm is correct — the
problem is I do not believe their proof.

p
“How could I miss this? Well, I was rather careless
when stating this Lemma :)

Great example how formal machine checked proofs
(and proof assistants) can help to spot flawed reasoning
steps.”
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p
“How could I miss this? Well, I was rather careless
when stating this Lemma :)

Great example how formal machine checked proofs
(and proof assistants) can help to spot flawed reasoning

steps.”
\, J

r“Well, I don’t think there’s any flaw. The issue is how to )
come up with a mechanical proof. In my world
mathematical proof = mechanical proof doesn’t

necessarily hold.”




Sulzmann & Lu Paper

e I have no doubt the algorithm is correct — the
problem is I do not believe their proof.

l “How could I miss this? Well, I was rather careless |

Lemma 3 (Projection and Injection). Let r be a regular ezpression, | a
letler and v a parse tree.

1. If - v:r and |v| = lw for some word w, then = projp v :r\lL
2. If = v\l then (projg. o ingyy) v="v.
3. If - v:r and |v| = lw for some word w, then (inj.\; © proji) v =v.

MS:BUG[Come accross this issue when going back to our con-
structive reg-ex work] Consider - [Right (), Left a] : (a + €)*. However,
PrOjJ((ate)*,a) [Right (), Left a] fails! The point is that proj only works correctly
if applied on POSIX parse trees.

MS:Possible fixes We only ever apply proj on Posix parse trees.

For convenience, we write “F v : 7 is POSIX” where we mean that + v : 7
holds and v is the POSIX parse tree of r for word |v].

Lemma 2 follows from the following statement.

\_ v
kAAvv\/uuuA TTy ITTOTCES J




The Proof Idea
by Sulzmann & Lu

e introduce an inductively defined ordering relation
v >, v/ which captures the idea of POSIX
matching

o the algorithm returns the maximum of all possible
values that are possible for a regular expression.



The Proof Idea
by Sulzmann & Lu

introduce an inductively defined ordering relation
v >, v/ which captures the idea of POSIX
matching

the algorithm returns the maximum of all possible
values that are possible for a regular expression.

the idea is from a paper by Cardelli & Frisch about
GREEDY matching (GREEDY = preferring instant
gratification to delayed repletion):

e.g. given (¢ + (b + ab))* and string ab

GREEDY: |[Left(a), Right(Left(b)]
POSIX: [Right(Right(Seq(a,b))))]



- Empty : € = Char(c) : ¢

Fo,ir, Fo,ir,
= Seq(vy,v,) i1y -7y

Fo:ir Fo:r,
= Left(v) : ry + 7, = Right(v) : ry + 7,
Fooir ... Fo,ir

= :r vy, o) i
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Problems

@ Sulzmann: ...Let’s assume v is not a POSIX value,
then there must be another one ...contradiction.

o Exists?
L(r) # @ = dv. POSIX(v,r)

e in the sequence case Seq(v,, v,) >, .», Seq(v.,v}),

the induction hypotheses require |v,| = |v]| and
|v,| = |v}|, but you only know
21| @ |v,| = || @ |2

@ although one begins with the assumption that the two
values have the same flattening, this cannot be maintained
as one descends into the induction (alternative, sequence)



Our Solution

@ a direct definition of what a POSIX value is,
using the relation s € » — v (specification):

] € € = Empty ¢ € ¢ — Char(c)

SENR v ser,—v s¢&L(r)

s E€r +r, — Left(v) s € ry+r, — Right(v)

St € — U
S5, €1, — U,
“(3sy84. 83 # [ A53@s, = 5, N5, @sy € L(ry) Nsy € L(r5))

5:@s, € r -1, — Seq(vy,v,)



Properties

It is almost trival to prove:

e Uniqueness
Ifser —wv,ands € r — v, thenv, = v,.

e Correctness
lexer(r,s) = vifandonlyifs € r — v



Properties

It is almost trival to prove:

e Uniqueness
Ifser —wv,ands € r — v, thenv, = v,.

e Correctness
lexer(r,s) = vifandonlyifs € r — v

You can now start to implement optimisations and
derive correctness proofs for them. But we still do
not know whether

sEr—9o

is a POSIX value according to Sulzmann & Lu’s
definition (biggest value for s and 7)



Conclusion

we replaced the POSIX definition of Sulzmann &
Lu by a new definition (ours is inspired by work
of Vansummeren, 2006)

their proof contained small gaps (acknowledged)
but had also fundamental flaws

now, its a nice exercise for theorem proving

some optimisations need to be applied to the
algorithm in order to become fast enough

can be used for lexing, is a small beautiful
functional program



Questions?



