diff -r 0c666a0c57d7 -r aef235b965bb thys2/Journal/Paper.thy~ --- a/thys2/Journal/Paper.thy~ Fri Jan 07 22:25:26 2022 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,2277 +0,0 @@ -(*<*) -theory Paper -imports - "../Lexer" - "../Simplifying" - "../Positions" - - "../SizeBound" - "HOL-Library.LaTeXsugar" -begin - -lemma Suc_0_fold: - "Suc 0 = 1" -by simp - - - -declare [[show_question_marks = false]] - -syntax (latex output) - "_Collect" :: "pttrn => bool => 'a set" ("(1{_ \<^latex>\\\mbox{\\boldmath$\\mid$}\ _})") - "_CollectIn" :: "pttrn => 'a set => bool => 'a set" ("(1{_ \ _ |e _})") - -syntax - "_Not_Ex" :: "idts \ bool \ bool" ("(3\_.a./ _)" [0, 10] 10) - "_Not_Ex1" :: "pttrn \ bool \ bool" ("(3\!_.a./ _)" [0, 10] 10) - - -abbreviation - "der_syn r c \ der c r" - -abbreviation - "ders_syn r s \ ders s r" - - abbreviation - "bder_syn r c \ bder c r" - -abbreviation - "bders_syn r s \ bders r s" - - -abbreviation - "nprec v1 v2 \ \(v1 :\val v2)" - - - - -notation (latex output) - If ("(\<^latex>\\\textrm{\if\<^latex>\}\ (_)/ \<^latex>\\\textrm{\then\<^latex>\}\ (_)/ \<^latex>\\\textrm{\else\<^latex>\}\ (_))" 10) and - Cons ("_\<^latex>\\\mbox{$\\,$}\::\<^latex>\\\mbox{$\\,$}\_" [75,73] 73) and - - ZERO ("\<^bold>0" 81) and - ONE ("\<^bold>1" 81) and - CH ("_" [1000] 80) and - ALT ("_ + _" [77,77] 78) and - SEQ ("_ \ _" [77,77] 78) and - STAR ("_\<^sup>\" [79] 78) and - - val.Void ("Empty" 78) and - val.Char ("Char _" [1000] 78) and - val.Left ("Left _" [79] 78) and - val.Right ("Right _" [1000] 78) and - val.Seq ("Seq _ _" [79,79] 78) and - val.Stars ("Stars _" [79] 78) and - - L ("L'(_')" [10] 78) and - LV ("LV _ _" [80,73] 78) and - der_syn ("_\\_" [79, 1000] 76) and - ders_syn ("_\\_" [79, 1000] 76) and - flat ("|_|" [75] 74) and - flats ("|_|" [72] 74) and - Sequ ("_ @ _" [78,77] 63) and - injval ("inj _ _ _" [79,77,79] 76) and - mkeps ("mkeps _" [79] 76) and - length ("len _" [73] 73) and - intlen ("len _" [73] 73) and - set ("_" [73] 73) and - - Prf ("_ : _" [75,75] 75) and - Posix ("'(_, _') \ _" [63,75,75] 75) and - - lexer ("lexer _ _" [78,78] 77) and - F_RIGHT ("F\<^bsub>Right\<^esub> _") and - F_LEFT ("F\<^bsub>Left\<^esub> _") and - F_ALT ("F\<^bsub>Alt\<^esub> _ _") and - F_SEQ1 ("F\<^bsub>Seq1\<^esub> _ _") and - F_SEQ2 ("F\<^bsub>Seq2\<^esub> _ _") and - F_SEQ ("F\<^bsub>Seq\<^esub> _ _") and - simp_SEQ ("simp\<^bsub>Seq\<^esub> _ _" [1000, 1000] 1) and - simp_ALT ("simp\<^bsub>Alt\<^esub> _ _" [1000, 1000] 1) and - slexer ("lexer\<^sup>+" 1000) and - - at ("_\<^latex>\\\mbox{$\\downharpoonleft$}\\<^bsub>_\<^esub>") and - lex_list ("_ \\<^bsub>lex\<^esub> _") and - PosOrd ("_ \\<^bsub>_\<^esub> _" [77,77,77] 77) and - PosOrd_ex ("_ \ _" [77,77] 77) and - PosOrd_ex_eq ("_ \<^latex>\\\mbox{$\\preccurlyeq$}\ _" [77,77] 77) and - pflat_len ("\_\\<^bsub>_\<^esub>") and - nprec ("_ \<^latex>\\\mbox{$\\not\\prec$}\ _" [77,77] 77) and - - bder_syn ("_\<^latex>\\\mbox{$\\bbslash$}\_" [79, 1000] 76) and - bders_syn ("_\<^latex>\\\mbox{$\\bbslash$}\_" [79, 1000] 76) and - intern ("_\<^latex>\\\mbox{$^\\uparrow$}\" [900] 80) and - erase ("_\<^latex>\\\mbox{$^\\downarrow$}\" [1000] 74) and - bnullable ("nullable\<^latex>\\\mbox{$_b$}\ _" [1000] 80) and - bmkeps ("mkeps\<^latex>\\\mbox{$_b$}\ _" [1000] 80) and - blexer ("lexer\<^latex>\\\mbox{$_b$}\ _ _" [77, 77] 80) and - code ("code _" [79] 74) and - - DUMMY ("\<^latex>\\\underline{\\hspace{2mm}}\") - - -definition - "match r s \ nullable (ders s r)" - - -lemma LV_STAR_ONE_empty: - shows "LV (STAR ONE) [] = {Stars []}" -by(auto simp add: LV_def elim: Prf.cases intro: Prf.intros) - - - -(* -comments not implemented - -p9. The condition "not exists s3 s4..." appears often enough (in particular in -the proof of Lemma 3) to warrant a definition. - -*) - - -(*>*) - -section\Core of the proof\ -text \ -This paper builds on previous work by Ausaf and Urban using -regular expression'd bit-coded derivatives to do lexing that -is both fast and satisfies the POSIX specification. -In their work, a bit-coded algorithm introduced by Sulzmann and Lu -was formally verified in Isabelle, by a very clever use of -flex function and retrieve to carefully mimic the way a value is -built up by the injection funciton. - -In the previous work, Ausaf and Urban established the below equality: -\begin{lemma} -@{thm [mode=IfThen] MAIN_decode} -\end{lemma} - -This lemma establishes a link with the lexer without bit-codes. - -With it we get the correctness of bit-coded algorithm. -\begin{lemma} -@{thm [mode=IfThen] blexer_correctness} -\end{lemma} - -However what is not certain is whether we can add simplification -to the bit-coded algorithm, without breaking the correct lexing output. - - -The reason that we do need to add a simplification phase -after each derivative step of $\textit{blexer}$ is -because it produces intermediate -regular expressions that can grow exponentially. -For example, the regular expression $(a+aa)^*$ after taking -derivative against just 10 $a$s will have size 8192. - -%TODO: add figure for this? - - -Therefore, we insert a simplification phase -after each derivation step, as defined below: -\begin{lemma} -@{thm blexer_simp_def} -\end{lemma} - -The simplification function is given as follows: - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) bsimp.simps(1)[of "bs" "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bsimp.simps(1)[of "bs" "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bsimp.simps(2)} & $\dn$ & @{thm (rhs) bsimp.simps(2)}\\ - @{thm (lhs) bsimp.simps(3)} & $\dn$ & @{thm (rhs) bsimp.simps(3)}\\ - -\end{tabular} -\end{center} - -And the two helper functions are: -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) bsimp_AALTs.simps(2)[of "bs\<^sub>1" "r" ]} & $\dn$ & @{thm (rhs) bsimp.simps(1)[of "bs\<^sub>1" "r" ]}\\ - @{thm (lhs) bsimp_AALTs.simps(2)} & $\dn$ & @{thm (rhs) bsimp.simps(2)}\\ - @{thm (lhs) bsimp_AALTs.simps(3)} & $\dn$ & @{thm (rhs) bsimp.simps(3)}\\ - -\end{tabular} -\end{center} - - -This might sound trivial in the case of producing a YES/NO answer, -but once we require a lexing output to be produced (which is required -in applications like compiler front-end, malicious attack domain extraction, -etc.), it is not straightforward if we still extract what is needed according -to the POSIX standard. - - - - - -By simplification, we mean specifically the following rules: - -\begin{center} - \begin{tabular}{lcl} - @{thm[mode=Axiom] rrewrite.intros(1)[of "bs" "r\<^sub>2"]}\\ - @{thm[mode=Axiom] rrewrite.intros(2)[of "bs" "r\<^sub>1"]}\\ - @{thm[mode=Axiom] rrewrite.intros(3)[of "bs" "bs\<^sub>1" "r\<^sub>1"]}\\ - @{thm[mode=Rule] rrewrite.intros(4)[of "r\<^sub>1" "r\<^sub>2" "bs" "r\<^sub>3"]}\\ - @{thm[mode=Rule] rrewrite.intros(5)[of "r\<^sub>3" "r\<^sub>4" "bs" "r\<^sub>1"]}\\ - @{thm[mode=Rule] rrewrite.intros(6)[of "r" "r'" "bs" "rs\<^sub>1" "rs\<^sub>2"]}\\ - @{thm[mode=Axiom] rrewrite.intros(7)[of "bs" "rs\<^sub>a" "rs\<^sub>b"]}\\ - @{thm[mode=Axiom] rrewrite.intros(8)[of "bs" "rs\<^sub>a" "bs\<^sub>1" "rs\<^sub>1" "rs\<^sub>b"]}\\ - @{thm[mode=Axiom] rrewrite.intros(9)[of "bs" "bs\<^sub>1" "rs"]}\\ - @{thm[mode=Axiom] rrewrite.intros(10)[of "bs" ]}\\ - @{thm[mode=Axiom] rrewrite.intros(11)[of "bs" "r\<^sub>1"]}\\ - @{thm[mode=Rule] rrewrite.intros(12)[of "a\<^sub>1" "a\<^sub>2" "bs" "rs\<^sub>a" "rs\<^sub>b" "rs\<^sub>c"]}\\ - - \end{tabular} -\end{center} - - -And these can be made compact by the following simplification function: - -where the function $\mathit{bsimp_AALTs}$ - -The core idea of the proof is that two regular expressions, -if "isomorphic" up to a finite number of rewrite steps, will -remain "isomorphic" when we take the same sequence of -derivatives on both of them. -This can be expressed by the following rewrite relation lemma: -\begin{lemma} -@{thm [mode=IfThen] central} -\end{lemma} - -This isomorphic relation implies a property that leads to the -correctness result: -if two (nullable) regular expressions are "rewritable" in many steps -from one another, -then a call to function $\textit{bmkeps}$ gives the same -bit-sequence : -\begin{lemma} -@{thm [mode=IfThen] rewrites_bmkeps} -\end{lemma} - -Given the same bit-sequence, the decode function -will give out the same value, which is the output -of both lexers: -\begin{lemma} -@{thm blexer_def} -\end{lemma} - -\begin{lemma} -@{thm blexer_simp_def} -\end{lemma} - -And that yields the correctness result: -\begin{lemma} -@{thm blexersimp_correctness} -\end{lemma} - -The nice thing about the aove -\ - - - -section \Introduction\ - - -text \ - - -Brzozowski \cite{Brzozowski1964} introduced the notion of the {\em -derivative} @{term "der c r"} of a regular expression \r\ w.r.t.\ -a character~\c\, and showed that it gave a simple solution to the -problem of matching a string @{term s} with a regular expression @{term -r}: if the derivative of @{term r} w.r.t.\ (in succession) all the -characters of the string matches the empty string, then @{term r} -matches @{term s} (and {\em vice versa}). The derivative has the -property (which may almost be regarded as its specification) that, for -every string @{term s} and regular expression @{term r} and character -@{term c}, one has @{term "cs \ L(r)"} if and only if \mbox{@{term "s \ L(der c r)"}}. -The beauty of Brzozowski's derivatives is that -they are neatly expressible in any functional language, and easily -definable and reasoned about in theorem provers---the definitions just -consist of inductive datatypes and simple recursive functions. A -mechanised correctness proof of Brzozowski's matcher in for example HOL4 -has been mentioned by Owens and Slind~\cite{Owens2008}. Another one in -Isabelle/HOL is part of the work by Krauss and Nipkow \cite{Krauss2011}. -And another one in Coq is given by Coquand and Siles \cite{Coquand2012}. - -If a regular expression matches a string, then in general there is more -than one way of how the string is matched. There are two commonly used -disambiguation strategies to generate a unique answer: one is called -GREEDY matching \cite{Frisch2004} and the other is POSIX -matching~\cite{POSIX,Kuklewicz,OkuiSuzuki2010,Sulzmann2014,Vansummeren2006}. -For example consider the string @{term xy} and the regular expression -\mbox{@{term "STAR (ALT (ALT x y) xy)"}}. Either the string can be -matched in two `iterations' by the single letter-regular expressions -@{term x} and @{term y}, or directly in one iteration by @{term xy}. The -first case corresponds to GREEDY matching, which first matches with the -left-most symbol and only matches the next symbol in case of a mismatch -(this is greedy in the sense of preferring instant gratification to -delayed repletion). The second case is POSIX matching, which prefers the -longest match. - -In the context of lexing, where an input string needs to be split up -into a sequence of tokens, POSIX is the more natural disambiguation -strategy for what programmers consider basic syntactic building blocks -in their programs. These building blocks are often specified by some -regular expressions, say \r\<^bsub>key\<^esub>\ and \r\<^bsub>id\<^esub>\ for recognising keywords and identifiers, -respectively. There are a few underlying (informal) rules behind -tokenising a string in a POSIX \cite{POSIX} fashion: - -\begin{itemize} -\item[$\bullet$] \emph{The Longest Match Rule} (or \emph{``{M}aximal {M}unch {R}ule''}): -The longest initial substring matched by any regular expression is taken as -next token.