diff -r aecf1ddf3541 -r c27f04bb2262 thys3/Positions.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys3/Positions.thy Wed Jun 29 12:38:05 2022 +0100 @@ -0,0 +1,773 @@ + +theory Positions + imports PosixSpec Lexer +begin + +chapter \<open>An alternative definition for POSIX values\<close> + +section \<open>Positions in Values\<close> + +fun + at :: "val \<Rightarrow> nat list \<Rightarrow> val" +where + "at v [] = v" +| "at (Left v) (0#ps)= at v ps" +| "at (Right v) (Suc 0#ps)= at v ps" +| "at (Seq v1 v2) (0#ps)= at v1 ps" +| "at (Seq v1 v2) (Suc 0#ps)= at v2 ps" +| "at (Stars vs) (n#ps)= at (nth vs n) ps" + + + +fun Pos :: "val \<Rightarrow> (nat list) set" +where + "Pos (Void) = {[]}" +| "Pos (Char c) = {[]}" +| "Pos (Left v) = {[]} \<union> {0#ps | ps. ps \<in> Pos v}" +| "Pos (Right v) = {[]} \<union> {1#ps | ps. ps \<in> Pos v}" +| "Pos (Seq v1 v2) = {[]} \<union> {0#ps | ps. ps \<in> Pos v1} \<union> {1#ps | ps. ps \<in> Pos v2}" +| "Pos (Stars []) = {[]}" +| "Pos (Stars (v#vs)) = {[]} \<union> {0#ps | ps. ps \<in> Pos v} \<union> {Suc n#ps | n ps. n#ps \<in> Pos (Stars vs)}" + + +lemma Pos_stars: + "Pos (Stars vs) = {[]} \<union> (\<Union>n < length vs. {n#ps | ps. ps \<in> Pos (vs ! n)})" +apply(induct vs) +apply(auto simp add: insert_ident less_Suc_eq_0_disj) +done + +lemma Pos_empty: + shows "[] \<in> Pos v" +by (induct v rule: Pos.induct)(auto) + + +abbreviation + "intlen vs \<equiv> int (length vs)" + + +definition pflat_len :: "val \<Rightarrow> nat list => int" +where + "pflat_len v p \<equiv> (if p \<in> Pos v then intlen (flat (at v p)) else -1)" + +lemma pflat_len_simps: + shows "pflat_len (Seq v1 v2) (0#p) = pflat_len v1 p" + and "pflat_len (Seq v1 v2) (Suc 0#p) = pflat_len v2 p" + and "pflat_len (Left v) (0#p) = pflat_len v p" + and "pflat_len (Left v) (Suc 0#p) = -1" + and "pflat_len (Right v) (Suc 0#p) = pflat_len v p" + and "pflat_len (Right v) (0#p) = -1" + and "pflat_len (Stars (v#vs)) (Suc n#p) = pflat_len (Stars vs) (n#p)" + and "pflat_len (Stars (v#vs)) (0#p) = pflat_len v p" + and "pflat_len v [] = intlen (flat v)" +by (auto simp add: pflat_len_def Pos_empty) + +lemma pflat_len_Stars_simps: + assumes "n < length vs" + shows "pflat_len (Stars vs) (n#p) = pflat_len (vs!n) p" +using assms +apply(induct vs arbitrary: n p) +apply(auto simp add: less_Suc_eq_0_disj pflat_len_simps) +done + +lemma pflat_len_outside: + assumes "p \<notin> Pos v1" + shows "pflat_len v1 p = -1 " +using assms by (simp add: pflat_len_def) + + + +section \<open>Orderings\<close> + + +definition prefix_list:: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<sqsubseteq>pre _" [60,59] 60) +where + "ps1 \<sqsubseteq>pre ps2 \<equiv> \<exists>ps'. ps1 @ps' = ps2" + +definition sprefix_list:: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<sqsubset>spre _" [60,59] 60) +where + "ps1 \<sqsubset>spre ps2 \<equiv> ps1 \<sqsubseteq>pre ps2 \<and> ps1 \<noteq> ps2" + +inductive lex_list :: "nat list \<Rightarrow> nat list \<Rightarrow> bool" ("_ \<sqsubset>lex _" [60,59] 60) +where + "[] \<sqsubset>lex (p#ps)" +| "ps1 \<sqsubset>lex ps2 \<Longrightarrow> (p#ps1) \<sqsubset>lex (p#ps2)" +| "p1 < p2 \<Longrightarrow> (p1#ps1) \<sqsubset>lex (p2#ps2)" + +lemma lex_irrfl: + fixes ps1 ps2 :: "nat list" + assumes "ps1 \<sqsubset>lex ps2" + shows "ps1 \<noteq> ps2" +using assms +by(induct rule: lex_list.induct)(auto) + +lemma lex_simps [simp]: + fixes xs ys :: "nat list" + shows "[] \<sqsubset>lex ys \<longleftrightarrow> ys \<noteq> []" + and "xs \<sqsubset>lex [] \<longleftrightarrow> False" + and "(x # xs) \<sqsubset>lex (y # ys) \<longleftrightarrow> (x < y \<or> (x = y \<and> xs \<sqsubset>lex ys))" +by (auto simp add: neq_Nil_conv elim: lex_list.cases intro: lex_list.intros) + +lemma lex_trans: + fixes ps1 ps2 ps3 :: "nat list" + assumes "ps1 \<sqsubset>lex ps2" "ps2 \<sqsubset>lex ps3" + shows "ps1 \<sqsubset>lex ps3" +using assms +by (induct arbitrary: ps3 rule: lex_list.induct) + (auto elim: lex_list.cases) + + +lemma lex_trichotomous: + fixes p q :: "nat list" + shows "p = q \<or> p \<sqsubset>lex q \<or> q \<sqsubset>lex p" +apply(induct p arbitrary: q) +apply(auto elim: lex_list.cases) +apply(case_tac q) +apply(auto) +done + + + + +section \<open>POSIX Ordering of Values According to Okui \& Suzuki\<close> + + +definition PosOrd:: "val \<Rightarrow> nat list \<Rightarrow> val \<Rightarrow> bool" ("_ \<sqsubset>val _ _" [60, 60, 59] 60) +where + "v1 \<sqsubset>val p v2 \<equiv> pflat_len v1 p > pflat_len v2 p \<and> + (\<forall>q \<in> Pos v1 \<union> Pos v2. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q)" + +lemma PosOrd_def2: + shows "v1 \<sqsubset>val p v2 \<longleftrightarrow> + pflat_len v1 p > pflat_len v2 p \<and> + (\<forall>q \<in> Pos v1. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q) \<and> + (\<forall>q \<in> Pos v2. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q)" +unfolding PosOrd_def +apply(auto) +done + + +definition PosOrd_ex:: "val \<Rightarrow> val \<Rightarrow> bool" ("_ :\<sqsubset>val _" [60, 59] 60) +where + "v1 :\<sqsubset>val v2 \<equiv> \<exists>p. v1 \<sqsubset>val p v2" + +definition PosOrd_ex_eq:: "val \<Rightarrow> val \<Rightarrow> bool" ("_ :\<sqsubseteq>val _" [60, 59] 60) +where + "v1 :\<sqsubseteq>val v2 \<equiv> v1 :\<sqsubset>val v2 \<or> v1 = v2" + + +lemma PosOrd_trans: + assumes "v1 :\<sqsubset>val v2" "v2 :\<sqsubset>val v3" + shows "v1 :\<sqsubset>val v3" +proof - + from assms obtain p p' + where as: "v1 \<sqsubset>val p v2" "v2 \<sqsubset>val p' v3" unfolding PosOrd_ex_def by blast + then have pos: "p \<in> Pos v1" "p' \<in> Pos v2" unfolding PosOrd_def pflat_len_def + by (smt not_int_zless_negative)+ + have "p = p' \<or> p \<sqsubset>lex p' \<or> p' \<sqsubset>lex p" + by (rule lex_trichotomous) + moreover + { assume "p = p'" + with as have "v1 \<sqsubset>val p v3" unfolding PosOrd_def pflat_len_def + by (smt Un_iff) + then have " v1 :\<sqsubset>val v3" unfolding PosOrd_ex_def by blast + } + moreover + { assume "p \<sqsubset>lex p'" + with as have "v1 \<sqsubset>val p v3" unfolding PosOrd_def pflat_len_def + by (smt Un_iff lex_trans) + then have " v1 :\<sqsubset>val v3" unfolding PosOrd_ex_def by blast + } + moreover + { assume "p' \<sqsubset>lex p" + with as have "v1 \<sqsubset>val p' v3" unfolding PosOrd_def + by (smt Un_iff lex_trans pflat_len_def) + then have "v1 :\<sqsubset>val v3" unfolding PosOrd_ex_def by blast + } + ultimately show "v1 :\<sqsubset>val v3" by blast +qed + +lemma PosOrd_irrefl: + assumes "v :\<sqsubset>val v" + shows "False" +using assms unfolding PosOrd_ex_def PosOrd_def +by auto + +lemma PosOrd_assym: + assumes "v1 :\<sqsubset>val v2" + shows "\<not>(v2 :\<sqsubset>val v1)" +using assms +using PosOrd_irrefl PosOrd_trans by blast + +(* + :\<sqsubseteq>val and :\<sqsubset>val are partial orders. +*) + +lemma PosOrd_ordering: + shows "ordering (\<lambda>v1 v2. v1 :\<sqsubseteq>val v2) (\<lambda> v1 v2. v1 :\<sqsubset>val v2)" +unfolding ordering_def PosOrd_ex_eq_def +apply(auto) +using PosOrd_trans partial_preordering_def apply blast +using PosOrd_assym ordering_axioms_def by blast + +lemma PosOrd_order: + shows "class.order (\<lambda>v1 v2. v1 :\<sqsubseteq>val v2) (\<lambda> v1 v2. v1 :\<sqsubset>val v2)" +using PosOrd_ordering +apply(simp add: class.order_def class.preorder_def class.order_axioms_def) + by (metis (full_types) PosOrd_ex_eq_def PosOrd_irrefl PosOrd_trans) + + +lemma PosOrd_ex_eq2: + shows "v1 :\<sqsubset>val v2 \<longleftrightarrow> (v1 :\<sqsubseteq>val v2 \<and> v1 \<noteq> v2)" + using PosOrd_ordering + using PosOrd_ex_eq_def PosOrd_irrefl by blast + +lemma PosOrdeq_trans: + assumes "v1 :\<sqsubseteq>val v2" "v2 :\<sqsubseteq>val v3" + shows "v1 :\<sqsubseteq>val v3" +using assms PosOrd_ordering + unfolding ordering_def + by (metis partial_preordering.trans) + +lemma PosOrdeq_antisym: + assumes "v1 :\<sqsubseteq>val v2" "v2 :\<sqsubseteq>val v1" + shows "v1 = v2" +using assms PosOrd_ordering + unfolding ordering_def + by (simp add: ordering_axioms_def) + +lemma PosOrdeq_refl: + shows "v :\<sqsubseteq>val v" +unfolding PosOrd_ex_eq_def +by auto + + +lemma PosOrd_shorterE: + assumes "v1 :\<sqsubset>val v2" + shows "length (flat v2) \<le> length (flat v1)" +using assms unfolding PosOrd_ex_def PosOrd_def +apply(auto) +apply(case_tac p) +apply(simp add: pflat_len_simps) +apply(drule_tac x="[]" in bspec) +apply(simp add: Pos_empty) +apply(simp add: pflat_len_simps) +done + +lemma PosOrd_shorterI: + assumes "length (flat v2) < length (flat v1)" + shows "v1 :\<sqsubset>val v2" +unfolding PosOrd_ex_def PosOrd_def pflat_len_def +using assms Pos_empty by force + +lemma PosOrd_spreI: + assumes "flat v' \<sqsubset>spre flat v" + shows "v :\<sqsubset>val v'" +using assms +apply(rule_tac PosOrd_shorterI) +unfolding prefix_list_def sprefix_list_def +by (metis append_Nil2 append_eq_conv_conj drop_all le_less_linear) + +lemma pflat_len_inside: + assumes "pflat_len v2 p < pflat_len v1 p" + shows "p \<in> Pos v1" +using assms +unfolding pflat_len_def +by (auto split: if_splits) + + +lemma PosOrd_Left_Right: + assumes "flat v1 = flat v2" + shows "Left v1 :\<sqsubset>val Right v2" +unfolding PosOrd_ex_def +apply(rule_tac x="[0]" in exI) +apply(auto simp add: PosOrd_def pflat_len_simps assms) +done + +lemma PosOrd_LeftE: + assumes "Left v1 :\<sqsubset>val Left v2" "flat v1 = flat v2" + shows "v1 :\<sqsubset>val v2" +using assms +unfolding PosOrd_ex_def PosOrd_def2 +apply(auto simp add: pflat_len_simps) +apply(frule pflat_len_inside) +apply(auto simp add: pflat_len_simps) +by (metis lex_simps(3) pflat_len_simps(3)) + +lemma PosOrd_LeftI: + assumes "v1 :\<sqsubset>val v2" "flat v1 = flat v2" + shows "Left v1 :\<sqsubset>val Left v2" +using assms +unfolding PosOrd_ex_def PosOrd_def2 +apply(auto simp add: pflat_len_simps) +by (metis less_numeral_extra(3) lex_simps(3) pflat_len_simps(3)) + +lemma PosOrd_Left_eq: + assumes "flat v1 = flat v2" + shows "Left v1 :\<sqsubset>val Left v2 \<longleftrightarrow> v1 :\<sqsubset>val v2" +using assms PosOrd_LeftE PosOrd_LeftI +by blast + + +lemma PosOrd_RightE: + assumes "Right v1 :\<sqsubset>val Right v2" "flat v1 = flat v2" + shows "v1 :\<sqsubset>val v2" +using assms +unfolding PosOrd_ex_def PosOrd_def2 +apply(auto simp add: pflat_len_simps) +apply(frule pflat_len_inside) +apply(auto simp add: pflat_len_simps) +by (metis lex_simps(3) pflat_len_simps(5)) + +lemma PosOrd_RightI: + assumes "v1 :\<sqsubset>val v2" "flat v1 = flat v2" + shows "Right v1 :\<sqsubset>val Right v2" +using assms +unfolding PosOrd_ex_def PosOrd_def2 +apply(auto simp add: pflat_len_simps) +by (metis lex_simps(3) nat_neq_iff pflat_len_simps(5)) + + +lemma PosOrd_Right_eq: + assumes "flat v1 = flat v2" + shows "Right v1 :\<sqsubset>val Right v2 \<longleftrightarrow> v1 :\<sqsubset>val v2" +using assms PosOrd_RightE PosOrd_RightI +by blast + + +lemma PosOrd_SeqI1: + assumes "v1 :\<sqsubset>val w1" "flat (Seq v1 v2) = flat (Seq w1 w2)" + shows "Seq v1 v2 :\<sqsubset>val Seq w1 w2" +using assms(1) +apply(subst (asm) PosOrd_ex_def) +apply(subst (asm) PosOrd_def) +apply(clarify) +apply(subst PosOrd_ex_def) +apply(rule_tac x="0#p" in exI) +apply(subst PosOrd_def) +apply(rule conjI) +apply(simp add: pflat_len_simps) +apply(rule ballI) +apply(rule impI) +apply(simp only: Pos.simps) +apply(auto)[1] +apply(simp add: pflat_len_simps) +apply(auto simp add: pflat_len_simps) +using assms(2) +apply(simp) +apply(metis length_append of_nat_add) +done + +lemma PosOrd_SeqI2: + assumes "v2 :\<sqsubset>val w2" "flat v2 = flat w2" + shows "Seq v v2 :\<sqsubset>val Seq v w2" +using assms(1) +apply(subst (asm) PosOrd_ex_def) +apply(subst (asm) PosOrd_def) +apply(clarify) +apply(subst PosOrd_ex_def) +apply(rule_tac x="Suc 0#p" in exI) +apply(subst PosOrd_def) +apply(rule conjI) +apply(simp add: pflat_len_simps) +apply(rule ballI) +apply(rule impI) +apply(simp only: Pos.simps) +apply(auto)[1] +apply(simp add: pflat_len_simps) +using assms(2) +apply(simp) +apply(auto simp add: pflat_len_simps) +done + +lemma PosOrd_Seq_eq: + assumes "flat v2 = flat w2" + shows "(Seq v v2) :\<sqsubset>val (Seq v w2) \<longleftrightarrow> v2 :\<sqsubset>val w2" +using assms +apply(auto) +prefer 2 +apply(simp add: PosOrd_SeqI2) +apply(simp add: PosOrd_ex_def) +apply(auto) +apply(case_tac p) +apply(simp add: PosOrd_def pflat_len_simps) +apply(case_tac a) +apply(simp add: PosOrd_def pflat_len_simps) +apply(clarify) +apply(case_tac nat) +prefer 2 +apply(simp add: PosOrd_def pflat_len_simps pflat_len_outside) +apply(rule_tac x="list" in exI) +apply(auto simp add: PosOrd_def2 pflat_len_simps) +apply(smt Collect_disj_eq lex_list.intros(2) mem_Collect_eq pflat_len_simps(2)) +apply(smt Collect_disj_eq lex_list.intros(2) mem_Collect_eq pflat_len_simps(2)) +done + + + +lemma PosOrd_StarsI: + assumes "v1 :\<sqsubset>val v2" "flats (v1#vs1) = flats (v2#vs2)" + shows "Stars (v1#vs1) :\<sqsubset>val Stars (v2#vs2)" +using assms(1) +apply(subst (asm) PosOrd_ex_def) +apply(subst (asm) PosOrd_def) +apply(clarify) +apply(subst PosOrd_ex_def) +apply(subst PosOrd_def) +apply(rule_tac x="0#p" in exI) +apply(simp add: pflat_len_Stars_simps pflat_len_simps) +using assms(2) +apply(simp add: pflat_len_simps) +apply(auto simp add: pflat_len_Stars_simps pflat_len_simps) +by (metis length_append of_nat_add) + +lemma PosOrd_StarsI2: + assumes "Stars vs1 :\<sqsubset>val Stars vs2" "flats vs1 = flats vs2" + shows "Stars (v#vs1) :\<sqsubset>val Stars (v#vs2)" +using assms(1) +apply(subst (asm) PosOrd_ex_def) +apply(subst (asm) PosOrd_def) +apply(clarify) +apply(subst PosOrd_ex_def) +apply(subst PosOrd_def) +apply(case_tac p) +apply(simp add: pflat_len_simps) +apply(rule_tac x="Suc a#list" in exI) +apply(auto simp add: pflat_len_Stars_simps pflat_len_simps assms(2)) +done + +lemma PosOrd_Stars_appendI: + assumes "Stars vs1 :\<sqsubset>val Stars vs2" "flat (Stars vs1) = flat (Stars vs2)" + shows "Stars (vs @ vs1) :\<sqsubset>val Stars (vs @ vs2)" +using assms +apply(induct vs) +apply(simp) +apply(simp add: PosOrd_StarsI2) +done + +lemma PosOrd_StarsE2: + assumes "Stars (v # vs1) :\<sqsubset>val Stars (v # vs2)" + shows "Stars vs1 :\<sqsubset>val Stars vs2" +using assms +apply(subst (asm) PosOrd_ex_def) +apply(erule exE) +apply(case_tac p) +apply(simp) +apply(simp add: PosOrd_def pflat_len_simps) +apply(subst PosOrd_ex_def) +apply(rule_tac x="[]" in exI) +apply(simp add: PosOrd_def pflat_len_simps Pos_empty) +apply(simp) +apply(case_tac a) +apply(clarify) +apply(auto simp add: pflat_len_simps PosOrd_def pflat_len_def split: if_splits)[1] +apply(clarify) +apply(simp add: PosOrd_ex_def) +apply(rule_tac x="nat#list" in exI) +apply(auto simp add: PosOrd_def pflat_len_simps)[1] +apply(case_tac q) +apply(simp add: PosOrd_def pflat_len_simps) +apply(clarify) +apply(drule_tac x="Suc a # lista" in bspec) +apply(simp) +apply(auto simp add: PosOrd_def pflat_len_simps)[1] +apply(case_tac q) +apply(simp add: PosOrd_def pflat_len_simps) +apply(clarify) +apply(drule_tac x="Suc a # lista" in bspec) +apply(simp) +apply(auto simp add: PosOrd_def pflat_len_simps)[1] +done + +lemma PosOrd_Stars_appendE: + assumes "Stars (vs @ vs1) :\<sqsubset>val Stars (vs @ vs2)" + shows "Stars vs1 :\<sqsubset>val Stars vs2" +using assms +apply(induct vs) +apply(simp) +apply(simp add: PosOrd_StarsE2) +done + +lemma PosOrd_Stars_append_eq: + assumes "flats vs1 = flats vs2" + shows "Stars (vs @ vs1) :\<sqsubset>val Stars (vs @ vs2) \<longleftrightarrow> Stars vs1 :\<sqsubset>val Stars vs2" +using assms +apply(rule_tac iffI) +apply(erule PosOrd_Stars_appendE) +apply(rule PosOrd_Stars_appendI) +apply(auto) +done + +lemma PosOrd_almost_trichotomous: + shows "v1 :\<sqsubset>val v2 \<or> v2 :\<sqsubset>val v1 \<or> (length (flat v1) = length (flat v2))" +apply(auto simp add: PosOrd_ex_def) +apply(auto simp add: PosOrd_def) +apply(rule_tac x="[]" in exI) +apply(auto simp add: Pos_empty pflat_len_simps) +apply(drule_tac x="[]" in spec) +apply(auto simp add: Pos_empty pflat_len_simps) +done + + + +section \<open>The Posix Value is smaller than any other Value\<close> + + +lemma Posix_PosOrd: + assumes "s \<in> r \<rightarrow> v1" "v2 \<in> LV r s" + shows "v1 :\<sqsubseteq>val v2" +using assms +proof (induct arbitrary: v2 rule: Posix.induct) + case (Posix_ONE v) + have "v \<in> LV ONE []" by fact + then have "v = Void" + by (simp add: LV_simps) + then show "Void :\<sqsubseteq>val v" + by (simp add: PosOrd_ex_eq_def) +next + case (Posix_CH c v) + have "v \<in> LV (CH c) [c]" by fact + then have "v = Char c" + by (simp add: LV_simps) + then show "Char c :\<sqsubseteq>val