diff -r 1dfc08ca43da -r fe177dfc4697 thys/Re.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/Re.thy Mon Sep 08 14:06:15 2014 +0100 @@ -0,0 +1,1711 @@ +theory Matcher3simple + imports "Main" +begin + +section {* Sequential Composition of Sets *} + +definition + Sequ :: "string set \ string set \ string set" ("_ ;; _" [100,100] 100) +where + "A ;; B = {s1 @ s2 | s1 s2. s1 \ A \ s2 \ B}" + +text {* Two Simple Properties about Sequential Composition *} + +lemma seq_empty [simp]: + shows "A ;; {[]} = A" + and "{[]} ;; A = A" +by (simp_all add: Sequ_def) + +lemma seq_null [simp]: + shows "A ;; {} = {}" + and "{} ;; A = {}" +by (simp_all add: Sequ_def) + +section {* Regular Expressions *} + +datatype rexp = + NULL +| EMPTY +| CHAR char +| SEQ rexp rexp +| ALT rexp rexp + +section {* Semantics of Regular Expressions *} + +fun + L :: "rexp \ string set" +where + "L (NULL) = {}" +| "L (EMPTY) = {[]}" +| "L (CHAR c) = {[c]}" +| "L (SEQ r1 r2) = (L r1) ;; (L r2)" +| "L (ALT r1 r2) = (L r1) \ (L r2)" + +datatype val = + Void +| Char char +| Seq val val +| Right val +| Left val + +inductive Prf :: "val \ rexp \ bool" ("\ _ : _" [100, 100] 100) +where + "\\ v1 : r1; \ v2 : r2\ \ \ Seq v1 v2 : SEQ r1 r2" +| "\ v1 : r1 \ \ Left v1 : ALT r1 r2" +| "\ v2 : r2 \ \ Right v2 : ALT r1 r2" +| "\ Void : EMPTY" +| "\ Char c : CHAR c" + +fun flat :: "val \ string" +where + "flat(Void) = []" +| "flat(Char c) = [c]" +| "flat(Left v) = flat(v)" +| "flat(Right v) = flat(v)" +| "flat(Seq v1 v2) = flat(v1) @ flat(v2)" + +datatype tree = + Leaf string +| Branch tree tree + +fun flats :: "val \ tree" +where + "flats(Void) = Leaf []" +| "flats(Char c) = Leaf [c]" +| "flats(Left v) = flats(v)" +| "flats(Right v) = flats(v)" +| "flats(Seq v1 v2) = Branch (flats v1) (flats v2)" + +fun flatten :: "tree \ string" +where + "flatten (Leaf s) = s" +| "flatten (Branch t1 t2) = flatten t1 @ flatten t2" + +lemma flats_flat: + shows "flat v1 = flatten (flats v1)" +apply(induct v1) +apply(simp_all) +done + +lemma Prf_flat_L: + assumes "\ v : r" shows "flat v \ L r" +using assms +apply(induct) +apply(auto simp add: Sequ_def) +done + +lemma L_flat_Prf: + "L(r) = {flat v | v. \ v : r}" +apply(induct r) +apply(auto dest: Prf_flat_L simp add: Sequ_def) +apply (metis Prf.intros(4) flat.simps(1)) +apply (metis Prf.intros(5) flat.simps(2)) +apply (metis Prf.intros(1) flat.simps(5)) +apply (metis Prf.intros(2) flat.simps(3)) +apply (metis Prf.intros(3) flat.simps(4)) +by (smt Prf.cases flat.simps(3) flat.simps(4) rexp.distinct(13) rexp.distinct(17) rexp.distinct(19) rexp.inject(3)) + +inductive ValOrd :: "val \ rexp \ val \ bool" ("_ \_ _" [100, 100, 100] 100) +where + "\v1 \r1 v1'; v2 \r2 v2'\ \ (Seq v1 v2) \(SEQ r1 r2) (Seq v1' v2')" +| "length (flat v1) \ length (flat v2) \ (Left v1) \(ALT r1 r2) (Right v2)" +| "length (flat v2) > length (flat v1) \ (Right v2) \(ALT r1 r2) (Left v1)" +| "v2 \r2 v2' \ (Right v2) \(ALT r1 r2) (Right v2')" +| "v1 \r1 v1' \ (Left v1) \(ALT r1 r2) (Left v1')" +| "Void \EMPTY Void" +| "(Char c) \(CHAR c) (Char c)" + +lemma + assumes "r = SEQ (ALT EMPTY EMPTY) (ALT EMPTY (CHAR c))" + shows "(Seq (Left Void) (Right (Char c))) \r (Seq (Left Void) (Left Void))" +using assms +apply(simp) +apply(rule ValOrd.intros) +apply(rule ValOrd.intros) +apply(rule ValOrd.intros) +apply(rule ValOrd.intros) +apply(simp) +done + + +definition POSIX :: "val \ rexp \ bool" +where + "POSIX v r \ (\v'. (\ v' : r \ flats v = flats v') \ v \r v')" + +lemma POSIX: + assumes "r = SEQ (ALT EMPTY EMPTY) (ALT EMPTY (CHAR c))" + shows "POSIX (Seq (Left Void) (Right (Char c))) r" +apply(simp add: POSIX_def assms) +apply(auto) +apply(erule Prf.cases) +apply(simp_all) +apply(rule ValOrd.intros) +apply (smt POSIX_def Prf.cases Prf.simps ValOrd.intros(2) ValOrd.intros(5) ValOrd.intros(6) flats.simps(1) flats.simps(3) rexp.distinct(11) rexp.distinct(13) rexp.distinct(17) rexp.distinct(19) rexp.distinct(9) rexp.inject(3) val.distinct(19) val.inject(3)) +by (smt Prf.simps ValOrd.intros(4) ValOrd.intros(7) flats.simps(1) flats.simps(3) list.distinct(1) rexp.distinct(11) rexp.distinct(13) rexp.distinct(15) rexp.distinct(17) rexp.distinct(19) rexp.distinct(9) rexp.inject(1) rexp.inject(3) tree.inject(1)) + + +lemma Exists_POSIX: "\v. POSIX v r" +apply(induct r) +apply(auto simp add: POSIX_def) +apply(rule exI) +apply(auto) +apply(erule Prf.cases) +apply(simp_all)[5] +apply (smt Prf.simps ValOrd.intros(6) rexp.distinct(11) rexp.distinct(13) rexp.distinct(9)) +apply(rule