\smallskip - -\item[$\bullet$] \emph{Priority Rule:} -For a particular longest initial substring, the first (leftmost) regular expression -that can match determines the token.\smallskip - -\item[$\bullet$] \emph{Star Rule:} A subexpression repeated by ${}^\star$ shall -not match an empty string unless this is the only match for the repetition.\smallskip - -\item[$\bullet$] \emph{Empty String Rule:} An empty string shall be considered to -be longer than no match at all. -\end{itemize} - -\noindent Consider for example a regular expression \r\<^bsub>key\<^esub>\ for recognising keywords such as \if\, -\then\ and so on; and \r\<^bsub>id\<^esub>\ -recognising identifiers (say, a single character followed by -characters or numbers). Then we can form the regular expression -\(r\<^bsub>key\<^esub> + r\<^bsub>id\<^esub>)\<^sup>\\ -and use POSIX matching to tokenise strings, say \iffoo\ and -\if\. For \iffoo\ we obtain by the Longest Match Rule -a single identifier token, not a keyword followed by an -identifier. For \if\ we obtain by the Priority Rule a keyword -token, not an identifier token---even if \r\<^bsub>id\<^esub>\ -matches also. By the Star Rule we know \(r\<^bsub>key\<^esub> + -r\<^bsub>id\<^esub>)\<^sup>\\ matches \iffoo\, -respectively \if\, in exactly one `iteration' of the star. The -Empty String Rule is for cases where, for example, the regular expression -\(a\<^sup>\)\<^sup>\\ matches against the -string \bc\. Then the longest initial matched substring is the -empty string, which is matched by both the whole regular expression -and the parenthesised subexpression. - - -One limitation of Brzozowski's matcher is that it only generates a -YES/NO answer for whether a string is being matched by a regular -expression. Sulzmann and Lu~\cite{Sulzmann2014} extended this matcher -to allow generation not just of a YES/NO answer but of an actual -matching, called a [lexical] {\em value}. Assuming a regular -expression matches a string, values encode the information of -\emph{how} the string is matched by the regular expression---that is, -which part of the string is matched by which part of the regular -expression. For this consider again the string \xy\ and -the regular expression \mbox{\(x + (y + xy))\<^sup>\\} -(this time fully parenthesised). We can view this regular expression -as tree and if the string \xy\ is matched by two Star -`iterations', then the \x\ is matched by the left-most -alternative in this tree and the \y\ by the right-left alternative. This -suggests to record this matching as - -\begin{center} -@{term "Stars [Left(Char x), Right(Left(Char y))]"} -\end{center} - -\noindent where @{const Stars}, \Left\, \Right\ and \Char\ are constructors for values. \Stars\ records how many -iterations were used; \Left\, respectively \Right\, which -alternative is used. This `tree view' leads naturally to the idea that -regular expressions act as types and values as inhabiting those types -(see, for example, \cite{HosoyaVouillonPierce2005}). The value for -matching \xy\ in a single `iteration', i.e.~the POSIX value, -would look as follows - -\begin{center} -@{term "Stars [Seq (Char x) (Char y)]"} -\end{center} - -\noindent where @{const Stars} has only a single-element list for the -single iteration and @{const Seq} indicates that @{term xy} is matched -by a sequence regular expression. - -%, which we will in what follows -%write more formally as @{term "SEQ x y"}. - - -Sulzmann and Lu give a simple algorithm to calculate a value that -appears to be the value associated with POSIX matching. The challenge -then is to specify that value, in an algorithm-independent fashion, -and to show that Sulzmann and Lu's derivative-based algorithm does -indeed calculate a value that is correct according to the -specification. The answer given by Sulzmann and Lu -\cite{Sulzmann2014} is to define a relation (called an ``order -relation'') on the set of values of @{term r}, and to show that (once -a string to be matched is chosen) there is a maximum element and that -it is computed by their derivative-based algorithm. This proof idea is -inspired by work of Frisch and Cardelli \cite{Frisch2004} on a GREEDY -regular expression matching algorithm. However, we were not able to -establish transitivity and totality for the ``order relation'' by -Sulzmann and Lu. There are some inherent problems with their approach -(of which some of the proofs are not published in -\cite{Sulzmann2014}); perhaps more importantly, we give in this paper -a simple inductive (and algorithm-independent) definition of what we -call being a {\em POSIX value} for a regular expression @{term r} and -a string @{term s}; we show that the algorithm by Sulzmann and Lu -computes such a value and that such a value is unique. Our proofs are -both done by hand and checked in Isabelle/HOL. The experience of -doing our proofs has been that this mechanical checking was absolutely -essential: this subject area has hidden snares. This was also noted by -Kuklewicz \cite{Kuklewicz} who found that nearly all POSIX matching -implementations are ``buggy'' \cite[Page 203]{Sulzmann2014} and by -Grathwohl et al \cite[Page 36]{CrashCourse2014} who wrote: - -\begin{quote} -\it{}``The POSIX strategy is more complicated than the greedy because of -the dependence on information about the length of matched strings in the -various subexpressions.'' -\end{quote} - - - -\noindent {\bf Contributions:} We have implemented in Isabelle/HOL the -derivative-based regular expression matching algorithm of -Sulzmann and Lu \cite{Sulzmann2014}. We have proved the correctness of this -algorithm according to our specification of what a POSIX value is (inspired -by work of Vansummeren \cite{Vansummeren2006}). Sulzmann -and Lu sketch in \cite{Sulzmann2014} an informal correctness proof: but to -us it contains unfillable gaps.\footnote{An extended version of -\cite{Sulzmann2014} is available at the website of its first author; this -extended version already includes remarks in the appendix that their -informal proof contains gaps, and possible fixes are not fully worked out.} -Our specification of a POSIX value consists of a simple inductive definition -that given a string and a regular expression uniquely determines this value. -We also show that our definition is equivalent to an ordering -of values based on positions by Okui and Suzuki \cite{OkuiSuzuki2010}. - -%Derivatives as calculated by Brzozowski's method are usually more complex -%regular expressions than the initial one; various optimisations are -%possible. We prove the correctness when simplifications of @{term "ALT ZERO r"}, -%@{term "ALT r ZERO"}, @{term "SEQ ONE r"} and @{term "SEQ r ONE"} to -%@{term r} are applied. - -We extend our results to ??? Bitcoded version?? - -\ - - - - -section \Preliminaries\ - -text \\noindent Strings in Isabelle/HOL are lists of characters with -the empty string being represented by the empty list, written @{term -"[]"}, and list-cons being written as @{term "DUMMY # DUMMY"}. Often -we use the usual bracket notation for lists also for strings; for -example a string consisting of just a single character @{term c} is -written @{term "[c]"}. We use the usual definitions for -\emph{prefixes} and \emph{strict prefixes} of strings. By using the -type @{type char} for characters we have a supply of finitely many -characters roughly corresponding to the ASCII character set. Regular -expressions are defined as usual as the elements of the following -inductive datatype: - - \begin{center} - \r :=\ - @{const "ZERO"} $\mid$ - @{const "ONE"} $\mid$ - @{term "CH c"} $\mid$ - @{term "ALT r\<^sub>1 r\<^sub>2"} $\mid$ - @{term "SEQ r\<^sub>1 r\<^sub>2"} $\mid$ - @{term "STAR r"} - \end{center} - - \noindent where @{const ZERO} stands for the regular expression that does - not match any string, @{const ONE} for the regular expression that matches - only the empty string and @{term c} for matching a character literal. The - language of a regular expression is also defined as usual by the - recursive function @{term L} with the six clauses: - - \begin{center} - \begin{tabular}{l@ {\hspace{4mm}}rcl} - \textit{(1)} & @{thm (lhs) L.simps(1)} & $\dn$ & @{thm (rhs) L.simps(1)}\\ - \textit{(2)} & @{thm (lhs) L.simps(2)} & $\dn$ & @{thm (rhs) L.simps(2)}\\ - \textit{(3)} & @{thm (lhs) L.simps(3)} & $\dn$ & @{thm (rhs) L.simps(3)}\\ - \textit{(4)} & @{thm (lhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & - @{thm (rhs) L.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\ - \textit{(5)} & @{thm (lhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & - @{thm (rhs) L.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\ - \textit{(6)} & @{thm (lhs) L.simps(6)} & $\dn$ & @{thm (rhs) L.simps(6)}\\ - \end{tabular} - \end{center} - - \noindent In clause \textit{(4)} we use the operation @{term "DUMMY ;; - DUMMY"} for the concatenation of two languages (it is also list-append for - strings). We use the star-notation for regular expressions and for - languages (in the last clause above). The star for languages is defined - inductively by two clauses: \(i)\ the empty string being in - the star of a language and \(ii)\ if @{term "s\<^sub>1"} is in a - language and @{term "s\<^sub>2"} in the star of this language, then also @{term - "s\<^sub>1 @ s\<^sub>2"} is in the star of this language. It will also be convenient - to use the following notion of a \emph{semantic derivative} (or \emph{left - quotient}) of a language defined as - % - \begin{center} - @{thm Der_def}\;. - \end{center} - - \noindent - For semantic derivatives we have the following equations (for example - mechanically proved in \cite{Krauss2011}): - % - \begin{equation}\label{SemDer} - \begin{array}{lcl} - @{thm (lhs) Der_null} & \dn & @{thm (rhs) Der_null}\\ - @{thm (lhs) Der_empty} & \dn & @{thm (rhs) Der_empty}\\ - @{thm (lhs) Der_char} & \dn & @{thm (rhs) Der_char}\\ - @{thm (lhs) Der_union} & \dn & @{thm (rhs) Der_union}\\ - @{thm (lhs) Der_Sequ} & \dn & @{thm (rhs) Der_Sequ}\\ - @{thm (lhs) Der_star} & \dn & @{thm (rhs) Der_star} - \end{array} - \end{equation} - - - \noindent \emph{\Brz's derivatives} of regular expressions - \cite{Brzozowski1964} can be easily defined by two recursive functions: - the first is from regular expressions to booleans (implementing a test - when a regular expression can match the empty string), and the second - takes a regular expression and a character to a (derivative) regular - expression: - - \begin{center} - \begin{tabular}{lcl} - @{thm (lhs) nullable.simps(1)} & $\dn$ & @{thm (rhs) nullable.simps(1)}\\ - @{thm (lhs) nullable.simps(2)} & $\dn$ & @{thm (rhs) nullable.simps(2)}\\ - @{thm (lhs) nullable.simps(3)} & $\dn$ & @{thm (rhs) nullable.simps(3)}\\ - @{thm (lhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) nullable.simps(6)} & $\dn$ & @{thm (rhs) nullable.simps(6)}\medskip\\ - -% \end{tabular} -% \end{center} - -% \begin{center} -% \begin{tabular}{lcl} - - @{thm (lhs) der.simps(1)} & $\dn$ & @{thm (rhs) der.simps(1)}\\ - @{thm (lhs) der.simps(2)} & $\dn$ & @{thm (rhs) der.simps(2)}\\ - @{thm (lhs) der.simps(3)} & $\dn$ & @{thm (rhs) der.simps(3)}\\ - @{thm (lhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) der.simps(6)} & $\dn$ & @{thm (rhs) der.simps(6)} - \end{tabular} - \end{center} - - \noindent - We may extend this definition to give derivatives w.r.t.