diff -r 893f0314a88b -r fff2b8d356a5 thys/#MyFirst.thy# --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/#MyFirst.thy# Tue Oct 07 12:33:27 2014 +0100 @@ -0,0 +1,198 @@ +theory MyFirst +imports Main +begin + +datatype 'a list = Nil | Cons 'a "'a list" + +fun app :: "'a list \ 'a list \ 'a list" where +"app Nil ys = ys" | +"app (Cons x xs) ys = Cons x (app xs ys)" + +fun rev :: "'a list \ 'a list" where +"rev Nil = Nil" | +"rev (Cons x xs) = app (rev xs) (Cons x Nil)" + +value "rev(Cons True (Cons False fun app :: "'a list \ 'a list \ 'a list" where +"app Nil ys = ys" | +"app (Cons x xs) ys = Cons x (app xs ys)" + +fun rev :: "'a list \ 'a list" where +"rev Nil = Nil" | +"rev (Cons x xs) = app (rev xs) (Cons x Nil)"Nil))" + +value "1 + (2::nat)" +value "1 + (2::int)" +value "1 - (2::nat)" +value "1 - (2::int)" + +lemma app_Nil2 [simp]: "app xs Nil = xs" +apply(induction xs) +apply(auto) +done + +lemma app_assoc [simp]: "app (app xs ys) zs = app xs (app ys zs)" +apply(induction xs) +apply(auto) +done + +lemma rev_app [simp]: "rev(app xs ys) = app (rev ys) (rev xs)" +apply (induction xs) +apply (auto) +done + +theorem rev_rev [simp]: "rev(rev xs) = xs" +apply (induction xs) +apply (auto) +done + +fun add :: "nat \ nat \ nat" where +"add 0 n = n" | +"add (Suc m) n = Suc(add m n)" + +lemma add_02: "add m 0 = m" +apply(induction m) +apply(auto) +done + +value "add 2 3" + + +(**commutative-associative**) +lemma add_04: "add m (add n k) = add (add m n) k" +apply(induct m) +apply(simp_all) +done + +lemma add_zero: "add n 0 = n" +apply(induct n) +apply(auto) +done +lemma add_zero: "add n 0 = n" +apply(induct n) +apply(auto) +done +lemma add_Suc: "add m (Suc n) = Suc (add m n)" +apply(induct m) +apply(metis add.simps(1)) +apply(auto) +done + +lemma add_comm: "add m n = add n m" +apply(induct m) +apply(simp add: add_zero) +apply(simp add: add_Suc) +done + +lemma add_odd: "add m (add n k) = add k (add m n)" +apply(subst add_04) +apply(subst (2) add_comm) +apply(simp) +done + + +fun dub :: "nat \ nat" where +"dub 0 = 0" | +"dub m = add m m" + +lemma dub_01: "dub 0 = 0" +apply(induct) +apply(auto) +done + +lemma dub_02: "dub m = add m m" +apply(induction m) +apply(auto) +done + +value "dub 2" + +fun trip :: "nat \ nat" where +"trip 0 = 0" | +"trip m = add m (add m m)" + +lemma trip_01: "trip 0 = 0" +apply(induct) +apply(auto) +done + +lemma trip_02: "trip m = add m (add m m)" +apply(induction m) +apply(auto) +done + +value "trip 1" +value "trip 2" + +fun sum :: "nat \ nat" where + "sum 0 = 0" +| "sum (Suc n) = (Suc n) + sum n" + +function sum1 :: "nat \ nat" where + "sum1 0 = 0" +| "n \ 0 \ sum1 n = n + sum1 (n - 1)" +apply(auto) +done + +termination sum1 +by (smt2 "termination" diff_less less_than_iff not_gr0 wf_less_than zero_neq_one) + +lemma "sum n = sum1 n" +apply(induct n) +apply(auto) +done + +lemma "sum n = (\i \ n. i)" +apply(induct n) +apply(simp_all) +done + +fun mull :: "nat \ nat \ nat" where +"mull 0 0 = 0" | +"mull m 0 = 0" | +"mull m 1 = m" | +(**"mull m (1::nat) = m" | **) +(**"mull m (suc(0)) = m" | **) +"mull m n = mull m (n-(1::nat))" +apply(pat_completeness) +apply(auto) + +done + + "mull 0 n = 0" +| "mull (Suc m) n = add n (mull m n)" + +lemma test: "mull m n = m * n" +sorry + +fun poww :: "nat \ nat \ nat" where + "poww 0 n = 1" +| "poww (Suc m) n = mull n (poww m n)" + + +"mull 0 0 = 0" | +"mull m 0 = 0" | +(**"mull m 1 = m" | **) +(**"mull m (1::nat) = m" | **) +(**"mull m (suc(0)) = m" | **) +"mull m n = mull m (n-(1::nat))" + +(**Define a function that counts the +number of occurrences of an element in a list **) +(** +fun count :: "'a\'a list\nat" where +"count " +**) + + +(* prove n = n * (n + 1) div 2 *) + + + + + + + + + + +