exI) +apply(auto) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule ValOrd.intros) +apply(rule exI) +apply(auto) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule ValOrd.intros) +apply(auto)[2] +apply(rule_tac x="Left v" in exI) +apply(auto) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule ValOrd.intros) +apply(auto)[1] +apply(auto) +apply(rule ValOrd.intros) +by (metis flats_flat order_refl) + + +lemma POSIX_SEQ: + assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\ v1 : r1" "\ v2 : r2" + shows "POSIX v1 r1 \ POSIX v2 r2" +using assms +unfolding POSIX_def +apply(auto) +apply(drule_tac x="Seq v' v2" in spec) +apply(simp) +apply (smt Prf.intros(1) ValOrd.simps assms(3) rexp.inject(2) val.distinct(15) val.distinct(17) val.distinct(3) val.distinct(9) val.inject(2)) +apply(drule_tac x="Seq v1 v'" in spec) +apply(simp) +by (smt Prf.intros(1) ValOrd.simps rexp.inject(2) val.distinct(15) val.distinct(17) val.distinct(3) val.distinct(9) val.inject(2)) + +lemma POSIX_SEQ_I: + assumes "POSIX v1 r1" "POSIX v2 r2" + shows "POSIX (Seq v1 v2) (SEQ r1 r2)" +using assms +unfolding POSIX_def +apply(auto) +apply(rotate_tac 4) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(rule ValOrd.intros) +apply(auto) +done + +lemma POSIX_ALT: + assumes "POSIX (Left v1) (ALT r1 r2)" + shows "POSIX v1 r1" +using assms +unfolding POSIX_def +apply(auto) +apply(drule_tac x="Left v'" in spec) +apply(simp) +apply(drule mp) +apply(rule Prf.intros) +apply(auto) +apply(erule ValOrd.cases) +apply(simp_all)[7] +done + +lemma POSIX_ALT1a: + assumes "POSIX (Right v2) (ALT r1 r2)" + shows "POSIX v2 r2" +using assms +unfolding POSIX_def +apply(auto) +apply(drule_tac x="Right v'" in spec) +apply(simp) +apply(drule mp) +apply(rule Prf.intros) +apply(auto) +apply(erule ValOrd.cases) +apply(simp_all)[7] +done + +lemma POSIX_ALT1b: + assumes "POSIX (Right v2) (ALT r1 r2)" + shows "(\v'. (\ v' : r2 \ flats v' = flats v2) \ v2 \r2 v')" +using assms +apply(drule_tac POSIX_ALT1a) +unfolding POSIX_def +apply(auto) +done + +lemma POSIX_ALT_I1: + assumes "POSIX v1 r1" + shows "POSIX (Left v1) (ALT r1 r2)" +using assms +unfolding POSIX_def +apply(auto) +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +apply(rule ValOrd.intros) +apply(auto) +apply(rule ValOrd.intros) +by (metis flats_flat order_refl) + +lemma POSIX_ALT_I2: + assumes "POSIX v2 r2" "\v'. \ v' : r1 \ length (flat v2) > length (flat v')" + shows "POSIX (Right v2) (ALT r1 r2)" +using assms +unfolding POSIX_def +apply(auto) +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +prefer 2 +apply(rule ValOrd.intros) +apply metis +apply(rule ValOrd.intros) +apply(auto) +done + +lemma ValOrd_refl: + assumes "\ v : r" + shows "v \r v" +using assms +apply(induct) +apply(auto intro: ValOrd.intros) +done + +lemma ValOrd_length: + assumes "v1 \r v2" shows "length (flat v1) \ length (flat v2)" +using assms +apply(induct) +apply(auto) +done + +section {* The Matcher *} + +fun + nullable :: "rexp \ bool" +where + "nullable (NULL) = False" +| "nullable (EMPTY) = True" +| "nullable (CHAR c) = False" +| "nullable (ALT r1 r2) = (nullable r1 \ nullable r2)" +| "nullable (SEQ r1 r2) = (nullable r1 \ nullable r2)" + +lemma nullable_correctness: + shows "nullable r \ [] \ (L r)" +apply (induct r) +apply(auto simp add: Sequ_def) +done + +fun mkeps :: "rexp \ val" +where + "mkeps(EMPTY) = Void" +| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" +| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" + +lemma mkeps_nullable: + assumes "nullable(r)" shows "\ mkeps r : r" +using assms +apply(induct rule: nullable.induct) +apply(auto intro: Prf.intros) +done + +lemma mkeps_flat: + assumes "nullable(r)" shows "flat (mkeps r) = []" +using assms +apply(induct rule: nullable.induct) +apply(auto) +done + + +lemma mkeps_flats: + assumes "nullable(r)" shows "flatten (flats (mkeps r)) = []" +using assms +apply(induct rule: nullable.induct) +apply(auto) +done + +lemma mkeps_POSIX: + assumes "nullable r" + shows "POSIX (mkeps r) r" +using assms +apply(induct r) +apply(auto) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(6)) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +apply (metis ValOrd.intros(1) append_is_Nil_conv mkeps_flat) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +apply (metis ValOrd.intros(5)) +apply(rule ValOrd.intros(2)) +apply(simp add: mkeps_flat) +apply(simp add: flats_flat) +apply (metis mkeps_flats) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +apply (metis ValOrd.intros(5)) +apply (smt