~strings: - - \begin{center} - \begin{tabular}{lcl} - @{thm (lhs) ders.simps(1)} & $\dn$ & @{thm (rhs) ders.simps(1)}\\ - @{thm (lhs) ders.simps(2)} & $\dn$ & @{thm (rhs) ders.simps(2)}\\ - \end{tabular} - \end{center} - - \noindent Given the equations in \eqref{SemDer}, it is a relatively easy - exercise in mechanical reasoning to establish that - - \begin{proposition}\label{derprop}\mbox{}\\ - \begin{tabular}{ll} - \textit{(1)} & @{thm (lhs) nullable_correctness} if and only if - @{thm (rhs) nullable_correctness}, and \\ - \textit{(2)} & @{thm[mode=IfThen] der_correctness}. - \end{tabular} - \end{proposition} - - \noindent With this in place it is also very routine to prove that the - regular expression matcher defined as - % - \begin{center} - @{thm match_def} - \end{center} - - \noindent gives a positive answer if and only if @{term "s \ L r"}. - Consequently, this regular expression matching algorithm satisfies the - usual specification for regular expression matching. While the matcher - above calculates a provably correct YES/NO answer for whether a regular - expression matches a string or not, the novel idea of Sulzmann and Lu - \cite{Sulzmann2014} is to append another phase to this algorithm in order - to calculate a [lexical] value. We will explain the details next. - -\ - -section \POSIX Regular Expression Matching\label{posixsec}\ - -text \ - - There have been many previous works that use values for encoding - \emph{how} a regular expression matches a string. - The clever idea by Sulzmann and Lu \cite{Sulzmann2014} is to - define a function on values that mirrors (but inverts) the - construction of the derivative on regular expressions. \emph{Values} - are defined as the inductive datatype - - \begin{center} - \v :=\ - @{const "Void"} $\mid$ - @{term "val.Char c"} $\mid$ - @{term "Left v"} $\mid$ - @{term "Right v"} $\mid$ - @{term "Seq v\<^sub>1 v\<^sub>2"} $\mid$ - @{term "Stars vs"} - \end{center} - - \noindent where we use @{term vs} to stand for a list of - values. (This is similar to the approach taken by Frisch and - Cardelli for GREEDY matching \cite{Frisch2004}, and Sulzmann and Lu - for POSIX matching \cite{Sulzmann2014}). The string underlying a - value can be calculated by the @{const flat} function, written - @{term "flat DUMMY"} and defined as: - - \begin{center} - \begin{tabular}[t]{lcl} - @{thm (lhs) flat.simps(1)} & $\dn$ & @{thm (rhs) flat.simps(1)}\\ - @{thm (lhs) flat.simps(2)} & $\dn$ & @{thm (rhs) flat.simps(2)}\\ - @{thm (lhs) flat.simps(3)} & $\dn$ & @{thm (rhs) flat.simps(3)}\\ - @{thm (lhs) flat.simps(4)} & $\dn$ & @{thm (rhs) flat.simps(4)} - \end{tabular}\hspace{14mm} - \begin{tabular}[t]{lcl} - @{thm (lhs) flat.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) flat.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\ - @{thm (lhs) flat.simps(6)} & $\dn$ & @{thm (rhs) flat.simps(6)}\\ - @{thm (lhs) flat.simps(7)} & $\dn$ & @{thm (rhs) flat.simps(7)}\\ - \end{tabular} - \end{center} - - \noindent We will sometimes refer to the underlying string of a - value as \emph{flattened value}. We will also overload our notation and - use @{term "flats vs"} for flattening a list of values and concatenating - the resulting strings. - - Sulzmann and Lu define - inductively an \emph{inhabitation relation} that associates values to - regular expressions. We define this relation as - follows:\footnote{Note that the rule for @{term Stars} differs from - our earlier paper \cite{AusafDyckhoffUrban2016}. There we used the - original definition by Sulzmann and Lu which does not require that - the values @{term "v \ set vs"} flatten to a non-empty - string. The reason for introducing the more restricted version of - lexical values is convenience later on when reasoning about an - ordering relation for values.} - - \begin{center} - \begin{tabular}{c@ {\hspace{12mm}}c}\label{prfintros} - \\[-8mm] - @{thm[mode=Axiom] Prf.intros(4)} & - @{thm[mode=Axiom] Prf.intros(5)[of "c"]}\\[4mm] - @{thm[mode=Rule] Prf.intros(2)[of "v\<^sub>1" "r\<^sub>1" "r\<^sub>2"]} & - @{thm[mode=Rule] Prf.intros(3)[of "v\<^sub>2" "r\<^sub>1" "r\<^sub>2"]}\\[4mm] - @{thm[mode=Rule] Prf.intros(1)[of "v\<^sub>1" "r\<^sub>1" "v\<^sub>2" "r\<^sub>2"]} & - @{thm[mode=Rule] Prf.intros(6)[of "vs"]} - \end{tabular} - \end{center} - - \noindent where in the clause for @{const "Stars"} we use the - notation @{term "v \ set vs"} for indicating that \v\ is a - member in the list \vs\. We require in this rule that every - value in @{term vs} flattens to a non-empty string. The idea is that - @{term "Stars"}-values satisfy the informal Star Rule (see Introduction) - where the $^\star$ does not match the empty string unless this is - the only match for the repetition. Note also that no values are - associated with the regular expression @{term ZERO}, and that the - only value associated with the regular expression @{term ONE} is - @{term Void}. It is routine to establish how values ``inhabiting'' - a regular expression correspond to the language of a regular - expression, namely - - \begin{proposition}\label{inhabs} - @{thm L_flat_Prf} - \end{proposition} - - \noindent - Given a regular expression \r\ and a string \s\, we define the - set of all \emph{Lexical Values} inhabited by \r\ with the underlying string - being \s\:\footnote{Okui and Suzuki refer to our lexical values - as \emph{canonical values} in \cite{OkuiSuzuki2010}. The notion of \emph{non-problematic - values} by Cardelli and Frisch \cite{Frisch2004} is related, but not identical - to our lexical values.} - - \begin{center} - @{thm LV_def} - \end{center} - - \noindent The main property of @{term "LV r s"} is that it is alway finite. - - \begin{proposition} - @{thm LV_finite} - \end{proposition} - - \noindent This finiteness property does not hold in general if we - remove the side-condition about @{term "flat v \ []"} in the - @{term Stars}-rule above. For example using Sulzmann and Lu's - less restrictive definition, @{term "LV (STAR ONE) []"} would contain - infinitely many values, but according to our more restricted - definition only a single value, namely @{thm LV_STAR_ONE_empty}. - - If a regular expression \r\ matches a string \s\, then - generally the set @{term "LV r s"} is not just a singleton set. In - case of POSIX matching the problem is to calculate the unique lexical value - that satisfies the (informal) POSIX rules from the Introduction. - Graphically the POSIX value calculation algorithm by Sulzmann and Lu - can be illustrated by the picture in Figure~\ref{Sulz} where the - path from the left to the right involving @{term - derivatives}/@{const nullable} is the first phase of the algorithm - (calculating successive \Brz's derivatives) and @{const - mkeps}/\inj\, the path from right to left, the second - phase. This picture shows the steps required when a regular - expression, say \r\<^sub>1\, matches the string @{term - "[a,b,c]"}. We first build the three derivatives (according to - @{term a}, @{term b} and @{term c}). We then use @{const nullable} - to find out whether the resulting derivative regular expression - @{term "r\<^sub>4"} can match the empty string. If yes, we call the - function @{const mkeps} that produces a value @{term "v\<^sub>4"} - for how @{term "r\<^sub>4"} can match the empty string (taking into - account the POSIX constraints in case there are several ways). This - function is defined by the clauses: - -\begin{figure}[t] -\begin{center} -\begin{tikzpicture}[scale=2,node distance=1.3cm, - every node/.style={minimum size=6mm}] -\node (r1) {@{term "r\<^sub>1"}}; -\node (r2) [right=of r1]{@{term "r\<^sub>2"}}; -\draw[->,line width=1mm](r1)--(r2) node[above,midway] {@{term "der a DUMMY"}}; -\node (r3) [right=of r2]{@{term "r\<^sub>3"}}; -\draw[->,line width=1mm](r2)--(r3) node[above,midway] {@{term "der b DUMMY"}}; -\node (r4) [right=of r3]{@{term "r\<^sub>4"}}; -\draw[->,line width=1mm](r3)--(r4) node[above,midway] {@{term "der c DUMMY"}}; -\draw (r4) node[anchor=west] {\;\raisebox{3mm}{@{term nullable}}}; -\node (v4) [below=of r4]{@{term "v\<^sub>4"}}; -\draw[->,line width=1mm](r4) -- (v4); -\node (v3) [left=of v4] {@{term "v\<^sub>3"}}; -\draw[->,line width=1mm](v4)--(v3) node[below,midway] {\inj r\<^sub>3 c\}; -\node (v2) [left=of v3]{@{term "v\<^sub>2"}}; -\draw[->,line width=1mm](v3)--(v2) node[below,midway] {\inj r\<^sub>2 b\}; -\node (v1) [left=of v2] {@{term "v\<^sub>1"}}; -\draw[->,line width=1mm](v2)--(v1) node[below,midway] {\inj r\<^sub>1 a\}; -\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{@{term "mkeps"}}}; -\end{tikzpicture} -\end{center} -\mbox{}\\[-13mm] - -\caption{The two phases of the algorithm by Sulzmann \& Lu \cite{Sulzmann2014}, -matching the string @{term "[a,b,c]"}. The first phase (the arrows from -left to right) is \Brz's matcher building successive derivatives. If the -last regular expression is @{term nullable}, then the functions of the -second phase are called (the top-down and right-to-left arrows): first -@{term mkeps} calculates a value @{term "v\<^sub>4"} witnessing -how the empty string has been recognised by @{term "r\<^sub>4"}. After -that the function @{term inj} ``injects back'' the characters of the string into -the values. -\label{Sulz}} -\end{figure} - - \begin{center} - \begin{tabular}{lcl} - @{thm (lhs) mkeps.simps(1)} & $\dn$ & @{thm (rhs) mkeps.simps(1)}\\ - @{thm (lhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) mkeps.simps(4)} & $\dn$ & @{thm (rhs) mkeps.simps(4)}\\ - \end{tabular} - \end{center} - - \noindent Note that this function needs only to be partially defined, - namely only for regular expressions that are nullable. In case @{const - nullable} fails, the string @{term "[a,b,c]"} cannot be matched by @{term - "r\<^sub>1"} and the null value @{term "None"} is returned. Note also how this function - makes some subtle choices leading to a POSIX value: for example if an - alternative regular expression, say @{term "ALT r\<^sub>1 r\<^sub>2"}, can - match the empty string and furthermore @{term "r\<^sub>1"} can match the - empty string, then we return a \Left\-value. The \Right\-value will only be returned if @{term "r\<^sub>1"} cannot match the empty - string. - - The most interesting idea from Sulzmann and Lu \cite{Sulzmann2014} is - the construction of a value for how @{term "r\<^sub>1"} can match the - string @{term "[a,b,c]"} from the value how the last derivative, @{term - "r\<^sub>4"} in Fig.~\ref{Sulz}, can match the empty string. Sulzmann and - Lu achieve this by stepwise ``injecting back'' the characters into the - values thus inverting the operation of building derivatives, but on the level - of values. The corresponding function, called @{term inj}, takes three - arguments, a regular expression, a character and a value. For example in - the first (or right-most) @{term inj}-step in Fig.