diff -r d36be1e356c0 -r fff2e1b40dfc thys/Spec.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/Spec.thy Wed Jul 19 14:55:46 2017 +0100 @@ -0,0 +1,746 @@ + +theory Spec + imports Main +begin + + +section {* Sequential Composition of Languages *} + +definition + Sequ :: "string set \ string set \ string set" ("_ ;; _" [100,100] 100) +where + "A ;; B = {s1 @ s2 | s1 s2. s1 \ A \ s2 \ B}" + +text {* Two Simple Properties about Sequential Composition *} + +lemma Sequ_empty_string [simp]: + shows "A ;; {[]} = A" + and "{[]} ;; A = A" +by (simp_all add: Sequ_def) + +lemma Sequ_empty [simp]: + shows "A ;; {} = {}" + and "{} ;; A = {}" +by (simp_all add: Sequ_def) + + +section {* Semantic Derivative (Left Quotient) of Languages *} + +definition + Der :: "char \ string set \ string set" +where + "Der c A \ {s. c # s \ A}" + +definition + Ders :: "string \ string set \ string set" +where + "Ders s A \ {s'. s @ s' \ A}" + +lemma Der_null [simp]: + shows "Der c {} = {}" +unfolding Der_def +by auto + +lemma Der_empty [simp]: + shows "Der c {[]} = {}" +unfolding Der_def +by auto + +lemma Der_char [simp]: + shows "Der c {[d]} = (if c = d then {[]} else {})" +unfolding Der_def +by auto + +lemma Der_union [simp]: + shows "Der c (A \ B) = Der c A \ Der c B" +unfolding Der_def +by auto + +lemma Der_Sequ [simp]: + shows "Der c (A ;; B) = (Der c A) ;; B \ (if [] \ A then Der c B else {})" +unfolding Der_def Sequ_def +by (auto simp add: Cons_eq_append_conv) + + +section {* Kleene Star for Languages *} + +inductive_set + Star :: "string set \ string set" ("_\" [101] 102) + for A :: "string set" +where + start[intro]: "[] \ A\" +| step[intro]: "\s1 \ A; s2 \ A\\ \ s1 @ s2 \ A\" + +(* Arden's lemma *) + +lemma Star_cases: + shows "A\ = {[]} \ A ;; A\" +unfolding Sequ_def +by (auto) (metis Star.simps) + +lemma Star_decomp: + assumes "c # x \ A\" + shows "\s1 s2. x = s1 @ s2 \ c # s1 \ A \ s2 \ A\" +using assms +by (induct x\"c # x" rule: Star.induct) + (auto simp add: append_eq_Cons_conv) + +lemma Star_Der_Sequ: + shows "Der c (A\) \ (Der c A) ;; A\" +unfolding Der_def Sequ_def +by(auto simp add: Star_decomp) + + +lemma Der_star [simp]: + shows "Der c (A\) = (Der c A) ;; A\" +proof - + have "Der c (A\) = Der c ({[]} \ A ;; A\)" + by (simp only: Star_cases[symmetric]) + also have "... = Der c (A ;; A\)" + by (simp only: Der_union Der_empty) (simp) + also have "... = (Der c A) ;; A\ \ (if [] \ A then Der c (A\) else {})" + by simp + also have "... = (Der c A) ;; A\" + using Star_Der_Sequ by auto + finally show "Der c (A\) = (Der c A) ;; A\" . +qed + + +section {* Regular Expressions *} + +datatype rexp = + ZERO +| ONE +| CHAR char +| SEQ rexp rexp +| ALT rexp rexp +| STAR rexp + +section {* Semantics of Regular Expressions *} + +fun + L :: "rexp \ string set" +where + "L (ZERO) = {}" +| "L (ONE) = {[]}" +| "L (CHAR c) = {[c]}" +| "L (SEQ r1 r2) = (L r1) ;; (L r2)" +| "L (ALT r1 r2) = (L r1) \ (L r2)" +| "L (STAR r) = (L r)\" + + +section {* Nullable, Derivatives *} + +fun + nullable :: "rexp \ bool" +where + "nullable (ZERO) = False" +| "nullable (ONE) = True" +| "nullable (CHAR c) = False" +| "nullable (ALT r1 r2) = (nullable r1 \ nullable r2)" +| "nullable (SEQ r1 r2) = (nullable r1 \ nullable r2)" +| "nullable (STAR r) = True" + + +fun + der :: "char \ rexp \ rexp" +where + "der c (ZERO) = ZERO" +| "der c (ONE) = ZERO" +| "der c (CHAR d) = (if c = d then ONE else ZERO)" +| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" +| "der c (SEQ r1 r2) = + (if nullable r1 + then ALT (SEQ (der c r1) r2) (der c r2) + else SEQ (der c r1) r2)" +| "der c (STAR r) = SEQ (der c r) (STAR r)" + +fun + ders :: "string \ rexp \ rexp" +where + "ders [] r = r" +| "ders (c # s) r = ders s (der c r)" + + +lemma nullable_correctness: + shows "nullable r \ [] \ (L r)" +by (induct r) (auto simp add: Sequ_def) + +lemma der_correctness: + shows "L (der c r) = Der c (L r)" +by (induct r) (simp_all add: nullable_correctness) + +lemma ders_correctness: + shows "L (ders s r) = Ders s (L r)" +apply(induct s arbitrary: r) +apply(simp_all add: Ders_def der_correctness Der_def) +done + + +section {* Lemmas about ders *} + +lemma ders_ZERO: + shows "ders s (ZERO) = ZERO" +apply(induct s) +apply(simp_all) +done + +lemma ders_ONE: + shows "ders s (ONE) = (if s = [] then ONE else ZERO)" +apply(induct s) +apply(simp_all add: ders_ZERO) +done + +lemma ders_CHAR: + shows "ders s (CHAR c) = + (if s = [c] then ONE else + (if s = [] then (CHAR c) else ZERO))" +apply(induct s) +apply(simp_all add: ders_ZERO ders_ONE) +done + +lemma ders_ALT: + shows "ders s (ALT r1 r2) = ALT (ders s r1) (ders s r2)" +apply(induct s arbitrary: r1 r2) +apply(simp_all) +done + +section {* Values *} + +datatype val = + Void +| Char char +| Seq val val +| Right val +| Left val +| Stars "val list" + + +section {* The string behind a value *} + +fun + flat :: "val \ string" +where + "flat (Void) = []" +| "flat (Char c) = [c]" +| "flat (Left v) = flat v" +| "flat (Right v) = flat v" +| "flat (Seq v1 v2) = (flat v1) @ (flat v2)" +| "flat (Stars []) = []" +| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" + +lemma flat_Stars [simp]: + "flat (Stars vs) = concat (map flat vs)" +by (induct vs) (auto) + + +section {* Relation between values and regular expressions *} + +inductive + Prf :: "val \ rexp \ bool" ("\ _ : _" [100, 100] 100) +where + "\\ v1 : r1; \ v2 : r2\ \ \ Seq v1 v2 : SEQ r1 r2" +| "\ v1 : r1 \ \ Left v1 : ALT r1 r2" +| "\ v2 : r2 \ \ Right v2 : ALT r1 r2" +| "\ Void : ONE" +| "\ Char c : CHAR c" +| "\v \ set vs. \ v : r \ \ Stars vs : STAR r" + +inductive_cases Prf_elims: + "\ v : ZERO" + "\ v : SEQ r1 r2" + "\ v : ALT r1 r2" + "\ v : ONE" + "\ v : CHAR c" + "\ vs : STAR r" + +lemma Star_concat: + assumes "\s \ set ss. s \ A" + shows "concat ss \ A\" +using assms by (induct ss) (auto) + +lemma Star_string: + assumes "s \ A\" + shows "\ss. concat ss = s \ (\s \ set ss. s \ A)" +using assms +apply(induct rule: Star.induct) +apply(auto) +apply(rule_tac x="[]" in exI) +apply(simp) +apply(rule_tac x="s1#ss" in exI) +apply(simp) +done + +lemma Star_val: + assumes "\s\set ss. \v. s = flat v \ \ v : r" + shows "\vs. concat (map flat vs) = concat ss \ (\v\set vs. \ v : r)" +using assms +apply(induct ss) +apply(auto) +apply(rule_tac x="[]" in exI) +apply(simp) +apply(rule_tac x="v#vs" in exI) +apply(simp) +done + +lemma Prf_Stars_append: + assumes "\ Stars vs1 : STAR r" "\ Stars vs2 : STAR r" + shows "\ Stars (vs1 @ vs2) : STAR r" +using assms +by (auto intro!: Prf.intros elim!: Prf_elims) + +lemma Prf_flat_L: + assumes "\ v : r" + shows "flat v \ L r" +using assms +by (induct v r rule: Prf.induct) + (auto simp add: Sequ_def Star_concat) + + +lemma L_flat_Prf1: + assumes "\ v : r" + shows "flat v \ L r" +using assms +by (induct) (auto simp add: Sequ_def Star_concat) + +lemma L_flat_Prf2: + assumes "s \ L r" + shows "\v. \ v : r \ flat v = s" +using assms +proof(induct r arbitrary: s) + case (STAR r s) + have IH: "\s. s \ L r \ \v. \ v : r \ flat v = s" by fact + have "s \ L (STAR r)" by fact + then obtain ss where "concat ss = s" "\s \ set ss. s \ L r" + using Star_string by auto + then obtain vs where "concat (map flat vs) = s" "\v\set vs. \ v : r" + using IH Star_val by blast + then show "\v. \ v : STAR r \ flat v = s" + using Prf.intros(6) flat_Stars by blast +next + case (SEQ r1 r2 s) + then show "\v. \ v : SEQ r1 r2 \ flat v = s" + unfolding Sequ_def L.simps by (fastforce intro: Prf.intros) +next + case (ALT r1 r2 s) + then show "\v. \ v : ALT r1 r2 \ flat v = s" + unfolding L.simps by (fastforce intro: Prf.intros) +qed (auto intro: Prf.intros) + +lemma L_flat_Prf: + shows "L(r) = {flat v | v. \ v : r}" +using L_flat_Prf1 L_flat_Prf2 by blast + +section {* CPT and CPTpre *} + + +inductive + CPrf :: "val \ rexp \ bool" ("\ _ : _" [100, 100] 100) +where + "\\ v1 : r1; \ v2 : r2\ \ \ Seq v1 v2 : SEQ r1 r2" +| "\ v1 : r1 \ \ Left v1 : ALT r1 r2" +| "\ v2 : r2 \ \ Right v2 : ALT r1 r2" +| "\ Void : ONE" +| "\ Char c : CHAR c" +| "\v \ set vs. \ v : r \ flat v \ [] \ \ Stars vs : STAR r" + +lemma Prf_CPrf: + assumes "\ v : r" + shows "\ v : r" +using assms +by (induct)(auto intro: Prf.intros) + +lemma CPrf_stars: + assumes "\ Stars vs : STAR r" + shows "\v \ set vs. flat v \ [] \ \ v : r" +using assms +apply(erule_tac CPrf.cases) +apply(simp_all) +done + +lemma CPrf_Stars_appendE: + assumes "\ Stars (vs1 @ vs2) : STAR r" + shows "\ Stars vs1 : STAR r \ \ Stars vs2 : STAR r" +using assms +apply(erule_tac CPrf.cases) +apply(auto intro: CPrf.intros elim: Prf.cases) +done + +definition PT :: "rexp \ string \ val set" +where "PT r s \ {v. flat v = s \ \ v : r}" + +definition + "CPT r s = {v. flat v = s \ \ v : r}" + +definition + "CPTpre r s = {v. \s'. flat v @ s' = s \ \ v : r}" + +lemma CPT_CPTpre_subset: + shows "CPT r s \ CPTpre r s" +by(auto simp add: CPT_def CPTpre_def) + +lemma CPT_simps: + shows "CPT ZERO s = {}" + and "CPT ONE s = (if s = [] then {Void} else {})" + and "CPT (CHAR c) s = (if s = [c] then {Char c} else {})" + and "CPT (ALT r1 r2) s = Left ` CPT r1 s \ Right ` CPT r2 s" + and "CPT (SEQ r1 r2) s = + {Seq v1 v2 | v1 v2. flat v1 @ flat v2 = s \ v1 \ CPT r1 (flat v1) \ v2 \ CPT r2 (flat v2)}" + and "CPT (STAR r) s = + Stars ` {vs. concat (map flat vs) = s \ (\v \ set vs. v \ CPT r (flat v) \ flat v \ [])}" +apply - +apply(auto simp add: CPT_def intro: CPrf.intros)[1] +apply(erule CPrf.cases) +apply(simp_all)[6] +apply(auto simp add: CPT_def intro: CPrf.intros)[1] +apply(erule CPrf.cases) +apply(simp_all)[6] +apply(erule CPrf.cases) +apply(simp_all)[6] +apply(auto simp add: CPT_def intro: CPrf.intros)[1] +apply(erule CPrf.cases) +apply(simp_all)[6] +apply(erule CPrf.cases) +apply(simp_all)[6] +apply(auto simp add: CPT_def intro: CPrf.intros)[1] +apply(erule CPrf.cases) +apply(simp_all)[6] +apply(auto simp add: CPT_def intro: CPrf.intros)[1] +apply(erule CPrf.cases) +apply(simp_all)[6] +(* STAR case *) +apply(auto simp add: CPT_def intro: CPrf.intros)[1] +apply(erule CPrf.cases) +apply(simp_all)[6] +done + + + +section {* Our POSIX Definition *} + +inductive + Posix :: "string \ rexp \ val \ bool" ("_ \ _ \ _" [100, 100, 100] 100) +where + Posix_ONE: "[] \ ONE \ Void" +| Posix_CHAR: "[c] \ (CHAR c) \ (Char c)" +| Posix_ALT1: "s \ r1 \ v \ s \ (ALT r1 r2) \ (Left v)" +| Posix_ALT2: "\s \ r2 \ v; s \ L(r1)\ \ s \ (ALT r1 r2) \ (Right v)" +| Posix_SEQ: "\s1 \ r1 \ v1; s2 \ r2 \ v2; + \(\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (s1 @ s\<^sub>3) \ L r1 \ s\<^sub>4 \ L r2)\ \ + (s1 @ s2) \ (SEQ r1 r2) \ (Seq v1 v2)" +| Posix_STAR1: "\s1 \ r \ v; s2 \ STAR r \ Stars vs; flat v \ []; + \(\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (s1 @ s\<^sub>3) \ L r \ s\<^sub>4 \ L (STAR r))\ + \ (s1 @ s2) \ STAR r \ Stars (v # vs)" +| Posix_STAR2: "[] \ STAR r \ Stars []" + +inductive_cases Posix_elims: + "s \ ZERO \ v" + "s \ ONE \ v" + "s \ CHAR c \ v" + "s \ ALT r1 r2 \ v" + "s \ SEQ r1 r2 \ v" + "s \ STAR r \ v" + +lemma Posix1: + assumes "s \ r \ v" + shows "s \ L r" "flat v = s" +using assms +by (induct s r v rule: Posix.induct) + (auto simp add: Sequ_def) + +lemma Posix_Prf: + assumes "s \ r \ v" + shows "\ v : r" +using assms +apply(induct s r v rule: Posix.induct) +apply(auto intro!: Prf.intros elim!: Prf_elims) +done + +text {* + Our Posix definition determines a unique value. +*} + +lemma Posix_determ: + assumes "s \ r \ v1" "s \ r \ v2" + shows "v1 = v2" +using assms +proof (induct s r v1 arbitrary: v2 rule: Posix.induct) + case (Posix_ONE v2) + have "[] \ ONE \ v2" by fact + then show "Void = v2" by cases auto +next + case (Posix_CHAR c v2) + have "[c] \ CHAR c \ v2" by fact + then show "Char c = v2" by cases auto +next + case (Posix_ALT1 s r1 v r2 v2) + have "s \ ALT r1 r2 \ v2" by fact + moreover + have "s \ r1 \ v" by fact + then have "s \ L r1" by (simp add: Posix1) + ultimately obtain v' where eq: "v2 = Left v'" "s \ r1 \ v'" by cases auto + moreover + have IH: "\v2. s \ r1 \ v2 \ v = v2" by fact + ultimately have "v = v'" by simp + then show "Left v = v2" using eq by simp +next + case (Posix_ALT2 s r2 v r1 v2) + have "s \ ALT r1 r2 \ v2" by fact + moreover + have "s \ L r1" by fact + ultimately obtain v' where eq: "v2 = Right v'" "s \ r2 \ v'" + by cases (auto simp add: Posix1) + moreover + have IH: "\v2. s \ r2 \ v2 \ v = v2" by fact + ultimately have "v = v'" by simp + then show "Right v = v2" using eq by simp +next + case (Posix_SEQ s1 r1 v1 s2 r2 v2 v') + have "(s1 @ s2) \ SEQ r1 r2 \ v'" + "s1 \ r1 \ v1" "s2 \ r2 \ v2" + "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L r1 \ s\<^sub>4 \ L r2)" by fact+ + then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \ r1 \ v1'" "s2 \ r2 \ v2'" + apply(cases) apply (auto simp add: append_eq_append_conv2) + using Posix1(1) by fastforce+ + moreover + have IHs: "\v1'. s1 \ r1 \ v1' \ v1 = v1'" + "\v2'. s2 \ r2 \ v2' \ v2 = v2'" by fact+ + ultimately show "Seq v1 v2 = v'" by simp +next + case (Posix_STAR1 s1 r v s2 vs v2) + have "(s1 @ s2) \ STAR r \ v2" + "s1 \ r \ v" "s2 \ STAR r \ Stars vs" "flat v \ []" + "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L r \ s\<^sub>4 \ L (STAR r))" by fact+ + then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \ r \ v'" "s2 \ (STAR r) \ (Stars vs')" + apply(cases) apply (auto simp add: append_eq_append_conv2) + using Posix1(1) apply fastforce + apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2) + using Posix1(2) by blast + moreover + have IHs: "\v2. s1 \ r \ v2 \ v = v2" + "\v2. s2 \ STAR r \ v2 \ Stars vs = v2" by fact+ + ultimately show "Stars (v # vs) = v2" by auto +next + case (Posix_STAR2 r v2) + have "[] \ STAR r \ v2" by fact + then show "Stars [] = v2" by cases (auto simp add: Posix1) +qed + + +text {* + Our POSIX value is a canonical value. +*} + +lemma Posix_CPT: + assumes "s \ r \ v" + shows "v \ CPT r s" +using assms +apply(induct rule: Posix.induct) +apply(auto simp add: CPT_def intro: CPrf.intros elim: CPrf.cases) +apply(rotate_tac 5) +apply(erule CPrf.cases) +apply(simp_all) +apply(rule CPrf.intros) +apply(simp_all) +done + + + +(* +lemma CPTpre_STAR_finite: + assumes "\s. finite (CPT r s)" + shows "finite (CPT (STAR r) s)" +apply(induct s rule: length_induct) +apply(case_tac xs) +apply(simp) +apply(simp add: CPT_simps) +apply(auto) +apply(rule finite_imageI) +using assms +thm finite_Un +prefer 2 +apply(simp add: CPT_simps) +apply(rule finite_imageI) +apply(rule finite_subset) +apply(rule CPTpre_subsets) +apply(simp) +apply(rule_tac B="(\(v, vs). Stars (v#vs)) ` {(v, vs). v \ CPTpre r (a#list) \ flat v \ [] \ Stars vs \ CPTpre (STAR r) (drop (length (flat v)) (a#list))}" in finite_subset) +apply(auto)[1] +apply(rule finite_imageI) +apply(simp add: Collect_case_prod_Sigma) +apply(rule finite_SigmaI) +apply(rule assms) +apply(case_tac "flat v = []") +apply(simp) +apply(drule_tac x="drop (length (flat v)) (a # list)" in spec) +apply(simp) +apply(auto)[1] +apply(rule test) +apply(simp) +done + +lemma CPTpre_subsets: + "CPTpre ZERO s = {}" + "CPTpre ONE s \ {Void}" + "CPTpre (CHAR c) s \ {Char c}" + "CPTpre (ALT r1 r2) s \ Left ` CPTpre r1 s \ Right ` CPTpre r2 s" + "CPTpre (SEQ r1 r2) s \ {Seq v1 v2 | v1 v2. v1 \ CPTpre r1 s \ v2 \ CPTpre r2 (drop (length (flat v1)) s)}" + "CPTpre (STAR r) s \ {Stars []} \ + {Stars (v#vs) | v vs. v \ CPTpre r s \ flat v \ [] \ Stars vs \ CPTpre (STAR r) (drop (length (flat v)) s)}" + "CPTpre (STAR r) [] = {Stars []}" +apply(auto simp add: CPTpre_def) +apply(erule CPrf.cases) +apply(simp_all) +apply(erule CPrf.cases) +apply(simp_all) +apply(erule CPrf.cases) +apply(simp_all) +apply(erule CPrf.cases) +apply(simp_all) +apply(erule CPrf.cases) +apply(simp_all) + +apply(erule CPrf.cases) +apply(simp_all) +apply(erule CPrf.cases) +apply(simp_all) +apply(rule CPrf.intros) +done + + +lemma CPTpre_simps: + shows "CPTpre ONE s = {Void}" + and "CPTpre (CHAR c) (d#s) = (if c = d then {Char c} else {})" + and "CPTpre (ALT r1 r2) s = Left ` CPTpre r1 s \ Right ` CPTpre r2 s" + and "CPTpre (SEQ r1 r2) s = + {Seq v1 v2 | v1 v2. v1 \ CPTpre r1 s \ v2 \ CPTpre r2 (drop (length (flat v1)) s)}" +apply - +apply(rule subset_antisym) +apply(rule CPTpre_subsets) +apply(auto simp add: CPTpre_def intro: "CPrf.intros")[1] +apply(case_tac "c = d") +apply(simp) +apply(rule subset_antisym) +apply(rule CPTpre_subsets) +apply(auto simp add: CPTpre_def intro: CPrf.intros)[1] +apply(simp) +apply(auto simp add: CPTpre_def intro: CPrf.intros)[1] +apply(erule CPrf.cases) +apply(simp_all) +apply(rule subset_antisym) +apply(rule CPTpre_subsets) +apply(auto simp add: CPTpre_def intro: CPrf.intros)[1] +apply(rule subset_antisym) +apply(rule CPTpre_subsets) +apply(auto simp add: CPTpre_def intro: CPrf.intros)[1] +done + +lemma CPT_simps: + shows "CPT ONE s = (if s = [] then {Void} else {})" + and "CPT (CHAR c) [d] = (if c = d then {Char c} else {})" + and "CPT (ALT r1 r2) s = Left ` CPT r1 s \ Right ` CPT r2 s" + and "CPT (SEQ r1 r2) s = + {Seq v1 v2 | v1 v2 s1 s2. s1 @ s2 = s \ v1 \ CPT r1 s1 \ v2 \ CPT r2 s2}" +apply - +apply(rule subset_antisym) +apply(auto simp add: CPT_def)[1] +apply(erule CPrf.cases) +apply(simp_all)[7] +apply(erule CPrf.cases) +apply(simp_all)[7] +apply(auto simp add: CPT_def intro: CPrf.intros)[1] +apply(auto simp add: CPT_def intro: CPrf.intros)[1] +apply(erule CPrf.cases) +apply(simp_all)[7] +apply(erule CPrf.cases) +apply(simp_all)[7] +apply(auto simp add: CPT_def image_def intro: CPrf.intros)[1] +apply(erule CPrf.cases) +apply(simp_all)[7] +apply(clarify) +apply blast +apply(auto simp add: CPT_def image_def intro: CPrf.intros)[1] +apply(erule CPrf.cases) +apply(simp_all)[7] +done + +lemma test: + assumes "finite A" + shows "finite {vs. Stars vs \ A}" +using assms +apply(induct A) +apply(simp) +apply(auto) +apply(case_tac x) +apply(simp_all) +done + +lemma CPTpre_STAR_finite: + assumes "\s. finite (CPTpre r s)" + shows "finite (CPTpre (STAR r) s)" +apply(induct s rule: length_induct) +apply(case_tac xs) +apply(simp) +apply(simp add: CPTpre_subsets) +apply(rule finite_subset) +apply(rule CPTpre_subsets) +apply(simp) +apply(rule_tac B="(\(v, vs). Stars (v#vs)) ` {(v, vs). v \ CPTpre r (a#list) \ flat v \ [] \ Stars vs \ CPTpre (STAR r) (drop (length (flat v)) (a#list))}" in finite_subset) +apply(auto)[1] +apply(rule finite_imageI) +apply(simp add: Collect_case_prod_Sigma) +apply(rule finite_SigmaI) +apply(rule assms) +apply(case_tac "flat v = []") +apply(simp) +apply(drule_tac x="drop (length (flat v)) (a # list)" in spec) +apply(simp) +apply(auto)[1] +apply(rule test) +apply(simp) +done + +lemma CPTpre_finite: + shows "finite (CPTpre r s)" +apply(induct r arbitrary: s) +apply(simp add: CPTpre_subsets) +apply(rule finite_subset) +apply(rule CPTpre_subsets) +apply(simp) +apply(rule finite_subset) +apply(rule CPTpre_subsets) +apply(simp) +apply(rule finite_subset) +apply(rule CPTpre_subsets) +apply(rule_tac B="(\(v1, v2). Seq v1 v2) ` {(v1, v2). v1 \ CPTpre r1 s \ v2 \ CPTpre r2 (drop (length (flat v1)) s)}" in finite_subset) +apply(auto)[1] +apply(rule finite_imageI) +apply(simp add: Collect_case_prod_Sigma) +apply(rule finite_subset) +apply(rule CPTpre_subsets) +apply(simp) +by (simp add: CPTpre_STAR_finite) + + +lemma CPT_finite: + shows "finite (CPT r s)" +apply(rule finite_subset) +apply(rule CPT_CPTpre_subset) +apply(rule CPTpre_finite) +done +*) + +lemma test2: + assumes "\v \ set vs. flat v \ r \ v \ flat v \ []" + shows "(Stars vs) \ CPT (STAR r) (flat (Stars vs))" +using assms +apply(induct vs) +apply(auto simp add: CPT_def) +apply(rule CPrf.intros) +apply(simp) +apply(rule CPrf.intros) +apply(simp_all) +by (metis (no_types, lifting) CPT_def Posix_CPT mem_Collect_eq) + + +end \ No newline at end of file