ValOrd.intros(2) flats_flat) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis Prf_flat_L flats_flat mkeps_flats nullable_correctness) +by (metis ValOrd.intros(4)) + +fun + der :: "char \ rexp \ rexp" +where + "der c (NULL) = NULL" +| "der c (EMPTY) = NULL" +| "der c (CHAR c') = (if c = c' then EMPTY else NULL)" +| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" +| "der c (SEQ r1 r2) = + (if nullable r1 + then ALT (SEQ (der c r1) r2) (der c r2) + else SEQ (der c r1) r2)" + +fun + ders :: "string \ rexp \ rexp" +where + "ders [] r = r" +| "ders (c # s) r = ders s (der c r)" + +fun injval :: "rexp \ char \ val \ val" +where + "injval (CHAR d) c Void = Char d" +| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)" +| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)" +| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2" +| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" +| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" + +fun projval :: "rexp \ char \ val \ val" +where + "projval (CHAR d) c _ = Void" +| "projval (ALT r1 r2) c (Left v1) = Left(projval r1 c v1)" +| "projval (ALT r1 r2) c (Right v2) = Right(projval r2 c v2)" +| "projval (SEQ r1 r2) c (Seq v1 v2) = + (if flat v1 = [] then Right(projval r2 c v2) + else if nullable r1 then Left (Seq (projval r1 c v1) v2) + else Seq (projval r1 c v1) v2)" + +lemma v3: + assumes "\ v : der c r" shows "\ (injval r c v) : r" +using assms +apply(induct arbitrary: v rule: der.induct) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(case_tac "c = c'") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis Prf.intros(5)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis Prf.intros(2)) +apply (metis Prf.intros(3)) +apply(simp) +apply(case_tac "nullable r1") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply (metis Prf.intros(1)) +apply(auto)[1] +apply (metis Prf.intros(1) mkeps_nullable) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(rule Prf.intros) +apply(auto)[2] +done + +fun head where + "head [] = None" +| "head (x#xs) = Some x" + +lemma head1: + assumes "head (xs @ ys) = Some x" + shows "(head xs = Some x) \ (xs = [] \ head ys = Some x)" +using assms +apply(induct xs) +apply(auto) +done + +lemma head2: + assumes "head (xs @ ys) = None" + shows "(head xs = None) \ (head ys = None)" +using assms +apply(induct xs) +apply(auto) +done + +lemma v4: + assumes "\ v : der c r" shows "flat (injval r c v) = c#(flat v)" +using assms +apply(induct arbitrary: v rule: der.induct) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "c = c'") +apply(simp) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "nullable r1") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply (metis mkeps_flat) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +done + + +lemma proj_inj_id: + assumes "\ v : der c r" + shows "projval r c (injval r c v) = v" +using assms +apply(induct r arbitrary: c v rule: rexp.induct) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "c = char") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +defer +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "nullable rexp1") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply (metis list.distinct(1) v4) +apply(auto)[1] +apply (metis mkeps_flat) +apply(auto) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(simp add: v4) +done + +lemma Le_2a: "(head (flat v) = None) = (flat v = [])" +apply(induct v) +apply(simp_all) +apply (metis Nil_is_append_conv head.elims option.distinct(1)) +done + +lemma v5: + assumes "\ v : der c r" "POSIX v (der c r)" + shows "POSIX (injval r c v) r" +using assms +apply(induct arbitrary: v rule: der.induct) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "c = c'") +apply(auto simp add: POSIX_def)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply (metis ValOrd.intros(7)) +apply(erule Prf.cases) +apply(simp_all)[5] +prefer 2 +apply(simp) +apply(case_tac "nullable r1") +apply(simp) +defer +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(drule POSIX_SEQ) +apply(assumption) +apply(assumption) +apply(auto)[1] +apply(rule POSIX_SEQ_I) +apply metis +apply(simp) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(drule POSIX_ALT) +apply(rule POSIX_ALT_I1) +apply metis +defer +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +apply(rotate_tac 5) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(drule POSIX_ALT) +apply(drule POSIX_SEQ) +apply(simp) +apply(simp) +apply(rule POSIX_SEQ_I) +apply metis +apply(simp) +apply(drule POSIX_ALT1a) +apply(rule