~\ref{Sulz} the regular - expression @{term "r\<^sub>3"}, the character @{term c} from the last - derivative step and @{term "v\<^sub>4"}, which is the value corresponding - to the derivative regular expression @{term "r\<^sub>4"}. The result is - the new value @{term "v\<^sub>3"}. The final result of the algorithm is - the value @{term "v\<^sub>1"}. The @{term inj} function is defined by recursion on regular - expressions and by analysing the shape of values (corresponding to - the derivative regular expressions). - % - \begin{center} - \begin{tabular}{l@ {\hspace{5mm}}lcl} - \textit{(1)} & @{thm (lhs) injval.simps(1)} & $\dn$ & @{thm (rhs) injval.simps(1)}\\ - \textit{(2)} & @{thm (lhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ & - @{thm (rhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\ - \textit{(3)} & @{thm (lhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ & - @{thm (rhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\ - \textit{(4)} & @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ - & @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\ - \textit{(5)} & @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ - & @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\ - \textit{(6)} & @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ - & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\ - \textit{(7)} & @{thm (lhs) injval.simps(7)[of "r" "c" "v" "vs"]} & $\dn$ - & @{thm (rhs) injval.simps(7)[of "r" "c" "v" "vs"]}\\ - \end{tabular} - \end{center} - - \noindent To better understand what is going on in this definition it - might be instructive to look first at the three sequence cases (clauses - \textit{(4)} -- \textit{(6)}). In each case we need to construct an ``injected value'' for - @{term "SEQ r\<^sub>1 r\<^sub>2"}. This must be a value of the form @{term - "Seq DUMMY DUMMY"}\,. Recall the clause of the \derivative\-function - for sequence regular expressions: - - \begin{center} - @{thm (lhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} $\dn$ @{thm (rhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} - \end{center} - - \noindent Consider first the \else\-branch where the derivative is @{term - "SEQ (der c r\<^sub>1) r\<^sub>2"}. The corresponding value must therefore - be of the form @{term "Seq v\<^sub>1 v\<^sub>2"}, which matches the left-hand - side in clause~\textit{(4)} of @{term inj}. In the \if\-branch the derivative is an - alternative, namely @{term "ALT (SEQ (der c r\<^sub>1) r\<^sub>2) (der c - r\<^sub>2)"}. This means we either have to consider a \Left\- or - \Right\-value. In case of the \Left\-value we know further it - must be a value for a sequence regular expression. Therefore the pattern - we match in the clause \textit{(5)} is @{term "Left (Seq v\<^sub>1 v\<^sub>2)"}, - while in \textit{(6)} it is just @{term "Right v\<^sub>2"}. One more interesting - point is in the right-hand side of clause \textit{(6)}: since in this case the - regular expression \r\<^sub>1\ does not ``contribute'' to - matching the string, that means it only matches the empty string, we need to - call @{const mkeps} in order to construct a value for how @{term "r\<^sub>1"} - can match this empty string. A similar argument applies for why we can - expect in the left-hand side of clause \textit{(7)} that the value is of the form - @{term "Seq v (Stars vs)"}---the derivative of a star is @{term "SEQ (der c r) - (STAR r)"}. Finally, the reason for why we can ignore the second argument - in clause \textit{(1)} of @{term inj} is that it will only ever be called in cases - where @{term "c=d"}, but the usual linearity restrictions in patterns do - not allow us to build this constraint explicitly into our function - definition.\footnote{Sulzmann and Lu state this clause as @{thm (lhs) - injval.simps(1)[of "c" "c"]} $\dn$ @{thm (rhs) injval.simps(1)[of "c"]}, - but our deviation is harmless.} - - The idea of the @{term inj}-function to ``inject'' a character, say - @{term c}, into a value can be made precise by the first part of the - following lemma, which shows that the underlying string of an injected - value has a prepended character @{term c}; the second part shows that - the underlying string of an @{const mkeps}-value is always the empty - string (given the regular expression is nullable since otherwise - \mkeps\ might not be defined). - - \begin{lemma}\mbox{}\smallskip\\\label{Prf_injval_flat} - \begin{tabular}{ll} - (1) & @{thm[mode=IfThen] Prf_injval_flat}\\ - (2) & @{thm[mode=IfThen] mkeps_flat} - \end{tabular} - \end{lemma} - - \begin{proof} - Both properties are by routine inductions: the first one can, for example, - be proved by induction over the definition of @{term derivatives}; the second by - an induction on @{term r}. There are no interesting cases.\qed - \end{proof} - - Having defined the @{const mkeps} and \inj\ function we can extend - \Brz's matcher so that a value is constructed (assuming the - regular expression matches the string). The clauses of the Sulzmann and Lu lexer are - - \begin{center} - \begin{tabular}{lcl} - @{thm (lhs) lexer.simps(1)} & $\dn$ & @{thm (rhs) lexer.simps(1)}\\ - @{thm (lhs) lexer.simps(2)} & $\dn$ & \case\ @{term "lexer (der c r) s"} \of\\\ - & & \phantom{$|$} @{term "None"} \\\ @{term None}\\ - & & $|$ @{term "Some v"} \\\ @{term "Some (injval r c v)"} - \end{tabular} - \end{center} - - \noindent If the regular expression does not match the string, @{const None} is - returned. If the regular expression \emph{does} - match the string, then @{const Some} value is returned. One important - virtue of this algorithm is that it can be implemented with ease in any - functional programming language and also in Isabelle/HOL. In the remaining - part of this section we prove that this algorithm is correct. - - The well-known idea of POSIX matching is informally defined by some - rules such as the Longest Match and Priority Rules (see - Introduction); as correctly argued in \cite{Sulzmann2014}, this - needs formal specification. Sulzmann and Lu define an ``ordering - relation'' between values and argue that there is a maximum value, - as given by the derivative-based algorithm. In contrast, we shall - introduce a simple inductive definition that specifies directly what - a \emph{POSIX value} is, incorporating the POSIX-specific choices - into the side-conditions of our rules. Our definition is inspired by - the matching relation given by Vansummeren~\cite{Vansummeren2006}. - The relation we define is ternary and - written as \mbox{@{term "s \ r \ v"}}, relating - strings, regular expressions and values; the inductive rules are given in - Figure~\ref{POSIXrules}. - We can prove that given a string @{term s} and regular expression @{term - r}, the POSIX value @{term v} is uniquely determined by @{term "s \ r \ v"}. - - % - \begin{figure}[t] - \begin{center} - \begin{tabular}{c} - @{thm[mode=Axiom] Posix.intros(1)}\P\@{term "ONE"} \qquad - @{thm[mode=Axiom] Posix.intros(2)}\P\@{term "c"}\medskip\\ - @{thm[mode=Rule] Posix.intros(3)[of "s" "r\<^sub>1" "v" "r\<^sub>2"]}\P+L\\qquad - @{thm[mode=Rule] Posix.intros(4)[of "s" "r\<^sub>2" "v" "r\<^sub>1"]}\P+R\\medskip\\ - $\mprset{flushleft} - \inferrule - {@{thm (prem 1) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]} \qquad - @{thm (prem 2) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]} \\\\ - @{thm (prem 3) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]}} - {@{thm (concl) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]}}$\PS\\\ - @{thm[mode=Axiom] Posix.intros(7)}\P[]\\medskip\\ - $\mprset{flushleft} - \inferrule - {@{thm (prem 1) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]} \qquad - @{thm (prem 2) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]} \qquad - @{thm (prem 3) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]} \\\\ - @{thm (prem 4) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]}} - {@{thm (concl) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]}}$\P\\ - \end{tabular} - \end{center} - \caption{Our inductive definition of POSIX values.}\label{POSIXrules} - \end{figure} - - - - \begin{theorem}\mbox{}\smallskip\\\label{posixdeterm} - \begin{tabular}{ll} - (1) & If @{thm (prem 1) Posix1(1)} then @{thm (concl) - Posix1(1)} and @{thm (concl) Posix1(2)}.\\ - (2) & @{thm[mode=IfThen] Posix_determ(1)[of _ _ "v" "v'"]} - \end{tabular} - \end{theorem} - - \begin{proof} Both by induction on the definition of @{term "s \ r \ v"}. - The second parts follows by a case analysis of @{term "s \ r \ v'"} and - the first part.\qed - \end{proof} - - \noindent - We claim that our @{term "s \ r \ v"} relation captures the idea behind the four - informal POSIX rules shown in the Introduction: Consider for example the - rules \P+L\ and \P+R\ where the POSIX value for a string - and an alternative regular expression, that is @{term "(s, ALT r\<^sub>1 r\<^sub>2)"}, - is specified---it is always a \Left\-value, \emph{except} when the - string to be matched is not in the language of @{term "r\<^sub>1"}; only then it - is a \Right\-value (see the side-condition in \P+R\). - Interesting is also the rule for sequence regular expressions (\PS\). The first two premises state that @{term "v\<^sub>1"} and @{term "v\<^sub>2"} - are the POSIX values for @{term "(s\<^sub>1, r\<^sub>1)"} and @{term "(s\<^sub>2, r\<^sub>2)"} - respectively. Consider now the third premise and note that the POSIX value - of this rule should match the string \mbox{@{term "s\<^sub>1 @ s\<^sub>2"}}. According to the - Longest Match Rule, we want that the @{term "s\<^sub>1"} is the longest initial - split of \mbox{@{term "s\<^sub>1 @ s\<^sub>2"}} such that @{term "s\<^sub>2"} is still recognised - by @{term "r\<^sub>2"}. Let us assume, contrary to the third premise, that there - \emph{exist} an @{term "s\<^sub>3"} and @{term "s\<^sub>4"} such that @{term "s\<^sub>2"} - can be split up into a non-empty string @{term "s\<^sub>3"} and a possibly empty - string @{term "s\<^sub>4"}. Moreover the longer string @{term "s\<^sub>1 @ s\<^sub>3"} can be - matched by \r\<^sub>1\ and the shorter @{term "s\<^sub>4"} can still be - matched by @{term "r\<^sub>2"}. In this case @{term "s\<^sub>1"} would \emph{not} be the - longest initial split of \mbox{@{term "s\<^sub>1 @ s\<^sub>2"}} and therefore @{term "Seq v\<^sub>1 - v\<^sub>2"} cannot be a POSIX value for @{term "(s\<^sub>1 @ s\<^sub>2, SEQ r\<^sub>1 r\<^sub>2)"}. - The main point is that our side-condition ensures the Longest - Match Rule is satisfied. - - A similar condition is imposed on the POSIX value in the \P\\-rule. Also there we want that @{term "s\<^sub>1"} is the longest initial - split of @{term "s\<^sub>1 @ s\<^sub>2"} and furthermore the corresponding value - @{term v} cannot be flattened to the empty string. In effect, we require - that in each ``iteration'' of the star, some non-empty substring needs to - be ``chipped'' away; only in case of the empty string we accept @{term - "Stars []"} as the POSIX value. Indeed we can show that our POSIX values - are lexical values which exclude those \Stars\ that contain subvalues - that flatten to the empty string. - - \begin{lemma}\label{LVposix} - @{thm [mode=IfThen] Posix_LV} - \end{lemma} - - \begin{proof} - By routine induction on @{thm (prem 1) Posix_LV}.\qed - \end{proof} - - \noindent - Next is the lemma that shows the function @{term "mkeps"} calculates - the POSIX value for the empty string and a nullable regular expression. - - \begin{lemma}\label{lemmkeps} - @{thm[mode=IfThen] Posix_mkeps} - \end{lemma} - - \begin{proof} - By routine induction on @{term r}.\qed - \end{proof} - - \noindent - The central lemma for our POSIX relation is that the \inj\-function - preserves POSIX values. - - \begin{lemma}\label{Posix2} - @{thm[mode=IfThen] Posix_injval} - \end{lemma} - - \begin{proof} - By induction on \r\. We explain two cases. - - \begin{itemize} - \item[$\bullet$] Case @{term "r = ALT r\<^sub>1 r\<^sub>2"}. There are - two subcases, namely \(a)\ \mbox{@{term "v = Left v'"}} and @{term - "s \ der c r\<^sub>1 \ v'"}; and \(b)\ @{term "v = Right v'"}, @{term - "s \ L (der c r\<^sub>1)"} and @{term "s \ der c r\<^sub>2 \ v'"}. In \(a)\ we - know @{term "s \ der c r\<^sub>1 \ v'"}, from which we can infer @{term "(c # s) - \ r\<^sub>1 \ injval r\<^sub>1 c v'"} by induction hypothesis and hence @{term "(c # - s) \ ALT r\<^sub>1 r\<^sub>2 \ injval (ALT r\<^sub>1 r\<^sub>2) c (Left v')"} as needed. Similarly - in subcase \(b)\ where, however, in addition we have to use - Proposition~\ref{derprop}(2) in order to infer @{term "c # s \ L r\<^sub>1"} from @{term - "s \ L (der c r\<^sub>1)"}.