v" + by (simp add: PosOrd_ex_eq_def) +next + case (Posix_ALT1 s r1 v r2 v2) + have as1: "s \<in> r1 \<rightarrow> v" by fact + have IH: "\<And>v2. v2 \<in> LV r1 s \<Longrightarrow> v :\<sqsubseteq>val v2" by fact + have "v2 \<in> LV (ALT r1 r2) s" by fact + then have "\<Turnstile> v2 : ALT r1 r2" "flat v2 = s" + by(auto simp add: LV_def prefix_list_def) + then consider + (Left) v3 where "v2 = Left v3" "\<Turnstile> v3 : r1" "flat v3 = s" + | (Right) v3 where "v2 = Right v3" "\<Turnstile> v3 : r2" "flat v3 = s" + by (auto elim: Prf.cases) + then show "Left v :\<sqsubseteq>val v2" + proof(cases) + case (Left v3) + have "v3 \<in> LV r1 s" using Left(2,3) + by (auto simp add: LV_def prefix_list_def) + with IH have "v :\<sqsubseteq>val v3" by simp + moreover + have "flat v3 = flat v" using as1 Left(3) + by (simp add: Posix1(2)) + ultimately have "Left v :\<sqsubseteq>val Left v3" + by (simp add: PosOrd_ex_eq_def PosOrd_Left_eq) + then show "Left v :\<sqsubseteq>val v2" unfolding Left . + next + case (Right v3) + have "flat v3 = flat v" using as1 Right(3) + by (simp add: Posix1(2)) + then have "Left v :\<sqsubseteq>val Right v3" + unfolding PosOrd_ex_eq_def + by (simp add: PosOrd_Left_Right) + then show "Left v :\<sqsubseteq>val v2" unfolding Right . + qed +next + case (Posix_ALT2 s r2 v r1 v2) + have as1: "s \<in> r2 \<rightarrow> v" by fact + have as2: "s \<notin> L r1" by fact + have IH: "\<And>v2. v2 \<in> LV r2 s \<Longrightarrow> v :\<sqsubseteq>val v2" by fact + have "v2 \<in> LV (ALT r1 r2) s" by fact + then have "\<Turnstile> v2 : ALT r1 r2" "flat v2 = s" + by(auto simp add: LV_def prefix_list_def) + then consider + (Left) v3 where "v2 = Left v3" "\<Turnstile> v3 : r1" "flat v3 = s" + | (Right) v3 where "v2 = Right v3" "\<Turnstile> v3 : r2" "flat v3 = s" + by (auto elim: Prf.cases) + then show "Right v :\<sqsubseteq>val v2" + proof (cases) + case (Right v3) + have "v3 \<in> LV r2 s" using Right(2,3) + by (auto simp add: LV_def prefix_list_def) + with IH have "v :\<sqsubseteq>val v3" by simp + moreover + have "flat v3 = flat v" using as1 Right(3) + by (simp add: Posix1(2)) + ultimately have "Right v :\<sqsubseteq>val Right v3" + by (auto simp add: PosOrd_ex_eq_def PosOrd_RightI) + then show "Right v :\<sqsubseteq>val v2" unfolding Right . + next + case (Left v3) + have "v3 \<in> LV r1 s" using Left(2,3) as2 + by (auto simp add: LV_def prefix_list_def) + then have "flat v3 = flat v \<and> \<Turnstile> v3 : r1" using as1 Left(3) + by (simp add: Posix1(2) LV_def) + then have "False" using as1 as2 Left + by (auto simp add: Posix1(2) L_flat_Prf1) + then show "Right v :\<sqsubseteq>val v2" by simp + qed +next + case (Posix_SEQ s1 r1 v1 s2 r2 v2 v3) + have "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" by fact+ + then have as1: "s1 = flat v1" "s2 = flat v2" by (simp_all add: Posix1(2)) + have IH1: "\<And>v3. v3 \<in> LV r1 s1 \<Longrightarrow> v1 :\<sqsubseteq>val v3" by fact + have IH2: "\<And>v3. v3 \<in> LV r2 s2 \<Longrightarrow> v2 :\<sqsubseteq>val v3" by fact + have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact + have "v3 \<in> LV (SEQ r1 r2) (s1 @ s2)" by fact + then obtain v3a v3b where eqs: + "v3 = Seq v3a v3b" "\<Turnstile> v3a : r1" "\<Turnstile> v3b : r2" + "flat v3a @ flat v3b = s1 @ s2" + by (force simp add: prefix_list_def LV_def elim: Prf.cases) + with cond have "flat v3a \<sqsubseteq>pre s1" unfolding prefix_list_def + by (smt L_flat_Prf1 append_eq_append_conv2 append_self_conv) + then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat v3b = s2)" using eqs + by (simp add: sprefix_list_def append_eq_conv_conj) + then have q2: "v1 :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat v3b = s2)" + using PosOrd_spreI as1(1) eqs by blast + then have "v1 :\<sqsubset>val v3a \<or> (v3a \<in> LV r1 s1 \<and> v3b \<in> LV r2 s2)" using eqs(2,3) + by (auto simp add: LV_def) + then have "v1 :\<sqsubset>val v3a \<or> (v1 :\<sqsubseteq>val v3a \<and> v2 :\<sqsubseteq>val v3b)" using IH1 IH2 by blast + then have "Seq v1 v2 :\<sqsubseteq>val Seq v3a v3b" using eqs q2 as1 + unfolding PosOrd_ex_eq_def by (auto simp add: PosOrd_SeqI1 PosOrd_Seq_eq) + then show "Seq v1 v2 :\<sqsubseteq>val v3" unfolding eqs by blast +next + case (Posix_STAR1 s1 r v s2 vs v3) + have "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" by fact+ + then have as1: "s1 = flat v" "s2 = flat (Stars vs)" by (auto dest: Posix1(2)) + have IH1: "\<And>v3. v3 \<in> LV r s1 \<Longrightarrow> v :\<sqsubseteq>val v3" by fact + have IH2: "\<And>v3. v3 \<in> LV (STAR r) s2 \<Longrightarrow> Stars vs :\<sqsubseteq>val v3" by fact + have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact + have cond2: "flat v \<noteq> []" by fact + have "v3 \<in> LV (STAR r) (s1 @ s2)" by fact + then consider + (NonEmpty) v3a vs3 where "v3 = Stars (v3a # vs3)" + "\<Turnstile> v3a : r" "\<Turnstile> Stars vs3 : STAR r" + "flat (Stars (v3a # vs3)) = s1 @ s2" + | (Empty) "v3 = Stars []" + unfolding LV_def + apply(auto) + apply(erule Prf.cases) + apply(auto) + apply(case_tac vs) + apply(auto intro: Prf.intros) + done + then show "Stars (v # vs) :\<sqsubseteq>val v3" + proof (cases) + case (NonEmpty v3a vs3) + have "flat (Stars (v3a # vs3)) = s1 @ s2" using NonEmpty(4) . + with cond have "flat v3a \<sqsubseteq>pre s1" using NonEmpty(2,3) + unfolding prefix_list_def + by (smt L_flat_Prf1 append_Nil2 append_eq_append_conv2 flat.simps(7)) + then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" using NonEmpty(4) + by (simp add: sprefix_list_def append_eq_conv_conj) + then have q2: "v :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" + using PosOrd_spreI as1(1) NonEmpty(4) by blast + then have "v :\<sqsubset>val v3a \<or> (v3a \<in> LV r s1 \<and> Stars vs3 \<in> LV (STAR r) s2)" + using NonEmpty(2,3) by (auto simp add: LV_def) + then have "v :\<sqsubset>val v3a \<or> (v :\<sqsubseteq>val v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" using IH1 IH2 by blast + then have "v :\<sqsubset>val v3a \<or> (v = v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" + unfolding PosOrd_ex_eq_def by auto + then have "Stars (v # vs) :\<sqsubseteq>val Stars (v3a # vs3)" using NonEmpty(4) q2 as1 + unfolding PosOrd_ex_eq_def + using PosOrd_StarsI PosOrd_StarsI2 by auto + then show "Stars (v # vs) :\<sqsubseteq>val v3" unfolding NonEmpty by blast + next + case Empty + have "v3 = Stars []" by fact + then show "Stars (v # vs) :\<sqsubseteq>val v3" + unfolding PosOrd_ex_eq_def using cond2 + by (simp add: PosOrd_shorterI) + qed +next + case (Posix_STAR2 r v2) + have "v2 \<in> LV (STAR r) []" by fact + then have "v2 = Stars []" + unfolding LV_def by (auto elim: Prf.cases) + then show "Stars [] :\<sqsubseteq>val v2" + by (simp add: PosOrd_ex_eq_def) +qed + + +lemma Posix_PosOrd_reverse: + assumes "s \<in> r \<rightarrow> v1" + shows "\<not>(\<exists>v2 \<in> LV r s. v2 :\<sqsubset>val v1)" +using assms +by (metis Posix_PosOrd less_irrefl PosOrd_def + PosOrd_ex_eq_def PosOrd_ex_def PosOrd_trans) + +lemma PosOrd_Posix: + assumes "v1 \<in> LV r s" "\<forall>v\<^sub>2 \<in> LV r s. \<not> v\<^sub>2 :\<sqsubset>val v1" + shows "s \<in> r \<rightarrow> v1" +proof - + have "s \<in> L r" using assms(1) unfolding LV_def + using L_flat_Prf1 by blast + then obtain vposix where vp: "s \<in> r \<rightarrow> vposix" + using lexer_correct_Some by blast + with assms(1) have "vposix :\<sqsubseteq>val v1" by (simp add: Posix_PosOrd) + then have "vposix = v1 \<or> vposix :\<sqsubset>val v1" unfolding PosOrd_ex_eq2 by auto + moreover + { assume "vposix :\<sqsubset>val v1" + moreover + have "vposix \<in> LV r s" using vp + using Posix_LV by blast + ultimately have "False" using assms(2) by blast + } + ultimately show "s \<in> r \<rightarrow> v1" using vp by blast +qed + +lemma Least_existence: + assumes "LV r s \<noteq> {}" + shows " \<exists>vmin \<in> LV r s. \<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v" +proof - + from assms + obtain vposix where "s \<in> r \<rightarrow> vposix" + unfolding LV_def + using L_flat_Prf1 lexer_correct_Some by blast + then have "\<forall>v \<in> LV r s. vposix :\<sqsubseteq>val v" + by (simp add: Posix_PosOrd) + then show "\<exists>vmin \<in> LV r s. \<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v" + using Posix_LV \<open>s \<in> r \<rightarrow> vposix\<close> by blast +qed + +lemma Least_existence1: + assumes "LV r s \<noteq> {}" + shows " \<exists>!vmin \<in> LV r s. \<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v" +using Least_existence[OF assms] assms +using PosOrdeq_antisym by blast + +lemma Least_existence2: + assumes "LV r s \<noteq> {}" + shows " \<exists>!vmin \<in> LV r s. lexer r s = Some vmin \<and> (\<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v)" +using Least_existence[OF assms] assms +using PosOrdeq_antisym + using PosOrd_Posix PosOrd_ex_eq2 lexer_correctness(1) by auto + + +lemma Least_existence1_pre: + assumes "LV r s \<noteq> {}" + shows " \<exists>!vmin \<in> LV r s. \<forall>v \<in> (LV r s \<union> {v'. flat v' \<sqsubset>spre s}). vmin :\<sqsubseteq>val v" +using Least_existence[OF assms] assms +apply - +apply(erule bexE) +apply(rule_tac a="vmin" in ex1I) +apply(auto)[1] +apply (metis PosOrd_Posix PosOrd_ex_eq2 PosOrd_spreI PosOrdeq_antisym Posix1(2)) +apply(auto)[1] +apply(simp add: PosOrdeq_antisym) +done + +lemma + shows "partial_order_on UNIV {(v1, v2). v1 :\<sqsubseteq>val v2}" +apply(simp add: partial_order_on_def) +apply(simp add: preorder_on_def refl_on_def) +apply(simp add: PosOrdeq_refl) +apply(auto) +apply(rule transI) +apply(auto intro: PosOrdeq_trans)[1] +apply(rule antisymI) +apply(simp add: PosOrdeq_antisym) +done + +lemma + "wf {(v1, v2). v1 :\<sqsubset>val v2 \<and> v1 \<in> LV r s \<and> v2 \<in> LV r s}" +apply(rule finite_acyclic_wf) +prefer 2 +apply(simp add: acyclic_def) +apply(induct_tac rule: trancl.induct) +apply(auto)[1] +oops + + +unused_thms + +end \ No newline at end of file