POSIX_SEQ_I) +apply (metis mkeps_POSIX) +apply(metis) +apply(frule POSIX_ALT1a) +apply(rotate_tac 1) +apply(drule_tac x="v2" in meta_spec) +apply(simp) +apply(rule POSIX_ALT_I2) +apply(simp) +apply(frule POSIX_ALT1a) +apply(auto) +apply(subst v4) +apply(simp) +apply(simp) +apply(case_tac "\r. v2 \r v'") +apply (metis ValOrd_length le_neq_implies_less less_Suc_eq) +apply(auto)[1] +apply(frule_tac x="der c r2" in spec) +apply(subgoal_tac "\(Right v2 \(ALT (der c r1) (der c r2)) Right v')") +prefer 2 +apply(rule notI) +apply(erule ValOrd.cases) +apply(simp_all)[7] +apply(subst (asm) (1) POSIX_def) +apply(simp) +apply(subgoal_tac "(\ \ Right v' : ALT (der c r1) (der c r2)) \ (flats v2 \ flats v')") +prefer 2 +apply (metis flats.simps(4)) +apply(simp) +apply(auto)[1] +apply(subst v4) +apply(simp) +apply(simp) +apply(case_tac "v2 \r1 v'") +apply (metis ValOrd_length le_neq_implies_less less_Suc_eq) +apply( + +apply(drule_tac x="projval (ALT r1 r2) c v'" in spec) +apply(drule mp) +apply(auto) +apply(frule POSIX_ALT1b) +apply(auto) +apply(subst v4) +apply(simp) +apply(simp) +apply(simp add: flats_flat) +apply(rotate_tac 1) +apply(drule_tac x="v2" in meta_spec) +apply(simp) +apply(rule POSIX_ALT_I2) +apply(simp) +apply(auto)[1] +apply(subst v4) +apply(simp) +defer +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto) +apply(rotate_tac 5) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(auto)[1] +apply(drule POSIX_ALT) +apply(drule POSIX_SEQ) +apply(simp) +apply(simp) +apply(rule POSIX_SEQ_I) +apply metis +apply(simp) +apply(drule POSIX_ALT1a) +apply(rule POSIX_SEQ_I) +apply (metis mkeps_POSIX) +apply metis +apply(drule_tac x="projval r1 c v'" in meta_spec) +apply(drule meta_mp) +defer +apply(drule meta_mp) +defer +apply(subst (asm) (1) POSIX_def) +apply(simp) + + + +lemma inj_proj_id: + assumes "\ v : r" "POSIX v r" "head (flat v) = Some c" + shows "injval r c (projval r c v) = v" +using assms +apply(induct v r arbitrary: rule: Prf.induct) +apply(simp) +apply(auto)[1] + +apply(simp) +apply(frule POSIX_head) +apply(assumption) +apply(simp) +apply(drule meta_mp) + +apply(frule POSIX_E1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(frule POSIX_E1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(frule POSIX_E1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(frule POSIX_E1) +defer +apply(frule POSIX_E1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] + +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp) +apply(case_tac "c = char") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] + + +lemma POSIX_head: + assumes "POSIX (Stars (v#vs)) (STAR r)" "head (flat v @ flat (Stars vs)) = Some c" + shows "head (flat v) = Some c" +using assms +apply(rule_tac ccontr) +apply(frule POSIX_E1) +apply(drule Le_1) +apply(assumption) +apply(auto)[1] +apply(auto simp add: POSIX_def) +apply(drule_tac x="Stars (v'#vs')" in spec) +apply(simp) +apply(simp add: ValOrd_eq_def) +apply(auto) +apply(erule ValOrd.cases) +apply(simp_all) +apply(auto) +using Le_2 + +by (metis Le_2 Le_2a head1) + + +lemma inj_proj_id: + assumes "\ v : r" "POSIX v r" "head (flat v) = Some c" + shows "injval r c (projval r c v) = v" +using assms +apply(induct r arbitrary: rule: Prf.induct) +apply(simp) +apply(simp) +apply(frule POSIX_head) +apply(assumption) +apply(simp) +apply(drule meta_mp) + +apply(frule POSIX_E1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(frule POSIX_E1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(frule POSIX_E1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(frule POSIX_E1) +defer +apply(frule POSIX_E1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] + +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp) +apply(case_tac "c = char") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +defer +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(rotate_tac 2) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(case_tac "nullable rexp1") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(simp add: v4) +apply(auto)[1] +apply(simp add: v2a) +apply(simp only: der.simps) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(simp add: v4) +done + + + +lemma STAR_obtain: + assumes "\ v : STAR r" + obtains vs where "\ Stars vs : STAR r" and "v = Stars vs" +using assms +by (smt Prf.cases rexp.distinct(17) rexp.distinct(23) rexp.distinct(27) rexp.distinct(29)) + +fun first :: "val \ char option" +where + "first Void = None" +| "first (Char c) = Some c" +| "first (Seq v1 v2) = (if (\c. first v1 = Some c) then first