\smallskip - - \item[$\bullet$] Case @{term "r = SEQ r\<^sub>1 r\<^sub>2"}. There are three subcases: - - \begin{quote} - \begin{description} - \item[\(a)\] @{term "v = Left (Seq v\<^sub>1 v\<^sub>2)"} and @{term "nullable r\<^sub>1"} - \item[\(b)\] @{term "v = Right v\<^sub>1"} and @{term "nullable r\<^sub>1"} - \item[\(c)\] @{term "v = Seq v\<^sub>1 v\<^sub>2"} and @{term "\ nullable r\<^sub>1"} - \end{description} - \end{quote} - - \noindent For \(a)\ we know @{term "s\<^sub>1 \ der c r\<^sub>1 \ v\<^sub>1"} and - @{term "s\<^sub>2 \ r\<^sub>2 \ v\<^sub>2"} as well as - % - \[@{term "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s\<^sub>2 \ s\<^sub>1 @ s\<^sub>3 \ L (der c r\<^sub>1) \ s\<^sub>4 \ L r\<^sub>2)"}\] - - \noindent From the latter we can infer by Proposition~\ref{derprop}(2): - % - \[@{term "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s\<^sub>2 \ (c # s\<^sub>1) @ s\<^sub>3 \ L r\<^sub>1 \ s\<^sub>4 \ L r\<^sub>2)"}\] - - \noindent We can use the induction hypothesis for \r\<^sub>1\ to obtain - @{term "(c # s\<^sub>1) \ r\<^sub>1 \ injval r\<^sub>1 c v\<^sub>1"}. Putting this all together allows us to infer - @{term "((c # s\<^sub>1) @ s\<^sub>2) \ SEQ r\<^sub>1 r\<^sub>2 \ Seq (injval r\<^sub>1 c v\<^sub>1) v\<^sub>2"}. The case \(c)\ - is similar. - - For \(b)\ we know @{term "s \ der c r\<^sub>2 \ v\<^sub>1"} and - @{term "s\<^sub>1 @ s\<^sub>2 \ L (SEQ (der c r\<^sub>1) r\<^sub>2)"}. From the former - we have @{term "(c # s) \ r\<^sub>2 \ (injval r\<^sub>2 c v\<^sub>1)"} by induction hypothesis - for @{term "r\<^sub>2"}. From the latter we can infer - % - \[@{term "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = c # s \ s\<^sub>3 \ L r\<^sub>1 \ s\<^sub>4 \ L r\<^sub>2)"}\] - - \noindent By Lemma~\ref{lemmkeps} we know @{term "[] \ r\<^sub>1 \ (mkeps r\<^sub>1)"} - holds. Putting this all together, we can conclude with @{term "(c # - s) \ SEQ r\<^sub>1 r\<^sub>2 \ Seq (mkeps r\<^sub>1) (injval r\<^sub>2 c v\<^sub>1)"}, as required. - - Finally suppose @{term "r = STAR r\<^sub>1"}. This case is very similar to the - sequence case, except that we need to also ensure that @{term "flat (injval r\<^sub>1 - c v\<^sub>1) \ []"}. This follows from @{term "(c # s\<^sub>1) - \ r\<^sub>1 \ injval r\<^sub>1 c v\<^sub>1"} (which in turn follows from @{term "s\<^sub>1 \ der c - r\<^sub>1 \ v\<^sub>1"} and the induction hypothesis).\qed - \end{itemize} - \end{proof} - - \noindent - With Lemma~\ref{Posix2} in place, it is completely routine to establish - that the Sulzmann and Lu lexer satisfies our specification (returning - the null value @{term "None"} iff the string is not in the language of the regular expression, - and returning a unique POSIX value iff the string \emph{is} in the language): - - \begin{theorem}\mbox{}\smallskip\\\label{lexercorrect} - \begin{tabular}{ll} - (1) & @{thm (lhs) lexer_correct_None} if and only if @{thm (rhs) lexer_correct_None}\\ - (2) & @{thm (lhs) lexer_correct_Some} if and only if @{thm (rhs) lexer_correct_Some}\\ - \end{tabular} - \end{theorem} - - \begin{proof} - By induction on @{term s} using Lemma~\ref{lemmkeps} and \ref{Posix2}.\qed - \end{proof} - - \noindent In \textit{(2)} we further know by Theorem~\ref{posixdeterm} that the - value returned by the lexer must be unique. A simple corollary - of our two theorems is: - - \begin{corollary}\mbox{}\smallskip\\\label{lexercorrectcor} - \begin{tabular}{ll} - (1) & @{thm (lhs) lexer_correctness(2)} if and only if @{thm (rhs) lexer_correctness(2)}\\ - (2) & @{thm (lhs) lexer_correctness(1)} if and only if @{thm (rhs) lexer_correctness(1)}\\ - \end{tabular} - \end{corollary} - - \noindent This concludes our correctness proof. Note that we have - not changed the algorithm of Sulzmann and Lu,\footnote{All - deviations we introduced are harmless.} but introduced our own - specification for what a correct result---a POSIX value---should be. - In the next section we show that our specification coincides with - another one given by Okui and Suzuki using a different technique. - -\ - -section \Ordering of Values according to Okui and Suzuki\ - -text \ - - While in the previous section we have defined POSIX values directly - in terms of a ternary relation (see inference rules in Figure~\ref{POSIXrules}), - Sulzmann and Lu took a different approach in \cite{Sulzmann2014}: - they introduced an ordering for values and identified POSIX values - as the maximal elements. An extended version of \cite{Sulzmann2014} - is available at the website of its first author; this includes more - details of their proofs, but which are evidently not in final form - yet. Unfortunately, we were not able to verify claims that their - ordering has properties such as being transitive or having maximal - elements. - - Okui and Suzuki \cite{OkuiSuzuki2010,OkuiSuzukiTech} described - another ordering of values, which they use to establish the - correctness of their automata-based algorithm for POSIX matching. - Their ordering resembles some aspects of the one given by Sulzmann - and Lu, but overall is quite different. To begin with, Okui and - Suzuki identify POSIX values as minimal, rather than maximal, - elements in their ordering. A more substantial difference is that - the ordering by Okui and Suzuki uses \emph{positions} in order to - identify and compare subvalues. Positions are lists of natural - numbers. This allows them to quite naturally formalise the Longest - Match and Priority rules of the informal POSIX standard. Consider - for example the value @{term v} - - \begin{center} - @{term "v == Stars [Seq (Char x) (Char y), Char z]"} - \end{center} - - \noindent - At position \[0,1]\ of this value is the - subvalue \Char y\ and at position \[1]\ the - subvalue @{term "Char z"}. At the `root' position, or empty list - @{term "[]"}, is the whole value @{term v}. Positions such as \[0,1,0]\ or \[2]\ are outside of \v\. If it exists, the subvalue of @{term v} at a position \p\, written @{term "at v p"}, can be recursively defined by - - \begin{center} - \begin{tabular}{r@ {\hspace{0mm}}lcl} - @{term v} & \\\<^bsub>[]\<^esub>\ & \\\& @{thm (rhs) at.simps(1)}\\ - @{term "Left v"} & \\\<^bsub>0::ps\<^esub>\ & \\\& @{thm (rhs) at.simps(2)}\\ - @{term "Right v"} & \\\<^bsub>1::ps\<^esub>\ & \\\ & - @{thm (rhs) at.simps(3)[simplified Suc_0_fold]}\\ - @{term "Seq v\<^sub>1 v\<^sub>2"} & \\\<^bsub>0::ps\<^esub>\ & \\\ & - @{thm (rhs) at.simps(4)[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \\ - @{term "Seq v\<^sub>1 v\<^sub>2"} & \\\<^bsub>1::ps\<^esub>\ - & \\\ & - @{thm (rhs) at.simps(5)[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2", simplified Suc_0_fold]} \\ - @{term "Stars vs"} & \\\<^bsub>n::ps\<^esub>\ & \\\& @{thm (rhs) at.simps(6)}\\ - \end{tabular} - \end{center} - - \noindent In the last clause we use Isabelle's notation @{term "vs ! n"} for the - \n\th element in a list. The set of positions inside a value \v\, - written @{term "Pos v"}, is given by - - \begin{center} - \begin{tabular}{lcl} - @{thm (lhs) Pos.simps(1)} & \\\ & @{thm (rhs) Pos.simps(1)}\\ - @{thm (lhs) Pos.simps(2)} & \\\ & @{thm (rhs) Pos.simps(2)}\\ - @{thm (lhs) Pos.simps(3)} & \\\ & @{thm (rhs) Pos.simps(3)}\\ - @{thm (lhs) Pos.simps(4)} & \\\ & @{thm (rhs) Pos.simps(4)}\\ - @{thm (lhs) Pos.simps(5)[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} - & \\\ - & @{thm (rhs) Pos.simps(5)[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\ - @{thm (lhs) Pos_stars} & \\\ & @{thm (rhs) Pos_stars}\\ - \end{tabular} - \end{center} - - \noindent - whereby \len\ in the last clause stands for the length of a list. Clearly - for every position inside a value there exists a subvalue at that position. - - - To help understanding the ordering of Okui and Suzuki, consider again - the earlier value - \v\ and compare it with the following \w\: - - \begin{center} - \begin{tabular}{l} - @{term "v == Stars [Seq (Char x) (Char y), Char z]"}\\ - @{term "w == Stars [Char x, Char y, Char z]"} - \end{tabular} - \end{center} - - \noindent Both values match the string \xyz\, that means if - we flatten these values at their respective root position, we obtain - \xyz\. However, at position \[0]\, \v\ matches - \xy\ whereas \w\ matches only the shorter \x\. So - according to the Longest Match Rule, we should prefer \v\, - rather than \w\ as POSIX value for string \xyz\ (and - corresponding regular expression). In order to - formalise this idea, Okui and Suzuki introduce a measure for - subvalues at position \p\, called the \emph{norm} of \v\ - at position \p\. We can define this measure in Isabelle as an - integer as follows - - \begin{center} - @{thm pflat_len_def} - \end{center} - - \noindent where we take the length of the flattened value at - position \p\, provided the position is inside \v\; if - not, then the norm is \-1\. The default for outside - positions is crucial for the POSIX requirement of preferring a - \Left\-value over a \Right\-value (if they can match the - same string---see the Priority Rule from the Introduction). For this - consider - - \begin{center} - @{term "v == Left (Char x)"} \qquad and \qquad @{term "w == Right (Char x)"} - \end{center} - - \noindent Both values match \x\. At position \[0]\ - the norm of @{term v} is \1\ (the subvalue matches \x\), - but the norm of \w\ is \-1\ (the position is outside - \w\ according to how we defined the `inside' positions of - \Left\- and \Right\-values). Of course at position - \[1]\, the norms @{term "pflat_len v [1]"} and @{term - "pflat_len w [1]"} are reversed, but the point is that subvalues - will be analysed according to lexicographically ordered - positions. According to this ordering, the position \[0]\ - takes precedence over \[1]\ and thus also \v\ will be - preferred over \w\. The lexicographic ordering of positions, written - @{term "DUMMY \lex DUMMY"}, can be conveniently formalised - by three inference rules - - \begin{center} - \begin{tabular}{ccc} - @{thm [mode=Axiom] lex_list.intros(1)}\hspace{1cm} & - @{thm [mode=Rule] lex_list.intros(3)[where ?p1.0="p\<^sub>1" and ?p2.0="p\<^sub>2" and - ?ps1.0="ps\<^sub>1" and ?ps2.0="ps\<^sub>2"]}\hspace{1cm} & - @{thm [mode=Rule] lex_list.intros(2)[where ?ps1.0="ps\<^sub>1" and ?ps2.0="ps\<^sub>2"]} - \end{tabular} - \end{center} - - With the norm and lexicographic order in place, - we can state the key definition of Okui and Suzuki - \cite{OkuiSuzuki2010}: a value @{term "v\<^sub>1"} is \emph{smaller at position \p\} than - @{term "v\<^sub>2"}, written @{term "v\<^sub>1 \val p v\<^sub>2"}, - if and only if $(i)$ the norm at position \p\ is - greater in @{term "v\<^sub>1"} (that is the string @{term "flat (at v\<^sub>1 p)"} is longer - than @{term "flat (at v\<^sub>2 p)"}) and $(ii)$ all subvalues at - positions that are inside @{term "v\<^sub>1"} or @{term "v\<^sub>2"} and that are - lexicographically smaller than \p\, we have the same norm, namely - - \begin{center} - \begin{tabular}{c} - @{thm (lhs) PosOrd_def[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} - \\\ - $\begin{cases} - (i) & @{term "pflat_len v\<^sub>1 p > pflat_len v\<^sub>2 