diff -r aecf1ddf3541 -r c27f04bb2262 thys3/PDerivs.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys3/PDerivs.thy Wed Jun 29 12:38:05 2022 +0100 @@ -0,0 +1,603 @@ + +theory PDerivs + imports PosixSpec +begin + + + +abbreviation + "SEQs rs r \ (\r' \ rs. {SEQ r' r})" + +lemma SEQs_eq_image: + "SEQs rs r = (\r'. SEQ r' r) ` rs" + by auto + +fun + pder :: "char \ rexp \ rexp set" +where + "pder c ZERO = {}" +| "pder c ONE = {}" +| "pder c (CH d) = (if c = d then {ONE} else {})" +| "pder c (ALT r1 r2) = (pder c r1) \ (pder c r2)" +| "pder c (SEQ r1 r2) = + (if nullable r1 then SEQs (pder c r1) r2 \ pder c r2 else SEQs (pder c r1) r2)" +| "pder c (STAR r) = SEQs (pder c r) (STAR r)" + +fun + pders :: "char list \ rexp \ rexp set" +where + "pders [] r = {r}" +| "pders (c # s) r = \ (pders s ` pder c r)" + +abbreviation + pder_set :: "char \ rexp set \ rexp set" +where + "pder_set c rs \ \ (pder c ` rs)" + +abbreviation + pders_set :: "char list \ rexp set \ rexp set" +where + "pders_set s rs \ \ (pders s ` rs)" + +lemma pders_append: + "pders (s1 @ s2) r = \ (pders s2 ` pders s1 r)" +by (induct s1 arbitrary: r) (simp_all) + +lemma pders_snoc: + shows "pders (s @ [c]) r = pder_set c (pders s r)" +by (simp add: pders_append) + +lemma pders_simps [simp]: + shows "pders s ZERO = (if s = [] then {ZERO} else {})" + and "pders s ONE = (if s = [] then {ONE} else {})" + and "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \ (pders s r2))" +by (induct s) (simp_all) + +lemma pders_CHAR: + shows "pders s (CH c) \ {CH c, ONE}" +by (induct s) (simp_all) + +subsection \Relating left-quotients and partial derivatives\ + +lemma Sequ_UNION_distrib: +shows "A ;; \(M ` I) = \((\i. A ;; M i) ` I)" +and "\(M ` I) ;; A = \((\i. M i ;; A) ` I)" +by (auto simp add: Sequ_def) + + +lemma Der_pder: + shows "Der c (L r) = \ (L ` pder c r)" +by (induct r) (simp_all add: nullable_correctness Sequ_UNION_distrib) + +lemma Ders_pders: + shows "Ders s (L r) = \ (L ` pders s r)" +proof (induct s arbitrary: r) + case (Cons c s) + have ih: "\r. Ders s (L r) = \ (L ` pders s r)" by fact + have "Ders (c # s) (L r) = Ders s (Der c (L r))" by (simp add: Ders_def Der_def) + also have "\ = Ders s (\ (L ` pder c r))" by (simp add: Der_pder) + also have "\ = (\A\(L ` (pder c r)). (Ders s A))" + by (auto simp add: Ders_def) + also have "\ = \ (L ` (pders_set s (pder c r)))" + using ih by auto + also have "\ = \ (L ` (pders (c # s) r))" by simp + finally show "Ders (c # s) (L r) = \ (L ` pders (c # s) r)" . +qed (simp add: Ders_def) + +subsection \Relating derivatives and partial derivatives\ + +lemma der_pder: + shows "\ (L ` (pder c r)) = L (der c r)" +unfolding der_correctness Der_pder by simp + +lemma ders_pders: + shows "\ (L ` (pders s r)) = L (ders s r)" +unfolding der_correctness ders_correctness Ders_pders by simp + + +subsection \Finiteness property of partial derivatives\ + +definition + pders_Set :: "string set \ rexp \ rexp set" +where + "pders_Set A r \ \x \ A. pders x r" + +lemma pders_Set_subsetI: + assumes "\s. s \ A \ pders s r \ C" + shows "pders_Set A r \ C" +using