v1 else first v2)" +| "first (Right v) = first v" +| "first (Left v) = first v" +| "first (Stars []) = None" +| "first (Stars (v#vs)) = (if (\c. first v = Some c) then first v else first (Stars vs))" + +lemma flat: + shows "flat v = [] \ first v = None" + and "flat (Stars vs) = [] \ first (Stars vs) = None" +apply(induct v and vs) +apply(auto) +done + +lemma first: + shows "first v = Some c \ head (flat v @ ys) = Some c" +apply(induct arbitrary: ys rule: first.induct) +apply(auto split: if_splits simp add: flat[symmetric]) +done + + + +lemma v5: + assumes "POSIX v r" "head (flat v) = Some c" + shows "\ projval r c v : der c r" +using assms +apply(induct r arbitrary: c v rule: rexp.induct) +prefer 6 +apply(frule POSIX_E1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(rule Prf.intros) +apply(drule_tac x="c" in meta_spec) +apply(drule_tac x="va" in meta_spec) +apply(drule meta_mp) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(drule_tac x="Stars (v'#vs)" in spec) +apply(simp) +apply(drule mp) +apply (metis Prf.intros(2)) +apply(simp add: ValOrd_eq_def) +apply(erule disjE) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[10] +apply(drule_tac meta_mp) +apply(drule head1) +apply(auto)[1] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(drule_tac x="Stars (va#vs)" in spec) +apply(simp) +prefer 6 +apply(simp) +apply(auto split: if_splits)[1] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(rule Prf.intros) +apply metis +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto split: if_splits)[1] +apply(rule Prf.intros) +apply(auto split: if_splits)[1] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto) +apply(case_tac "char = c") +apply(simp) +apply(rule Prf.intros) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[ + + +lemma uu: + assumes ih: "\v c. \head (flat v) = Some c\ \ \ projval rexp c v : der c rexp" + assumes "\ Stars vs : STAR rexp" + and "first (Stars (v#vs)) = Some c" + shows "\ projval rexp c v : der c rexp" +using assms(2,3) +apply(induct vs) +apply(simp_all) +apply(auto split: if_splits) +apply (metis first head1 ih) +apply (metis first head1 ih) + +apply(auto) + +lemma v5: + assumes "\ v : r" "head (flat v) = Some c" + shows "\ projval r c v : der c r" +using assms +apply(induct r arbitrary: v c rule: rexp.induct) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(case_tac "char = c") +apply(simp) +apply(rule Prf.intros) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +prefer 3 +proof - + fix rexp v c vs + assume ih: "\v c. \\ v : rexp; head (flat v) = Some c\ \ \ projval rexp c v : der c rexp" + assume a: "head (flat (Stars vs)) = Some c" + assume b: "\ Stars vs : STAR rexp" + have c: "first (Stars vs) = Some c \ \ (hd vs) : rexp \ \ projval rexp c (hd vs) : der c rexp" + using b + apply(induct arbitrary: rule: Prf.induct) + apply(simp_all) + apply(case_tac "\c. first v = Some c") + apply(auto)[1] + apply(rule ih) + apply(simp) + apply (metis append_Nil2 first) + apply(auto)[1] + apply(simp) + apply(auto split: if_splits)[1] +apply (metis append_Nil2 first ih) + apply(drule_tac x="v" in meta_spec) + apply(simp) + apply(rotate_tac 1) + apply(erule Prf.cases) + apply(simp_all)[7] + apply(drule_tac x="v" in meta_spec) + apply(simp) + using a + apply(rotate_tac 1) + apply(erule Prf.cases) + apply(simp_all)[7] + + +apply (metis (full_types) Prf.cases Prf.simps a b flat.simps(6) head.simps(1) list.distinct(1) list.inject option.distinct(1) rexp.distinct(17) rexp.distinct(23) rexp.distinct(27) rexp.distinct(29) val.distinct(17) val.distinct(27) val.distinct(29) val.inject(5)) + + apply(auto)[1] + apply(case_tac "\c. first a = Some c") + apply(auto)[1] + apply(rule ih) + apply(simp) +apply (metis append_Nil2 first ih) + apply(auto)[1] + apply(case_tac "\c. first a = Some c") + apply(auto)[1] + apply(rule ih) + apply(simp) + apply(auto)[1] + + apply(erule Prf.cases) + apply(simp_all)[7] +apply (metis append_Nil2 first) + apply(simp) + apply(simp add: ) + apply(simp add: flat) + apply(erule Prf.cases) + apply(simp_all)[7] + apply(rule Prf.intros) + *) + show "\ projval (STAR rexp) c (Stars vs) : SEQ (der c rexp) (STAR rexp)" + using b a + apply - + apply(erule Prf.cases) + apply(simp_all)[7] + apply(drule head1) + apply(auto) + apply(rule Prf.intros) + apply(rule ih) + apply(simp_all)[3] + using k + apply - + apply(rule Prf.intros) + apply(auto) + +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(rule Prf.intros) +defer +apply(rotate_tac 1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(drule_tac