p"} \quad\text{and}\smallskip \\ - (ii) & @{term "(\q \ Pos v\<^sub>1 \ Pos v\<^sub>2. q \lex p --> pflat_len v\<^sub>1 q = pflat_len v\<^sub>2 q)"} - \end{cases}$ - \end{tabular} - \end{center} - - \noindent The position \p\ in this definition acts as the - \emph{first distinct position} of \v\<^sub>1\ and \v\<^sub>2\, where both values match strings of different length - \cite{OkuiSuzuki2010}. Since at \p\ the values \v\<^sub>1\ and \v\<^sub>2\ match different strings, the - ordering is irreflexive. Derived from the definition above - are the following two orderings: - - \begin{center} - \begin{tabular}{l} - @{thm PosOrd_ex_def[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\ - @{thm PosOrd_ex_eq_def[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} - \end{tabular} - \end{center} - - While we encountered a number of obstacles for establishing properties like - transitivity for the ordering of Sulzmann and Lu (and which we failed - to overcome), it is relatively straightforward to establish this - property for the orderings - @{term "DUMMY :\val DUMMY"} and @{term "DUMMY :\val DUMMY"} - by Okui and Suzuki. - - \begin{lemma}[Transitivity]\label{transitivity} - @{thm [mode=IfThen] PosOrd_trans[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and ?v3.0="v\<^sub>3"]} - \end{lemma} - - \begin{proof} From the assumption we obtain two positions \p\ - and \q\, where the values \v\<^sub>1\ and \v\<^sub>2\ (respectively \v\<^sub>2\ and \v\<^sub>3\) are `distinct'. Since \\\<^bsub>lex\<^esub>\ is trichotomous, we need to consider - three cases, namely @{term "p = q"}, @{term "p \lex q"} and - @{term "q \lex p"}. Let us look at the first case. Clearly - @{term "pflat_len v\<^sub>2 p < pflat_len v\<^sub>1 p"} and @{term - "pflat_len v\<^sub>3 p < pflat_len v\<^sub>2 p"} imply @{term - "pflat_len v\<^sub>3 p < pflat_len v\<^sub>1 p"}. It remains to show - that for a @{term "p' \ Pos v\<^sub>1 \ Pos v\<^sub>3"} - with @{term "p' \lex p"} that @{term "pflat_len v\<^sub>1 - p' = pflat_len v\<^sub>3 p'"} holds. Suppose @{term "p' \ Pos - v\<^sub>1"}, then we can infer from the first assumption that @{term - "pflat_len v\<^sub>1 p' = pflat_len v\<^sub>2 p'"}. But this means - that @{term "p'"} must be in @{term "Pos v\<^sub>2"} too (the norm - cannot be \-1\ given @{term "p' \ Pos v\<^sub>1"}). - Hence we can use the second assumption and - infer @{term "pflat_len v\<^sub>2 p' = pflat_len v\<^sub>3 p'"}, - which concludes this case with @{term "v\<^sub>1 :\val - v\<^sub>3"}. The reasoning in the other cases is similar.\qed - \end{proof} - - \noindent - The proof for $\preccurlyeq$ is similar and omitted. - It is also straightforward to show that \\\ and - $\preccurlyeq$ are partial orders. Okui and Suzuki furthermore show that they - are linear orderings for lexical values \cite{OkuiSuzuki2010} of a given - regular expression and given string, but we have not formalised this in Isabelle. It is - not essential for our results. What we are going to show below is - that for a given \r\ and \s\, the orderings have a unique - minimal element on the set @{term "LV r s"}, which is the POSIX value - we defined in the previous section. We start with two properties that - show how the length of a flattened value relates to the \\\-ordering. - - \begin{proposition}\mbox{}\smallskip\\\label{ordlen} - \begin{tabular}{@ {}ll} - (1) & - @{thm [mode=IfThen] PosOrd_shorterE[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\ - (2) & - @{thm [mode=IfThen] PosOrd_shorterI[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} - \end{tabular} - \end{proposition} - - \noindent Both properties follow from the definition of the ordering. Note that - \textit{(2)} entails that a value, say @{term "v\<^sub>2"}, whose underlying - string is a strict prefix of another flattened value, say @{term "v\<^sub>1"}, then - @{term "v\<^sub>1"} must be smaller than @{term "v\<^sub>2"}. For our proofs it - will be useful to have the following properties---in each case the underlying strings - of the compared values are the same: - - \begin{proposition}\mbox{}\smallskip\\\label{ordintros} - \begin{tabular}{ll} - \textit{(1)} & - @{thm [mode=IfThen] PosOrd_Left_Right[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\ - \textit{(2)} & If - @{thm (prem 1) PosOrd_Left_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \;then\; - @{thm (lhs) PosOrd_Left_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \;iff\; - @{thm (rhs) PosOrd_Left_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\ - \textit{(3)} & If - @{thm (prem 1) PosOrd_Right_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \;then\; - @{thm (lhs) PosOrd_Right_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} \;iff\; - @{thm (rhs) PosOrd_Right_eq[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]}\\ - \textit{(4)} & If - @{thm (prem 1) PosOrd_Seq_eq[where ?v2.0="v\<^sub>2" and ?w2.0="w\<^sub>2"]} \;then\; - @{thm (lhs) PosOrd_Seq_eq[where ?v2.0="v\<^sub>2" and ?w2.0="w\<^sub>2"]} \;iff\; - @{thm (rhs) PosOrd_Seq_eq[where ?v2.0="v\<^sub>2" and ?w2.0="w\<^sub>2"]}\\ - \textit{(5)} & If - @{thm (prem 2) PosOrd_SeqI1[simplified, where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and - ?w1.0="w\<^sub>1" and ?w2.0="w\<^sub>2"]} \;and\; - @{thm (prem 1) PosOrd_SeqI1[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and - ?w1.0="w\<^sub>1" and ?w2.0="w\<^sub>2"]} \;then\; - @{thm (concl) PosOrd_SeqI1[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and - ?w1.0="w\<^sub>1" and ?w2.0="w\<^sub>2"]}\\ - \textit{(6)} & If - @{thm (prem 1) PosOrd_Stars_append_eq[where ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]} \;then\; - @{thm (lhs) PosOrd_Stars_append_eq[where ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]} \;iff\; - @{thm (rhs) PosOrd_Stars_append_eq[where ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]}\\ - - \textit{(7)} & If - @{thm (prem 2) PosOrd_StarsI[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and - ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]} \;and\; - @{thm (prem 1) PosOrd_StarsI[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and - ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]} \;then\; - @{thm (concl) PosOrd_StarsI[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2" and - ?vs1.0="vs\<^sub>1" and ?vs2.0="vs\<^sub>2"]}\\ - \end{tabular} - \end{proposition} - - \noindent One might prefer that statements \textit{(4)} and \textit{(5)} - (respectively \textit{(6)} and \textit{(7)}) - are combined into a single \textit{iff}-statement (like the ones for \Left\ and \Right\). Unfortunately this cannot be done easily: such - a single statement would require an additional assumption about the - two values @{term "Seq v\<^sub>1 v\<^sub>2"} and @{term "Seq w\<^sub>1 w\<^sub>2"} - being inhabited by the same regular expression. The - complexity of the proofs involved seems to not justify such a - `cleaner' single statement. The statements given are just the properties that - allow us to establish our theorems without any difficulty. The proofs - for Proposition~\ref{ordintros} are routine. - - - Next we establish how Okui and Suzuki's orderings relate to our - definition of POSIX values. Given a \POSIX\ value \v\<^sub>1\ - for \r\ and \s\, then any other lexical value \v\<^sub>2\ in @{term "LV r s"} is greater or equal than \v\<^sub>1\, namely: - - - \begin{theorem}\label{orderone} - @{thm [mode=IfThen] Posix_PosOrd[where ?v1.0="v\<^sub>1" and ?v2.0="v\<^sub>2"]} - \end{theorem} - - \begin{proof} By induction on our POSIX rules. By - Theorem~\ref{posixdeterm} and the definition of @{const LV}, it is clear - that \v\<^sub>1\ and \v\<^sub>2\ have the same - underlying string @{term s}. The three base cases are - straightforward: for example for @{term "v\<^sub>1 = Void"}, we have - that @{term "v\<^sub>2 \ LV ONE []"} must also be of the form - \mbox{@{term "v\<^sub>2 = Void"}}. Therefore we have @{term - "v\<^sub>1 :\val v\<^sub>2"}. The inductive cases for - \r\ being of the form @{term "ALT r\<^sub>1 r\<^sub>2"} and - @{term "SEQ r\<^sub>1 r\<^sub>2"} are as follows: - - - \begin{itemize} - - \item[$\bullet$] Case \P+L\ with @{term "s \ (ALT r\<^sub>1 r\<^sub>2) - \ (Left w\<^sub>1)"}: In this case the value - @{term "v\<^sub>2"} is either of the - form @{term "Left w\<^sub>2"} or @{term "Right w\<^sub>2"}. In the - latter case we can immediately conclude with \mbox{@{term "v\<^sub>1 - :\val v\<^sub>2"}} since a \Left\-value with the - same underlying string \s\ is always smaller than a - \Right\-value by Proposition~\ref{ordintros}\textit{(1)}. - In the former case we have @{term "w\<^sub>2 - \ LV r\<^sub>1 s"} and can use the induction hypothesis to infer - @{term "w\<^sub>1 :\val w\<^sub>2"}. Because @{term - "w\<^sub>1"} and @{term "w\<^sub>2"} have the same underlying string - \s\, we can conclude with @{term "Left w\<^sub>1 - :\val Left w\<^sub>2"} using - Proposition~\ref{ordintros}\textit{(2)}.\smallskip - - \item[$\bullet$] Case \P+R\ with @{term "s \ (ALT r\<^sub>1 r\<^sub>2) - \ (Right w\<^sub>1)"}: This case similar to the previous - case, except that we additionally know @{term "s \ L - r\<^sub>1"}. This is needed when @{term "v\<^sub>2"} is of the form - \mbox{@{term "Left w\<^sub>2"}}. Since \mbox{@{term "flat v\<^sub>2 = flat - w\<^sub>2"} \= s\} and @{term "\ w\<^sub>2 : - r\<^sub>1"}, we can derive a contradiction for \mbox{@{term "s \ L - r\<^sub>1"}} using - Proposition~\ref{inhabs}. So also in this case \mbox{@{term "v\<^sub>1 - :\val v\<^sub>2"}}.\smallskip - - \item[$\bullet$] Case \PS\ with @{term "(s\<^sub>1 @ - s\<^sub>2) \ (SEQ r\<^sub>1 r\<^sub>2) \ (Seq - w\<^sub>1 w\<^sub>2)"}: We can assume @{term "v\<^sub>2 = Seq - (u\<^sub>1) (u\<^sub>2)"} with @{term "\ u\<^sub>1 : - r\<^sub>1"} and \mbox{@{term "\ u\<^sub>2 : - r\<^sub>2"}}. We have @{term "s\<^sub>1 @ s\<^sub>2 = (flat - u\<^sub>1) @ (flat u\<^sub>2)"}. By the side-condition of the - \PS\-rule we know that either @{term "s\<^sub>1 = flat - u\<^sub>1"} or that @{term "flat u\<^sub>1"} is a strict prefix of - @{term "s\<^sub>1"}. In the latter case we can infer @{term - "w\<^sub>1 :\val u\<^sub>1"} by - Proposition~\ref{ordlen}\textit{(2)} and from this @{term "v\<^sub>1 - :\val v\<^sub>2"} by Proposition~\ref{ordintros}\textit{(5)} - (as noted above @{term "v\<^sub>1"} and @{term "v\<^sub>2"} must have the - same underlying string). - In the former case we know - @{term "u\<^sub>1 \ LV r\<^sub>1 s\<^sub>1"} and @{term - "u\<^sub>2 \ LV r\<^sub>2 s\<^sub>2"}. With this we can use the - induction hypotheses to infer @{term "w\<^sub>1 :\val - u\<^sub>1"} and @{term "w\<^sub>2 :\val u\<^sub>2"}. By - Proposition~\ref{ordintros}\textit{(4,5)} we can again infer - @{term "v\<^sub>1 :\val - v\<^sub>2"}. - - \end{itemize} - - \noindent The case for \P\\ is similar to the \PS\-case and omitted.