assms unfolding pders_Set_def by (rule UN_least) + +lemma pders_Set_union: + shows "pders_Set (A \ B) r = (pders_Set A r \ pders_Set B r)" +by (simp add: pders_Set_def) + +lemma pders_Set_subset: + shows "A \ B \ pders_Set A r \ pders_Set B r" +by (auto simp add: pders_Set_def) + +definition + "UNIV1 \ UNIV - {[]}" + +lemma pders_Set_ZERO [simp]: + shows "pders_Set UNIV1 ZERO = {}" +unfolding UNIV1_def pders_Set_def by auto + +lemma pders_Set_ONE [simp]: + shows "pders_Set UNIV1 ONE = {}" +unfolding UNIV1_def pders_Set_def by (auto split: if_splits) + +lemma pders_Set_CHAR [simp]: + shows "pders_Set UNIV1 (CH c) = {ONE}" +unfolding UNIV1_def pders_Set_def +apply(auto) +apply(frule rev_subsetD) +apply(rule pders_CHAR) +apply(simp) +apply(case_tac xa) +apply(auto split: if_splits) +done + +lemma pders_Set_ALT [simp]: + shows "pders_Set UNIV1 (ALT r1 r2) = pders_Set UNIV1 r1 \ pders_Set UNIV1 r2" +unfolding UNIV1_def pders_Set_def by auto + + +text \Non-empty suffixes of a string (needed for the cases of @{const SEQ} and @{const STAR} below)\ + +definition + "PSuf s \ {v. v \ [] \ (\u. u @ v = s)}" + +lemma PSuf_snoc: + shows "PSuf (s @ [c]) = (PSuf s) ;; {[c]} \ {[c]}" +unfolding PSuf_def Sequ_def +by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv) + +lemma PSuf_Union: + shows "(\v \ PSuf s ;; {[c]}. f v) = (\v \ PSuf s. f (v @ [c]))" +by (auto simp add: Sequ_def) + +lemma pders_Set_snoc: + shows "pders_Set (PSuf s ;; {[c]}) r = (pder_set c (pders_Set (PSuf s) r))" +unfolding pders_Set_def +by (simp add: PSuf_Union pders_snoc) + +lemma pders_SEQ: + shows "pders s (SEQ r1 r2) \ SEQs (pders s r1) r2 \ (pders_Set (PSuf s) r2)" +proof (induct s rule: rev_induct) + case (snoc c s) + have ih: "pders s (SEQ r1 r2) \ SEQs (pders s r1) r2 \ (pders_Set (PSuf s) r2)" + by fact + have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))" + by (simp add: pders_snoc) + also have "\ \ pder_set c (SEQs (pders s r1) r2 \ (pders_Set (PSuf s) r2))" + using ih by fastforce + also have "\ = pder_set c (SEQs (pders s r1) r2) \ pder_set c (pders_Set (PSuf s) r2)" + by (simp) + also have "\ = pder_set c (SEQs (pders s r1) r2) \ pders_Set (PSuf s ;; {[c]}) r2" + by (simp add: pders_Set_snoc) + also + have "\ \ pder_set c (SEQs (pders s r1) r2) \ pder c r2 \ pders_Set (PSuf s ;; {[c]}) r2" + by auto + also + have "\ \ SEQs (pder_set c (pders s r1)) r2 \ pder c r2 \ pders_Set (PSuf s ;; {[c]}) r2" + by (auto simp add: if_splits) + also have "\ = SEQs (pders (s @ [c]) r1) r2 \ pder c r2 \ pders_Set (PSuf s ;; {[c]}) r2" + by (simp add: pders_snoc) + also have "\ \ SEQs (pders (s @ [c]) r1) r2 \ pders_Set (PSuf (s @ [c])) r2" + unfolding pders_Set_def by (auto simp add: PSuf_snoc) + finally show ?case . +qed (simp) + +lemma pders_Set_SEQ_aux1: + assumes a: "s \ UNIV1" + shows "pders_Set (PSuf s) r \ pders_Set UNIV1 r" +using a unfolding UNIV1_def PSuf_def pders_Set_def by auto + +lemma pders_Set_SEQ_aux2: + assumes a: "s \ UNIV1" + shows "SEQs (pders s r1) r2 \ SEQs (pders_Set UNIV1 r1) r2" +using a unfolding pders_Set_def by auto + +lemma pders_Set_SEQ: + shows "pders_Set UNIV1 (SEQ r1 r2) \ SEQs (pders_Set UNIV1 r1) r2 \ pders_Set UNIV1 r2" +apply(rule pders_Set_subsetI) +apply(rule subset_trans) +apply(rule pders_SEQ) +using pders_Set_SEQ_aux1 pders_Set_SEQ_aux2 +apply auto +apply blast +done + +lemma pders_STAR: + assumes a: "s \ []" + shows "pders s (STAR r) \ SEQs (pders_Set (PSuf s) r) (STAR r)" +using a +proof (induct s rule: rev_induct) + case (snoc c s) + have ih: "s \ [] \ pders s (STAR r) \ SEQs (pders_Set (PSuf s) r) (STAR r)" by fact + { assume asm: "s \ []" + have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by (simp add: pders_snoc) + also have "\ \ pder_set c (SEQs (pders_Set (PSuf s) r) (STAR r))" + using ih[OF asm] by fast + also have "\ \ SEQs (pder_set c (pders_Set (PSuf s) r)) (STAR r) \ pder c (STAR r)" + by (auto split: if_splits) + also have "\ \ SEQs (pders_Set (PSuf (s @ [c])) r) (STAR r) \ (SEQs (pder c r) (STAR r))" + by (simp only: PSuf_snoc pders_Set_snoc pders_Set_union) + (auto simp add: pders_Set_def) + also have "\ = SEQs (pders_Set (PSuf (s @ [c])) r) (STAR r)" + by (auto simp add: PSuf_snoc PSuf_Union pders_snoc pders_Set_def) + finally have ?case . + } + moreover + { assume asm: "s = []" + then have ?case by (auto simp add: pders_Set_def pders_snoc PSuf_def) + } + ultimately show ?case by blast +qed (simp) + +lemma pders_Set_STAR: + shows "pders_Set UNIV1 (STAR r) \ SEQs (pders_Set UNIV1 r) (STAR r)" +apply(rule pders_Set_subsetI) +apply(rule subset_trans) +apply(rule pders_STAR) +apply(simp add: UNIV1_def) +apply(simp add: UNIV1_def PSuf_def) +apply(auto simp add: pders_Set_def) +done + +lemma finite_SEQs [simp]: + assumes a: "finite A" + shows "finite (SEQs A r)" +using a by auto + + +lemma finite_pders_Set_UNIV1: + shows "finite (pders_Set UNIV1 r)" +apply(induct r) +apply(simp_all add: + finite_subset[OF pders_Set_SEQ] + finite_subset[OF pders_Set_STAR]) +done + +lemma pders_Set_UNIV: + shows "pders_Set UNIV r = pders [] r \ pders_Set UNIV1 r" +unfolding UNIV1_def pders_Set_def +by blast + +lemma finite_pders_Set_UNIV: + shows "finite (pders_Set UNIV r)" +unfolding pders_Set_UNIV +by (simp add: finite_pders_Set_UNIV1) + +lemma finite_pders_set: + shows "finite (pders_Set A r)" +by (metis finite_pders_Set_UNIV pders_Set_subset rev_finite_subset subset_UNIV) + + +text \The following relationship between the alphabetic width of regular expressions +(called \awidth\ below) and the number of partial derivatives was proved +by Antimirov~\cite{Antimirov95} and formalized by Max Haslbeck.\ + +fun awidth :: "rexp \ nat" where +"awidth ZERO = 0" | +"awidth ONE = 0" | +"awidth (CH a) = 1" | +"awidth (ALT r1 r2) = awidth r1 + awidth r2" | +"awidth (SEQ r1 r2) = awidth r1 + awidth r2" | +"awidth (STAR r1) = awidth r1" + +lemma card_SEQs_pders_Set_le: + shows "card (SEQs (pders_Set A r) s) \ card (pders_Set A r)" + using finite_pders_set + unfolding SEQs_eq_image + by (rule card_image_le) + +lemma card_pders_set_UNIV1_le_awidth: + shows "card (pders_Set UNIV1 r) \ awidth r" +proof (induction r) + case (ALT r1 r2) + have "card (pders_Set UNIV1 (ALT r1 r2)) = card (pders_Set UNIV1 r1 \ pders_Set UNIV1 r2)" by simp + also have "\ \ card (pders_Set UNIV1 r1) + card (pders_Set UNIV1 r2)" + by(simp add: card_Un_le) + also have "\ \ awidth (ALT r1 r2)" using ALT.IH by simp + finally show ?case . +next + case (SEQ r1 r2) + have "card (pders_Set UNIV1 (SEQ r1 r2)) \ card (SEQs (pders_Set UNIV1 r1) r2 \ pders_Set UNIV1 r2)" + by (simp add: card_mono finite_pders_set pders_Set_SEQ) + also have "\ \ card (SEQs (pders_Set UNIV1 r1) r2) + card (pders_Set UNIV1 r2)" + by (simp add: card_Un_le) + also have "\ \ card (pders_Set UNIV1 r1) + card (pders_Set UNIV1 r2)" + by (simp add: card_SEQs_pders_Set_le) + also have "\ \ awidth (SEQ r1 r2)" using SEQ.IH by simp + finally show ?case . +next + case (STAR r) + have "card (pders_Set UNIV1 (STAR r)) \ card (SEQs (pders_Set UNIV1 r) (STAR r))" + by (simp add: card_mono finite_pders_set pders_Set_STAR) + also have "\ \ card (pders_Set UNIV1 r)" by (rule card_SEQs_pders_Set_le) + also have "\ \ awidth (STAR r)" by (simp add: STAR.IH) + finally show ?case . +qed (auto) + +text\Antimirov's Theorem 3.4:\ + +theorem card_pders_set_UNIV_le_awidth: + shows "card (pders_Set UNIV r) \ awidth r + 1" +proof - + have "card (insert r (pders_Set UNIV1 r)) \ Suc (card (pders_Set UNIV1 r))" + by(auto simp: card_insert_if[OF finite_pders_Set_UNIV1]) + also have "\ \ Suc (awidth r)" by(simp add: card_pders_set_UNIV1_le_awidth) + finally show ?thesis by(simp add: pders_Set_UNIV) +qed + +text\Antimirov's Corollary 3.5:\ +(*W stands for word set*) +corollary card_pders_set_le_awidth: + shows "card (pders_Set W r) \ awidth r + 1" +proof - + have "card (pders_Set W r) \ card (pders_Set UNIV r)" + by (simp add: card_mono finite_pders_set pders_Set_subset) + also have "... \ awidth r + 1" + by (rule card_pders_set_UNIV_le_awidth) + finally show "card (pders_Set W r) \ awidth r + 1" by simp +qed + +(* other result by antimirov *) + +lemma card_pders_awidth: + shows "card (pders s r) \ awidth r + 1" +proof - + have "pders s r \ pders_Set UNIV r" + using pders_Set_def by auto + then have "card (pders s r) \ card (pders_Set UNIV r)" + by (simp add: card_mono finite_pders_set) + then show "card (pders s r) \ awidth r + 1" + using card_pders_set_le_awidth order_trans by blast +qed + + + + + +fun subs :: "rexp \ rexp set" where +"subs ZERO = {ZERO}" | +"subs ONE = {ONE}" | +"subs (CH a) = {CH a, ONE}" | +"subs (ALT r1 r2) = (subs r1 \ subs r2 \ {ALT r1 r2})" | +"subs (SEQ r1 r2) = (subs r1 \ subs r2 \ {SEQ r1 r2} \ SEQs (subs r1) r2)" | +"subs (STAR r1) = (subs r1 \ {STAR r1} \ SEQs (subs r1) (STAR r1))" + +lemma subs_finite: + shows "finite (subs r)" + apply(induct r) + apply(simp_all) + done + + + +lemma pders_subs: + shows "pders s r \ subs r" + apply(induct r arbitrary: s) + apply(simp) + apply(simp) + apply(simp add: pders_CHAR) +(* SEQ case *) + apply(simp) + apply(rule subset_trans) + apply(rule pders_SEQ) + defer +(* ALT case *) + apply(simp) + apply(rule impI) + apply(rule conjI) + apply blast + apply blast +(* STAR case *) + apply(case_tac s) + apply(simp) + apply(rule subset_trans) + thm pders_STAR + apply(rule pders_STAR) + apply(simp) + apply(auto simp add: pders_Set_def)[1] + apply(simp) + apply(rule conjI) + apply blast +apply(auto simp add: pders_Set_def)[1] + done + +fun size2 :: "rexp \ nat" where + "size2 ZERO = 1" | + "size2 ONE = 1" | + "size2 (CH c) = 1" | + "size2 (ALT r1 r2) = Suc (size2 r1 + size2 r2)" | + "size2 (SEQ r1 r2) = Suc (size2 r1 + size2 r2)" | + "size2 (STAR r1) = Suc (size2 r1)" + + +lemma size_rexp: + fixes r :: rexp + shows "1 \ size2 r" + apply(induct r) + apply(simp) + apply(simp_all) + done + +lemma subs_size2: + shows "\r1 \ subs r. size2 r1 \ Suc (size2 r * size2 r)" + apply(induct r) + apply(simp) + apply(simp) + apply(simp) +(* SEQ case *) + apply(simp) + apply(auto)[1] + apply (smt Suc_n_not_le_n add.commute distrib_left le_Suc_eq left_add_mult_distrib nat_le_linear trans_le_add1) + apply (smt Suc_le_mono Suc_n_not_le_n le_trans nat_le_linear power2_eq_square power2_sum semiring_normalization_rules(23) trans_le_add2) + apply (smt Groups.add_ac(3) Suc_n_not_le_n distrib_left le_Suc_eq left_add_mult_distrib nat_le_linear trans_le_add1) +(* ALT case *) + apply(simp) + apply(auto)[1] + apply (smt Groups.add_ac(2) Suc_le_mono Suc_n_not_le_n le_add2 linear order_trans power2_eq_square power2_sum) + apply (smt Groups.add_ac(2) Suc_le_mono Suc_n_not_le_n left_add_mult_distrib linear mult.commute order.trans trans_le_add1) +(* STAR case *) + apply(auto)[1] + apply(drule_tac x="r'" in bspec) + apply(simp) + apply(rule le_trans) + apply(assumption) + apply(simp) + using size_rexp + apply(simp) + done + +lemma awidth_size: + shows "awidth r \ size2 r" + apply(induct r) + apply(simp_all) + done + +lemma Sum1: + fixes A B :: "nat set" + assumes "A \ B" "finite A" "finite B" + shows "\A \ \B" + using assms + by (simp add: sum_mono2) + +lemma Sum2: + fixes A :: "rexp set" + and f g :: "rexp \ nat" + assumes "finite A" "\x \ A. f x \ g x" + shows "sum f A \ sum g A" + using assms + apply(induct A) + apply(auto) + done + + + + + +lemma pders_max_size: + shows "(sum size2 (pders s r)) \ (Suc (size2 r)) ^ 3" +proof - + have "(sum size2 (pders s r)) \ sum (\_. Suc (size2 r * size2 r)) (pders s r)" + apply(rule_tac Sum2) + apply (meson pders_subs rev_finite_subset subs_finite) + using pders_subs subs_size2 by blast + also have "... \ (Suc (size2 r * size2 r)) * (sum (\_. 1) (pders s r))" + by simp + also have "... \ (Suc (size2 r * size2 r)) * card (pders s r)" + by simp + also have "... \ (Suc (size2 r * size2 r)) * (Suc (awidth r))" + using Suc_eq_plus1 card_pders_awidth mult_le_mono2 by presburger + also have "... \ (Suc (size2 r * size2 r)) * (Suc (size2 r))" + using Suc_le_mono awidth_size mult_le_mono2 by presburger + also have "... \ (Suc (size2 r)) ^ 3" + by (smt One_nat_def Suc_1 Suc_mult_le_cancel1 Suc_n_not_le_n antisym_conv le_Suc_eq mult.commute nat_le_linear numeral_3_eq_3 power2_eq_square power2_le_imp_le power_Suc size_rexp) + finally show ?thesis . +qed + +lemma pders_Set_max_size: + shows "(sum size2 (pders_Set A r)) \ (Suc (size2 r)) ^ 3" +proof - + have "(sum size2 (pders_Set A r)) \ sum (\_. Suc (size2 r * size2 r)) (pders_Set A r)" + apply(rule_tac Sum2) + apply (simp add: finite_pders_set) + by (meson pders_Set_subsetI pders_subs subs_size2 subsetD) + also have "... \ (Suc (size2 r * size2 r)) * (sum (\_. 