meta_mp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(rule ih) +apply(case_tac vs) +apply(simp) +apply(simp) +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply (metis Prf.intros(1) Prf.intros(3)) +apply(simp) + +apply(drule head1) +apply(auto)[1] +apply (metis Prf.intros(3)) + + +apply (metis Prf.intros) +apply(case_tac "nullable r1") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply (metis Prf.intros(5)) +apply (metis Prf.intros(3) Prf.intros(4) head1) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply (metis nullable_correctness v1) +apply(drule head1) +apply(auto)[1] +apply (metis Prf.intros(3)) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(drule head1) +apply(auto)[1] +apply(rule Prf.intros) +apply(auto) +apply(rule Prf.intros) +apply(auto) +apply(rotate_tac 2) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto) +apply(drule head1) +apply(auto) +apply(rule Prf.intros) +apply(auto) +apply(rule Prf.intros) +apply(auto) + +defer +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(rule Prf.intros) +apply(auto) +apply(drule head1) +apply(auto)[1] +defer +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto) +apply(drule head1) +apply(auto)[1] + +apply(simp) +apply(rule Prf.intros) +apply(auto) +apply(drule_tac x="v" in meta_spec) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(drule head1) +apply(auto)[1] +apply(rule Prf.intros) +apply(auto) +apply(drule meta_mp) +apply(rule Prf.intros) +apply(auto) + +apply(simp) +apply (metis Prf.intros(3) head1) + +defer +apply(simp) +apply(drule_tac head1) +apply(auto)[1] +apply(rule Prf.intros) +apply(rule Prf.intros) +apply(simp) +apply(simp) +apply(rule Prf.intros) +apply(simp) +apply(simp) +apply(rule Prf.intros) +apply(simp) +apply (metis nullable_correctness v1) +apply(simp) +apply(rule Prf.intros) +apply(simp) +apply(simp) +apply(rule Prf.intros) +apply(simp) +apply(simp) +apply(simp) +apply(rule Prf.intros) +apply(drule_tac head1) +apply(auto)[1] +apply (metis Prf.intros(3)) +apply(rotate_tac 2) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(rule Prf.intros) +defer +apply(drule_tac x="c" in meta_spec) +apply(simp) +apply(rotate_tac 6) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(rule Prf.intros) +apply(auto)[2] +apply(drule v1) +apply(simp) +apply(rule Prf.intros) +apply(simp add: nullable_correctness[symmetric]) +apply(rotate_tac 1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(drule head1) +apply(auto)[1] +apply(rule Prf.intros) +apply(simp) +apply(simp) +apply(simp) + +lemma inj_proj_id: + assumes "\ v : r" "head (flat v) = Some c" + shows "injval r c (projval r c v) = v" +using assms +apply(induct arbitrary: c rule: Prf.induct) +apply(simp) +apply(simp) +apply(drule head1) +apply(auto)[1] +apply(rotate_tac 2) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(drule head1) +apply(auto)[1] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp) +apply(case_tac "ca = c'") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +defer +apply(simp) +apply(case_tac "nullable r1") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(rotate_tac 2) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp) +apply(case_tac "nullable rexp1") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(simp add: v4) +apply(auto)[1] +apply(simp add: v2a) +apply(simp only: der.simps) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(simp add: v4) +done + + + +lemma POSIX_I: + assumes "\ v : r" "\v'. \ v' : r \ flat v = flat v' \ v \r v'" + shows "POSIX v r" +using assms +unfolding POSIX_def +apply(auto) +done + +lemma DISJ: + "(\ A \ B) \ A \ B" +by metis + +lemma DISJ2: + "\(A \ B) \ \A \ \B" +by metis + +lemma APP: "xs @ [] = xs" by simp + +lemma v5: + assumes "POSIX v (der c r)" + shows "POSIX (injval r c v) r" +using assms +apply(induct arbitrary: v rule: der.induct) +apply(simp) +apply(auto simp add: POSIX_def)[1] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto simp add: POSIX_def)[1] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(case_tac "c = c'") +apply(auto simp add: POSIX_def)[1] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(rule Prf.intros) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp add: ValOrd_eq_def) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp) +apply(auto simp add: POSIX_def)[1] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(erule Prf.cases) +apply(simp_all)[7] +prefer 3 +apply(simp) +apply(frule POSIX_E1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(drule_tac