\qed - \end{proof} - - \noindent This theorem shows that our \POSIX\ value for a - regular expression \r\ and string @{term s} is in fact a - minimal element of the values in \LV r s\. By - Proposition~\ref{ordlen}\textit{(2)} we also know that any value in - \LV r s'\, with @{term "s'"} being a strict prefix, cannot be - smaller than \v\<^sub>1\. The next theorem shows the - opposite---namely any minimal element in @{term "LV r s"} must be a - \POSIX\ value. This can be established by induction on \r\, but the proof can be drastically simplified by using the fact - from the previous section about the existence of a \POSIX\ value - whenever a string @{term "s \ L r"}. - - - \begin{theorem} - @{thm [mode=IfThen] PosOrd_Posix[where ?v1.0="v\<^sub>1"]} - \end{theorem} - - \begin{proof} - If @{thm (prem 1) PosOrd_Posix[where ?v1.0="v\<^sub>1"]} then - @{term "s \ L r"} by Proposition~\ref{inhabs}. Hence by Theorem~\ref{lexercorrect}(2) - there exists a - \POSIX\ value @{term "v\<^sub>P"} with @{term "s \ r \ v\<^sub>P"} - and by Lemma~\ref{LVposix} we also have \mbox{@{term "v\<^sub>P \ LV r s"}}. - By Theorem~\ref{orderone} we therefore have - @{term "v\<^sub>P :\val v\<^sub>1"}. If @{term "v\<^sub>P = v\<^sub>1"} then - we are done. Otherwise we have @{term "v\<^sub>P :\val v\<^sub>1"}, which - however contradicts the second assumption about @{term "v\<^sub>1"} being the smallest - element in @{term "LV r s"}. So we are done in this case too.\qed - \end{proof} - - \noindent - From this we can also show - that if @{term "LV r s"} is non-empty (or equivalently @{term "s \ L r"}) then - it has a unique minimal element: - - \begin{corollary} - @{thm [mode=IfThen] Least_existence1} - \end{corollary} - - - - \noindent To sum up, we have shown that the (unique) minimal elements - of the ordering by Okui and Suzuki are exactly the \POSIX\ - values we defined inductively in Section~\ref{posixsec}. This provides - an independent confirmation that our ternary relation formalises the - informal POSIX rules. - -\ - -section \Bitcoded Lexing\ - - - - -text \ - -Incremental calculation of the value. To simplify the proof we first define the function -@{const flex} which calculates the ``iterated'' injection function. With this we can -rewrite the lexer as - -\begin{center} -@{thm lexer_flex} -\end{center} - - -\ - -section \Optimisations\ - -text \ - - Derivatives as calculated by \Brz's method are usually more complex - regular expressions than the initial one; the result is that the - derivative-based matching and lexing algorithms are often abysmally slow. - However, various optimisations are possible, such as the simplifications - of @{term "ALT ZERO r"}, @{term "ALT r ZERO"}, @{term "SEQ ONE r"} and - @{term "SEQ r ONE"} to @{term r}. These simplifications can speed up the - algorithms considerably, as noted in \cite{Sulzmann2014}. One of the - advantages of having a simple specification and correctness proof is that - the latter can be refined to prove the correctness of such simplification - steps. While the simplification of regular expressions according to - rules like - - \begin{equation}\label{Simpl} - \begin{array}{lcllcllcllcl} - @{term "ALT ZERO r"} & \\\ & @{term r} \hspace{8mm}%\\ - @{term "ALT r ZERO"} & \\\ & @{term r} \hspace{8mm}%\\ - @{term "SEQ ONE r"} & \\\ & @{term r} \hspace{8mm}%\\ - @{term "SEQ r ONE"} & \\\ & @{term r} - \end{array} - \end{equation} - - \noindent is well understood, there is an obstacle with the POSIX value - calculation algorithm by Sulzmann and Lu: if we build a derivative regular - expression and then simplify it, we will calculate a POSIX value for this - simplified derivative regular expression, \emph{not} for the original (unsimplified) - derivative regular expression. Sulzmann and Lu \cite{Sulzmann2014} overcome this obstacle by - not just calculating a simplified regular expression, but also calculating - a \emph{rectification function} that ``repairs'' the incorrect value. - - The rectification functions can be (slightly clumsily) implemented in - Isabelle/HOL as follows using some auxiliary functions: - - \begin{center} - \begin{tabular}{lcl} - @{thm (lhs) F_RIGHT.simps(1)} & $\dn$ & \Right (f v)\\\ - @{thm (lhs) F_LEFT.simps(1)} & $\dn$ & \Left (f v)\\\ - - @{thm (lhs) F_ALT.simps(1)} & $\dn$ & \Right (f\<^sub>2 v)\\\ - @{thm (lhs) F_ALT.simps(2)} & $\dn$ & \Left (f\<^sub>1 v)\\\ - - @{thm (lhs) F_SEQ1.simps(1)} & $\dn$ & \Seq (f\<^sub>1 ()) (f\<^sub>2 v)\\\ - @{thm (lhs) F_SEQ2.simps(1)} & $\dn$ & \Seq (f\<^sub>1 v) (f\<^sub>2 ())\\\ - @{thm (lhs) F_SEQ.simps(1)} & $\dn$ & \Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)\\medskip\\ - %\end{tabular} - % - %\begin{tabular}{lcl} - @{term "simp_ALT (ZERO, DUMMY) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>2, F_RIGHT f\<^sub>2)"}\\ - @{term "simp_ALT (r\<^sub>1, f\<^sub>1) (ZERO, DUMMY)"} & $\dn$ & @{term "(r\<^sub>1, F_LEFT f\<^sub>1)"}\\ - @{term "simp_ALT (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(ALT r\<^sub>1 r\<^sub>2, F_ALT f\<^sub>1 f\<^sub>2)"}\\ - @{term "simp_SEQ (ONE, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>2, F_SEQ1 f\<^sub>1 f\<^sub>2)"}\\ - @{term "simp_SEQ (r\<^sub>1, f\<^sub>1) (ONE, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>1, F_SEQ2 f\<^sub>1 f\<^sub>2)"}\\ - @{term "simp_SEQ (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(SEQ r\<^sub>1 r\<^sub>2, F_SEQ f\<^sub>1 f\<^sub>2)"}\\ - \end{tabular} - \end{center} - - \noindent - The functions \simp\<^bsub>Alt\<^esub>\ and \simp\<^bsub>Seq\<^esub>\ encode the simplification rules - in \eqref{Simpl} and compose the rectification functions (simplifications can occur - deep inside the regular expression). The main simplification function is then - - \begin{center} - \begin{tabular}{lcl} - @{term "simp (ALT r\<^sub>1 r\<^sub>2)"} & $\dn$ & @{term "simp_ALT (simp r\<^sub>1) (simp r\<^sub>2)"}\\ - @{term "simp (SEQ r\<^sub>1 r\<^sub>2)"} & $\dn$ & @{term "simp_SEQ (simp r\<^sub>1) (simp r\<^sub>2)"}\\ - @{term "simp r"} & $\dn$ & @{term "(r, id)"}\\ - \end{tabular} - \end{center} - - \noindent where @{term "id"} stands for the identity function. The - function @{const simp} returns a simplified regular expression and a corresponding - rectification function. Note that we do not simplify under stars: this - seems to slow down the algorithm, rather than speed it up. The optimised - lexer is then given by the clauses: - - \begin{center} - \begin{tabular}{lcl} - @{thm (lhs) slexer.simps(1)} & $\dn$ & @{thm (rhs) slexer.simps(1)}\\ - @{thm (lhs) slexer.simps(2)} & $\dn$ & - \let (r\<^sub>s, f\<^sub>r) = simp (r \$\backslash$\ c) in\\\ - & & \case\ @{term "slexer r\<^sub>s s"} \of\\\ - & & \phantom{$|$} @{term "None"} \\\ @{term None}\\ - & & $|$ @{term "Some v"} \\\ \Some (inj r c (f\<^sub>r v))\ - \end{tabular} - \end{center} - - \noindent - In the second clause we first calculate the derivative @{term "der c r"} - and then simpli - -text \ - -Incremental calculation of the value. To simplify the proof we first define the function -@{const flex} which calculates the ``iterated'' injection function. With this we can -rewrite the lexer as - -\begin{center} -@{thm lexer_flex} -\end{center} - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) code.simps(1)} & $\dn$ & @{thm (rhs) code.simps(1)}\\ - @{thm (lhs) code.simps(2)} & $\dn$ & @{thm (rhs) code.simps(2)}\\ - @{thm (lhs) code.simps(3)} & $\dn$ & @{thm (rhs) code.simps(3)}\\ - @{thm (lhs) code.simps(4)} & $\dn$ & @{thm (rhs) code.simps(4)}\\ - @{thm (lhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\ - @{thm (lhs) code.simps(6)} & $\dn$ & @{thm (rhs) code.simps(6)}\\ - @{thm (lhs) code.simps(7)} & $\dn$ & @{thm (rhs) code.simps(7)} -\end{tabular} -\end{center} - -\begin{center} -\begin{tabular}{lcl} - @{term areg} & $::=$ & @{term "AZERO"}\\ - & $\mid$ & @{term "AONE bs"}\\ - & $\mid$ & @{term "ACHAR bs c"}\\ - & $\mid$ & @{term "AALT bs r1 r2"}\\ - & $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\ - & $\mid$ & @{term "ASTAR bs r"} -\end{tabular} -\end{center} - - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) intern.simps(1)} & $\dn$ & @{thm (rhs) intern.simps(1)}\\ - @{thm (lhs) intern.simps(2)} & $\dn$ & @{thm (rhs) intern.simps(2)}\\ - @{thm (lhs) intern.simps(3)} & $\dn$ & @{thm (rhs) intern.simps(3)}\\ - @{thm (lhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) intern.simps(6)} & $\dn$ & @{thm (rhs) intern.simps(6)}\\ -\end{tabular} -\end{center} - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) erase.simps(1)} & $\dn$ & @{thm (rhs) erase.simps(1)}\\ - @{thm (lhs) erase.simps(2)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(2)[of bs]}\\ - @{thm (lhs) erase.simps(3)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(3)[of bs]}\\ - @{thm (lhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) erase.simps(6)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(6)[of bs]}\\ -\end{tabular} -\end{center} - -Some simple facts about erase - -\begin{lemma}\mbox{}\\ -@{thm erase_bder}\\ -@{thm erase_intern} -\end{lemma} - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) bnullable.simps(1)} & $\dn$ & @{thm (rhs) bnullable.simps(1)}\\ - @{thm (lhs) bnullable.simps(2)} & $\dn$ & @{thm (rhs) bnullable.simps(2)}\\ - @{thm (lhs) bnullable.simps(3)} & $\dn$ & @{thm (rhs) bnullable.simps(3)}\\ - @{thm (lhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bnullable.simps(6)} & $\dn$ & @{thm (rhs) bnullable.simps(6)}\medskip\\ - -% \end{tabular} -% \end{center} - -% \begin{center} -% \begin{tabular}{lcl} - - @{thm (lhs) bder.simps(1)} & $\dn$ & @{thm (rhs) bder.simps(1)}\\ - @{thm (lhs) bder.simps(2)} & $\dn$ & @{thm (rhs) bder.simps(2)}\\ - @{thm (lhs) bder.simps(3)} & $\dn$ & @{thm (rhs) bder.simps(3)}\\ - @{thm (lhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bder.simps(6)} & $\dn$ & @{thm (rhs) bder.simps(6)} - \end{tabular} - \end{center} - - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) bmkeps.simps(1)} & $\dn$ & @{thm (rhs) bmkeps.simps(1)}\\ - @{thm (lhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bmkeps.simps(4)} & $\dn$ & @{thm (rhs) bmkeps.simps(4)}\medskip\\ -\end{tabular} -\end{center} - - -@{thm [mode=IfThen] bder_retrieve} - -By induction on \r\ - -\begin{theorem}[Main Lemma]\mbox{}\\ -@{thm [mode=IfThen] MAIN_decode} -\end{theorem} - -\noindent -Definition of the bitcoded lexer - -@{thm blexer_def} - - -\begin{theorem} -@{thm blexer_correctness} -\end{theorem} - -\ - -section \Optimisations\ - -text \ - - Derivatives as calculated by \Brz's method are usually more complex - regular expressions than the initial one; the result is that the - derivative-based matching and lexing algorithms are often abysmally slow. - However, various optimisations are possible, such as the simplifications - of @{term "ALT ZERO r"}, @{term "ALT r ZERO"}, @{term "SEQ ONE r"} and - @{term "SEQ r ONE"} to @{term r}. These simplifications can speed up the - algorithms considerably, as noted in \cite{Sulzmann2014}. One of the - advantages of having a simple specification and correctness proof is that - the latter can be refined to prove the correctness of such simplification - steps. While the simplification of regular expressions according to - rules like - - \begin{equation}\label{Simpl} - \begin{array}{lcllcllcllcl} - @{term "ALT ZERO r"} & \\\ & @{term r} \hspace{8mm}%\\ - @{term "ALT r ZERO"} & \\\ & @{term r} \hspace{8mm}%\\ - @{term "SEQ ONE r"} & \\\ & @{term r} \hspace{8mm}%\\ - @{term "SEQ r ONE"} & \\\ & @{term r} - \end{array} - \end{equation} - - \noindent is well understood, there is an obstacle with the POSIX value - calculation algorithm by Sulzmann and Lu: if we build a derivative regular - expression and then simplify it, we will calculate a POSIX value for this - simplified derivative regular expression, \emph{not} for the original (unsimplified) - derivative regular expression. Sulzmann and Lu \cite{Sulzmann2014} overcome this obstacle by - not just calculating a simplified regular expression, but also calculating - a \emph{rectification function} that ``repairs'' the