diff -r 77d5181490ae -r d131cd45a346 thys/LexerExt.thy --- a/thys/LexerExt.thy Tue Feb 28 23:40:37 2017 +0000 +++ b/thys/LexerExt.thy Wed Mar 01 00:13:15 2017 +0000 @@ -84,11 +84,6 @@ shows "[] \ A \ n \ (n = 0 \ [] \ A)" by(induct n) (auto simp add: Sequ_def) -lemma Pow_plus: - "A \ (n + m) = A \ n ;; A \ m" -by (induct n) (simp_all add: seq_assoc) - - section {* Kleene Star for Languages *} inductive_set @@ -223,9 +218,6 @@ apply(auto simp add: Sequ_def) done -lemma Suc_reduce_Union: - "(\x\{Suc n..Suc m}. B x) = (\x\{n..m}. B (Suc x))" -by (metis UN_extend_simps(10) image_Suc_atLeastAtMost) lemma Suc_reduce_Union2: "(\x\{Suc n..}. B x) = (\x\{n..}. B (Suc x))" @@ -239,10 +231,6 @@ shows "(\x\A. B ;; C x) = B ;; (\x\A. C x)" by (auto simp add: Sequ_def) -lemma Seq_Union: - shows "A ;; (\x\B. C x) = (\x\B. A ;; C x)" -by (auto simp add: Sequ_def) - lemma Der_Pow [simp]: shows "Der c (A \ (Suc n)) = (Der c A) ;; (A \ n) \ (if [] \ A then Der c (A \ n) else {})" @@ -281,14 +269,7 @@ apply(simp) by (smt Der_Pow Suc_Union inf_sup_aci(5) inf_sup_aci(7) sup_idem) -lemma Der_Pow_in: - assumes "[] \ A" - shows "Der c (A \ n) = (\x\n. Der c (A \ x))" -using assms -apply(induct n) -apply(simp) -apply(simp add: Suc_Union) -done + lemma Der_Pow_notin: assumes "[] \ A" @@ -1277,5 +1258,5 @@ using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce using Posix1(1) lexer_correct_None lexer_correct_Some by blast - +unused_thms end \ No newline at end of file