x="v1" in meta_spec) +apply(drule meta_mp) +apply(rule POSIX_I) +apply(simp) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(drule_tac x="Seq v' v2" in spec) +apply(simp) +apply(drule mp) +apply (metis Prf.intros(3)) +apply(simp add: ValOrd_eq_def) +apply(erule disjE) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[10] +apply(subgoal_tac "\vs2. v2 = Stars vs2") +prefer 2 +apply(rotate_tac 2) +apply(erule Prf.cases) +apply(auto)[7] +apply(erule exE) +apply(clarify) +apply(simp only: injval.simps) +apply(case_tac "POSIX (Stars (injval r c v1 # vs2)) (STAR r)") +apply(simp) +apply(subgoal_tac "\v'' vs''. Stars (v''#vs'') \(STAR r) Stars (injval r c v1 # vs2)") +apply(erule exE)+ +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(auto)[1] +apply(subst (asm) (2) POSIX_def) + + +prefer 2 +apply(subst (asm) (3) POSIX_def) +apply(simp) +apply(drule mp) +apply (metis Prf.intros(2) v3) +apply(erule exE) +apply(auto)[1] + +apply +apply(subgoal_tac "\ Stars (injval r c v1 # vs2) : STAR r") +apply(simp) +apply(case_tac "flat () = []") + +apply(rule POSIX_I) +apply (metis POSIX_E1 der.simps(6) v3) +apply(rotate_tac 2) +apply(erule Prf.cases) +defer +defer +apply(simp_all)[5] +prefer 4 +apply(clarify) +apply(simp only: v4 flat.simps injval.simps) +prefer 4 +apply(clarify) +apply(simp only: v4 APP flat.simps injval.simps) +prefer 2 +apply(erule Prf.cases) +apply(simp_all)[7] +apply(clarify) + + +apply(simp add: ValOrd_eq_def) +apply(subst (asm) POSIX_def) +apply(erule conjE) +apply(drule_tac x="va" in spec) +apply(simp) +apply(simp add: v4) +apply(simp add: ValOrd_eq_def) +apply(simp) +apply(rule disjI2) +apply(rule ValOrd.intros) +apply(rotate_tac 2) +apply(subst (asm) POSIX_def) +apply(simp) +apply(auto)[1] +apply(drule_tac x="v" in spec) +apply(simp) +apply(drule mp) +prefer 2 +apply(simp add: ValOrd_eq_def) +apply(auto)[1] + +apply(case_tac "injval rb c v1 = v \ [] = vs") +apply(simp) +apply(simp only: DISJ2) +apply(rule disjI2) +apply(erule disjE) + + +apply(auto)[1] +apply (metis list.distinct(1) v4) +apply(auto)[1] +apply(simp add: ValOrd_eq_def) +apply(rule DISJ) +apply(simp only: DISJ2) +apply(erule disjE) +apply(rule ValOrd.intros) +apply(subst (asm) POSIX_def) +apply(auto)[1] + +apply (metis list.distinct(1) v4) +apply(subst (asm) POSIX_def) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[7] +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply (metis list.distinct(1) v4) +apply (metis list.distinct(1) v4) +apply(clarify) +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[7] +prefer 2 +apply(clarify) +apply(simp add: ValOrd_eq_def) +apply(drule_tac x="Stars (v#vs)" in spec) +apply(drule mp) +apply(auto)[1] + +apply(simp add: ValOrd_eq_def) + +apply (metis POSIX_E1 der.simps(6) list.distinct(1) v4) +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[7] + +apply(simp) +apply(case_tac v2) +apply(simp) +apply(simp (no_asm) POSIX_def) +apply(auto)[1] +apply(auto)[1] + + +apply (metis POSIX_E der.simps(6) v3) + +apply(rule Prf.intros) +apply(drule_tac x="v1" in meta_spec) +apply(drule meta_mp) +prefer 2 + +apply(subgoal_tac "POSIX v1 (der c r)") +prefer 2 +apply(simp add: POSIX_def) +apply(auto)[1] +apply(simp add: ValOrd_eq_def) +apply(auto)[1] + + +lemma v5: + assumes "\ v : der c r" "POSIX v (der c r)" + shows "POSIX (injval r c v) r" +using assms +apply(induct arbitrary: v rule: der.induct) +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp) +apply(case_tac "c = c'") +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(rule Prf.intros) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp add: ValOrd_eq_def) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +prefer 3 +apply(simp) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(case_tac "flat (Seq v1 v2) \ []") +apply(subgoal_tac "POSIX v1 (der c r)") +prefer 2 +apply(simp add: POSIX_def) +apply(auto)[1] + + +apply(drule_tac x="v1" in meta_spec) +apply(simp) +apply(simp (no_asm) add: POSIX_def) +apply(auto)[1] +apply(rule v3) +apply (metis Prf.intros(3) der.simps(6)) +apply(rotate_tac 1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp add: ValOrd_eq_def) +apply(rule disjI2) +apply(rotate_tac 1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(rule ValOrd.intros) +apply(simp) +apply (metis list.distinct(1) v4) +apply(rule ValOrd.intros) +apply(simp add: POSIX_def) +apply(auto)[1] +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(simp add: ValOrd_eq_def) +apply(drule_tac x="v" in spec) +apply(simp) +apply(auto)[1] +apply(simp) + +apply(simp