1) (pders_Set A r))" + by simp + also have "... \ (Suc (size2 r * size2 r)) * card (pders_Set A r)" + by simp + also have "... \ (Suc (size2 r * size2 r)) * (Suc (awidth r))" + using Suc_eq_plus1 card_pders_set_le_awidth mult_le_mono2 by presburger + also have "... \ (Suc (size2 r * size2 r)) * (Suc (size2 r))" + using Suc_le_mono awidth_size mult_le_mono2 by presburger + also have "... \ (Suc (size2 r)) ^ 3" + by (smt One_nat_def Suc_1 Suc_mult_le_cancel1 Suc_n_not_le_n antisym_conv le_Suc_eq mult.commute nat_le_linear numeral_3_eq_3 power2_eq_square power2_le_imp_le power_Suc size_rexp) + finally show ?thesis . +qed + +fun height :: "rexp \ nat" where + "height ZERO = 1" | + "height ONE = 1" | + "height (CH c) = 1" | + "height (ALT r1 r2) = Suc (max (height r1) (height r2))" | + "height (SEQ r1 r2) = Suc (max (height r1) (height r2))" | + "height (STAR r1) = Suc (height r1)" + +lemma height_size2: + shows "height r \ size2 r" + apply(induct r) + apply(simp_all) + done + +lemma height_rexp: + fixes r :: rexp + shows "1 \ height r" + apply(induct r) + apply(simp_all) + done + +lemma subs_height: + shows "\r1 \ subs r. height r1 \ Suc (height r)" + apply(induct r) + apply(auto)+ + done + +fun lin_concat :: "(char \ rexp) \ rexp \ (char \ rexp)" (infixl "[.]" 91) + where +"(c, ZERO) [.] t = (c, ZERO)" +| "(c, ONE) [.] t = (c, t)" +| "(c, p) [.] t = (c, SEQ p t)" + + +fun circle_concat :: "(char \ rexp ) set \ rexp \ (char \ rexp) set" ( infixl "\" 90) + where +"l \ ZERO = {}" +| "l \ ONE = l" +| "l \ t = ( (\p. p [.] t) ` l ) " + + + +fun linear_form :: "rexp \( char \ rexp ) set" + where + "linear_form ZERO = {}" +| "linear_form ONE = {}" +| "linear_form (CH c) = {(c, ONE)}" +| "linear_form (ALT r1 r2) = (linear_form) r1 \ (linear_form r2)" +| "linear_form (SEQ r1 r2) = (if (nullable r1) then (linear_form r1) \ r2 \ linear_form r2 else (linear_form r1) \ r2) " +| "linear_form (STAR r ) = (linear_form r) \ (STAR r)" + + +value "linear_form (SEQ (STAR (CH x)) (STAR (ALT (SEQ (CH x) (CH x)) (CH y) )) )" + + +value "linear_form (STAR (ALT (SEQ (CH x) (CH x)) (CH y) )) " + +fun pdero :: "char \ rexp \ rexp set" + where +"pdero c t = \ ((\(d, p). if d = c then {p} else {}) ` (linear_form t) )" + +fun pderso :: "char list \ rexp \ rexp set" + where + "pderso [] r = {r}" +| "pderso (c # s) r = \ ( pderso s ` (pdero c r) )" + +lemma pdero_result: + shows "pdero c (STAR (ALT (CH c) (SEQ (CH c) (CH c)))) = {SEQ (CH c)(STAR (ALT (CH c) (SEQ (CH c) (CH c)))),(STAR (ALT (CH c) (SEQ (CH c) (CH c))))}" + apply(simp) + by auto + +fun concatLen :: "rexp \ nat" where +"concatLen ZERO = 0" | +"concatLen ONE = 0" | +"concatLen (CH c) = 0" | +"concatLen (SEQ v1 v2) = Suc (max (concatLen v1) (concatLen v2))" | +" concatLen (ALT v1 v2) = max (concatLen v1) (concatLen v2)" | +" concatLen (STAR v) = Suc (concatLen v)" + + + +end \ No newline at end of file