add: POSIX_def) +apply(auto)[1] +apply( + +apply(rotate_tac 1) +apply(erule Prf.cases) +apply(simp_all)[7] +apply (metis list.distinct(1) v4) +apply(rotate_tac 8) +apply(erule Prf.cases) +apply(simp_all)[7] +apply (metis POSIX_def ValOrd.intros(9) ValOrd_eq_def) +apply(simp add: ValOrd_eq_def) +apply(simp) + +apply(simp add: ValOrd_eq_def) +apply(simp add: POSIX_def) +apply(auto)[1] + + +apply(simp) +apply(simp add: ValOrd_eq_def) +apply(simp add: POSIX_def) +apply(erule conjE)+ +apply(drule_tac x="Seq v1 v2" in spec) +apply(simp) + + + +apply(rotate_tac 2) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(simp add: POSIX_def) +apply(auto)[1] +apply(rule Prf.intros) +apply(rule v3) +apply(simp) +apply(rotate_tac 5) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(rotate_tac 4) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto)[1] +apply(simp add: ValOrd_eq_def) + +apply(simp) + + +prefer 2 +apply(auto)[1] +apply(subgoal_tac "POSIX v2 (der c r2)") +apply(rotate_tac 1) +apply(drule_tac x="v2" in meta_spec) +apply(simp) +apply(subgoal_tac "\ Right (injval r2 c v2) : (ALT r1 r2)") +prefer 2 +apply (metis Prf.intros(5) v3) +apply(simp (no_asm) add: POSIX_def) +apply(auto)[1] +apply(rotate_tac 6) +apply(erule Prf.cases) +apply(simp_all)[7] +prefer 2 +apply(auto)[1] +apply(simp add: ValOrd_eq_def) +apply (metis POSIX_def ValOrd.intros(5) ValOrd_eq_def) +apply(auto)[1] +apply(simp add: ValOrd_eq_def) + + +section {* Correctness Proof of the Matcher *} + + +section {* Left-Quotient of a Set *} + +fun + zeroable :: "rexp \ bool" +where + "zeroable (NULL) = True" +| "zeroable (EMPTY) = False" +| "zeroable (CHAR c) = False" +| "zeroable (ALT r1 r2) = (zeroable r1 \ zeroable r2)" +| "zeroable (SEQ r1 r2) = (zeroable r1 \ zeroable r2)" +| "zeroable (STAR r) = False" + + +lemma zeroable_correctness: + shows "zeroable r \ (L r = {})" +apply(induct r) +apply(auto simp add: Seq_def)[6] +done + +section {* Left-Quotient of a Set *} + +definition + Der :: "char \ string set \ string set" +where + "Der c A \ {s. [c] @ s \ A}" + +lemma Der_null [simp]: + shows "Der c {} = {}" +unfolding Der_def +by auto + +lemma Der_empty [simp]: + shows "Der c {[]} = {}" +unfolding Der_def +by auto + +lemma Der_char [simp]: + shows "Der c {[d]} = (if c = d then {[]} else {})" +unfolding Der_def +by auto + +lemma Der_union [simp]: + shows "Der c (A \ B) = Der c A \ Der c B" +unfolding Der_def +by auto + +lemma Der_seq [simp]: + shows "Der c (A ;; B) = (Der c A) ;; B \ (if [] \ A then Der c B else {})" +unfolding Der_def Seq_def +by (auto simp add: Cons_eq_append_conv) + +lemma Der_star [simp]: + shows "Der c (A\) = (Der c A) ;; A\" +proof - + have "Der c (A\) = Der c ({[]} \ A ;; A\)" + by (simp only: star_cases[symmetric]) + also have "... = Der c (A ;; A\)" + by (simp only: Der_union Der_empty) (simp) + also have "... = (Der c A) ;; A\ \ (if [] \ A then Der c (A\) else {})" + by simp + also have "... = (Der c A) ;; A\" + unfolding Seq_def Der_def + by (auto dest: star_decomp) + finally show "Der c (A\) = (Der c A) ;; A\" . +qed + + +lemma der_correctness: + shows "L (der c r) = Der c (L r)" +by (induct r) + (simp_all add: nullable_correctness) + +lemma matcher_correctness: + shows "matcher r s \ s \ L r" +by (induct s arbitrary: r) + (simp_all add: nullable_correctness der_correctness Der_def) + +section {* Examples *} + +definition + "CHRA \ CHAR (CHR ''a'')" + +definition + "ALT1 \ ALT CHRA EMPTY" + +definition + "SEQ3 \ SEQ (SEQ ALT1 ALT1) ALT1" + +value "matcher SEQ3 ''aaa''" + +value "matcher NULL []" +value "matcher (CHAR (CHR ''a'')) [CHR ''a'']" +value "matcher (CHAR a) [a,a]" +value "matcher (STAR (CHAR a)) []" +value "matcher (STAR (CHAR a)) [a,a]" +value "matcher (SEQ (CHAR (CHR ''a'')) (SEQ (STAR (CHAR (CHR ''b''))) (CHAR (CHR ''c'')))) ''abbbbc''" +value "matcher (SEQ (CHAR (CHR ''a'')) (SEQ (STAR (CHAR (CHR ''b''))) (CHAR (CHR ''c'')))) ''abbcbbc''" + +section {* Incorrect Matcher - fun-definition rejected *} + +fun + match :: "rexp list \ string \ bool" +where + "match [] [] = True" +| "match [] (c # s) = False" +| "match (NULL # rs) s = False" +| "match (EMPTY # rs) s = match rs s" +| "match (CHAR c # rs) [] = False" +| "match (CHAR c # rs) (d # s) = (if c = d then match rs s else False)" +| "match (ALT r1 r2 # rs) s = (match (r1 # rs) s \ match (r2 # rs) s)" +| "match (SEQ r1 r2 # rs) s = match (r1 # r2 # rs) s" +| "match (STAR r # rs) s = (match rs s \ match (r # (STAR r) # rs) s)" + + +end \ No newline at end of file