incorrect value. - - The rectification functions can be (slightly clumsily) implemented in - Isabelle/HOL as follows using some auxiliary functions: - - \begin{center} - \begin{tabular}{lcl} - @{thm (lhs) F_RIGHT.simps(1)} & $\dn$ & \Right (f v)\\\ - @{thm (lhs) F_LEFT.simps(1)} & $\dn$ & \Left (f v)\\\ - - @{thm (lhs) F_ALT.simps(1)} & $\dn$ & \Right (f\<^sub>2 v)\\\ - @{thm (lhs) F_ALT.simps(2)} & $\dn$ & \Left (f\<^sub>1 v)\\\ - - @{thm (lhs) F_SEQ1.simps(1)} & $\dn$ & \Seq (f\<^sub>1 ()) (f\<^sub>2 v)\\\ - @{thm (lhs) F_SEQ2.simps(1)} & $\dn$ & \Seq (f\<^sub>1 v) (f\<^sub>2 ())\\\ - @{thm (lhs) F_SEQ.simps(1)} & $\dn$ & \Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)\\medskip\\ - %\end{tabular} - % - %\begin{tabular}{lcl} - @{term "simp_ALT (ZERO, DUMMY) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>2, F_RIGHT f\<^sub>2)"}\\ - @{term "simp_ALT (r\<^sub>1, f\<^sub>1) (ZERO, DUMMY)"} & $\dn$ & @{term "(r\<^sub>1, F_LEFT f\<^sub>1)"}\\ - @{term "simp_ALT (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(ALT r\<^sub>1 r\<^sub>2, F_ALT f\<^sub>1 f\<^sub>2)"}\\ - @{term "simp_SEQ (ONE, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>2, F_SEQ1 f\<^sub>1 f\<^sub>2)"}\\ - @{term "simp_SEQ (r\<^sub>1, f\<^sub>1) (ONE, f\<^sub>2)"} & $\dn$ & @{term "(r\<^sub>1, F_SEQ2 f\<^sub>1 f\<^sub>2)"}\\ - @{term "simp_SEQ (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2)"} & $\dn$ & @{term "(SEQ r\<^sub>1 r\<^sub>2, F_SEQ f\<^sub>1 f\<^sub>2)"}\\ - \end{tabular} - \end{center} - - \noindent - The functions \simp\<^bsub>Alt\<^esub>\ and \simp\<^bsub>Seq\<^esub>\ encode the simplification rules - in \eqref{Simpl} and compose the rectification functions (simplifications can occur - deep inside the regular expression). The main simplification function is then - - \begin{center} - \begin{tabular}{lcl} - @{term "simp (ALT r\<^sub>1 r\<^sub>2)"} & $\dn$ & @{term "simp_ALT (simp r\<^sub>1) (simp r\<^sub>2)"}\\ - @{term "simp (SEQ r\<^sub>1 r\<^sub>2)"} & $\dn$ & @{term "simp_SEQ (simp r\<^sub>1) (simp r\<^sub>2)"}\\ - @{term "simp r"} & $\dn$ & @{term "(r, id)"}\\ - \end{tabular} - \end{center} - - \noindent where @{term "id"} stands for the identity function. The - function @{const simp} returns a simplified regular expression and a corresponding - rectification function. Note that we do not simplify under stars: this - seems to slow down the algorithm, rather than speed it up. The optimised - lexer is then given by the clauses: - - \begin{center} - \begin{tabular}{lcl} - @{thm (lhs) slexer.simps(1)} & $\dn$ & @{thm (rhs) slexer.simps(1)}\\ - @{thm (lhs) slexer.simps(2)} & $\dn$ & - \let (r\<^sub>s, f\<^sub>r) = simp (r \$\backslash$\ c) in\\\ - & & \case\ @{term "slexer r\<^sub>s s"} \of\\\ - & & \phantom{$|$} @{term "None"} \\\ @{term None}\\ - & & $|$ @{term "Some v"} \\\ \Some (inj r c (f\<^sub>r v))\ - \end{tabular} - \end{center} - - \noindent - In the second clause we first calculate the derivative @{term "der c r"} - and then simplify the result. This gives us a simplified derivative - \r\<^sub>s\ and a rectification function \f\<^sub>r\. The lexer - is then recursively called with the simplified derivative, but before - we inject the character @{term c} into the value @{term v}, we need to rectify - @{term v} (that is construct @{term "f\<^sub>r v"}). Before we can establish the correctness - of @{term "slexer"}, we need to show that simplification preserves the language - and simplification preserves our POSIX relation once the value is rectified - (recall @{const "simp"} generates a (regular expression, rectification function) pair): - - \begin{lemma}\mbox{}\smallskip\\\label{slexeraux} - \begin{tabular}{ll} - (1) & @{thm L_fst_simp[symmetric]}\\ - (2) & @{thm[mode=IfThen] Posix_simp} - \end{tabular} - \end{lemma} - - \begin{proof} Both are by induction on \r\. There is no - interesting case for the first statement. For the second statement, - of interest are the @{term "r = ALT r\<^sub>1 r\<^sub>2"} and @{term "r = SEQ r\<^sub>1 - r\<^sub>2"} cases. In each case we have to analyse four subcases whether - @{term "fst (simp r\<^sub>1)"} and @{term "fst (simp r\<^sub>2)"} equals @{const - ZERO} (respectively @{const ONE}). For example for @{term "r = ALT - r\<^sub>1 r\<^sub>2"}, consider the subcase @{term "fst (simp r\<^sub>1) = ZERO"} and - @{term "fst (simp r\<^sub>2) \ ZERO"}. By assumption we know @{term "s \ - fst (simp (ALT r\<^sub>1 r\<^sub>2)) \ v"}. From this we can infer @{term "s \ fst (simp r\<^sub>2) \ v"} - and by IH also (*) @{term "s \ r\<^sub>2 \ (snd (simp r\<^sub>2) v)"}. Given @{term "fst (simp r\<^sub>1) = ZERO"} - we know @{term "L (fst (simp r\<^sub>1)) = {}"}. By the first statement - @{term "L r\<^sub>1"} is the empty set, meaning (**) @{term "s \ L r\<^sub>1"}. - Taking (*) and (**) together gives by the \mbox{\P+R\}-rule - @{term "s \ ALT r\<^sub>1 r\<^sub>2 \ Right (snd (simp r\<^sub>2) v)"}. In turn this - gives @{term "s \ ALT r\<^sub>1 r\<^sub>2 \ snd (simp (ALT r\<^sub>1 r\<^sub>2)) v"} as we need to show. - The other cases are similar.\qed - \end{proof} - - \noindent We can now prove relatively straightforwardly that the - optimised lexer produces the expected result: - - \begin{theorem} - @{thm slexer_correctness} - \end{theorem} - - \begin{proof} By induction on @{term s} generalising over @{term - r}. The case @{term "[]"} is trivial. For the cons-case suppose the - string is of the form @{term "c # s"}. By induction hypothesis we - know @{term "slexer r s = lexer r s"} holds for all @{term r} (in - particular for @{term "r"} being the derivative @{term "der c - r"}). Let @{term "r\<^sub>s"} be the simplified derivative regular expression, that is @{term - "fst (simp (der c r))"}, and @{term "f\<^sub>r"} be the rectification - function, that is @{term "snd (simp (der c r))"}. We distinguish the cases - whether (*) @{term "s \ L (der c r)"} or not. In the first case we - have by Theorem~\ref{lexercorrect}(2) a value @{term "v"} so that @{term - "lexer (der c r) s = Some v"} and @{term "s \ der c r \ v"} hold. - By Lemma~\ref{slexeraux}(1) we can also infer from~(*) that @{term "s - \ L r\<^sub>s"} holds. Hence we know by Theorem~\ref{lexercorrect}(2) that - there exists a @{term "v'"} with @{term "lexer r\<^sub>s s = Some v'"} and - @{term "s \ r\<^sub>s \ v'"}. From the latter we know by - Lemma~\ref{slexeraux}(2) that @{term "s \ der c r \ (f\<^sub>r v')"} holds. - By the uniqueness of the POSIX relation (Theorem~\ref{posixdeterm}) we - can infer that @{term v} is equal to @{term "f\<^sub>r v'"}---that is the - rectification function applied to @{term "v'"} - produces the original @{term "v"}. Now the case follows by the - definitions of @{const lexer} and @{const slexer}. - - In the second case where @{term "s \ L (der c r)"} we have that - @{term "lexer (der c r) s = None"} by Theorem~\ref{lexercorrect}(1). We - also know by Lemma~\ref{slexeraux}(1) that @{term "s \ L r\<^sub>s"}. Hence - @{term "lexer r\<^sub>s s = None"} by Theorem~\ref{lexercorrect}(1) and - by IH then also @{term "slexer r\<^sub>s s = None"}. With this we can - conclude in this case too.\qed - - \end{proof} - -\ -fy the result. This gives us a simplified derivative - \r\<^sub>s\ and a rectification function \f\<^sub>r\. The lexer - is then recursively called with the simplified derivative, but before - we inject the character @{term c} into the value @{term v}, we need to rectify - @{term v} (that is construct @{term "f\<^sub>r v"}). Before we can establish the correctness - of @{term "slexer"}, we need to show that simplification preserves the language - and simplification preserves our POSIX relation once the value is rectified - (recall @{const "simp"} generates a (regular expression, rectification function) pair): - - \begin{lemma}\mbox{}\smallskip\\\label{slexeraux} - \begin{tabular}{ll} - (1) & @{thm L_fst_simp[symmetric]}\\ - (2) & @{thm[mode=IfThen] Posix_simp} - \end{tabular} - \end{lemma} - - \begin{proof} Both are by induction on \r\. There is no - interesting case for the first statement. For the second statement, - of interest are the @{term "r = ALT r\<^sub>1 r\<^sub>2"} and @{term "r = SEQ r\<^sub>1 - r\<^sub>2"} cases. In each case we have to analyse four subcases whether - @{term "fst (simp r\<^sub>1)"} and @{term "fst (simp r\<^sub>2)"} equals @{const - ZERO} (respectively @{const ONE}). For example for @{term "r = ALT - r\<^sub>1 r\<^sub>2"}, consider the subcase @{term "fst (simp r\<^sub>1) = ZERO"} and - @{term "fst (simp r\<^sub>2) \ ZERO"}. By assumption we know @{term "s \ - fst (simp (ALT r\<^sub>1 r\<^sub>2)) \ v"}. From this we can infer @{term "s \ fst (simp r\<^sub>2) \ v"} - and by IH also (*) @{term "s \ r\<^sub>2 \ (snd (simp r\<^sub>2) v)"}. Given @{term "fst (simp r\<^sub>1) = ZERO"} - we know @{term "L (fst (simp r\<^sub>1)) = {}"}. By the first statement - @{term "L r\<^sub>1"} is the empty set, meaning (**) @{term "s \ L r\<^sub>1"}. - Taking (*) and (**) together gives by the \mbox{\P+R\}-rule - @{term "s \ ALT r\<^sub>1 r\<^sub>2 \ Right (snd (simp r\<^sub>2) v)"}. In turn this - gives @{term "s \ ALT r\<^sub>1 r\<^sub>2 \ snd (simp (ALT r\<^sub>1 r\<^sub>2)) v"} as we need to show. - The other cases are similar.\qed - \end{proof} - - \noindent We can now prove relatively straightforwardly that the - optimised lexer produces the expected result: - - \begin{theorem} - @{thm slexer_correctness} - \end{theorem} - - \begin{proof} By induction on @{term s} generalising over @{term - r}. The case @{term "[]"} is trivial. For the cons-case suppose the - string is of the form @{term "c # s"}. By induction hypothesis we - know @{term "slexer r s = lexer r s"} holds for all @{term r} (in - particular for @{term "r"} being the derivative @{term "der c - r"}). Let @{term "r\<^sub>s"} be the simplified derivative regular expression, that is @{term - "fst (simp (der c r))"}, and @{term "f\<^sub>r"} be the rectification - function, that is @{term "snd (simp (der c r))"}. We distinguish the cases - whether (*) @{term "s \ L (der c r)"} or not. In the first case we - have by Theorem~\ref{lexercorrect}(2) a value @{term "v"} so that @{term - "lexer (der c r) s = Some v"} and @{term "s \ der c r \ v"} hold. - By Lemma~\ref{slexeraux}(1) we can also infer from~(*) that @{term "s - \ L r\<^sub>s"} holds. Hence we know by Theorem~\ref{lexercorrect}(2) that - there exists a @{term "v'"} with @{term "lexer r\<^sub>s s = Some v'"} and - @{term "s \ r\<^sub>s \ v'"}. From the latter we know by - Lemma~\ref{slexeraux}(2) that @{term "s \ der c r \ (f\<^sub>r v')"} holds. - By the uniqueness of the POSIX relation (Theorem~\ref{posixdeterm}) we - can infer that @{term v} is equal to @{term "f\<^sub>r v'"}---that is the - rectification function applied to @{term "v'"} - produces the original @{term "v"}. Now the case follows by the - definitions of @{const lexer} and @{const slexer}. - - In the second case where @{term "s \ L (der c r)"} we have that - @{term "lexer (der c r) s = None"} by Theorem~\ref{lexercorrect}(1). We - also know by Lemma~\ref{slexeraux}(1) that @{term "s \ L r\<^sub>s"}. Hence - @{term "lexer r\<^sub>s s = None"} by Theorem~\ref{lexercorrect}(1) and - by IH then also @{term "slexer r\<^sub>s s = None"}. With this we can - conclude in this case too.\qed - - \end{proof} - -\ - - -section \HERE\ - -text \ - - \begin{lemma} - @{thm [mode=IfThen] bder_retrieve} - \end{lemma} - - \begin{proof} - By induction on the definition of @{term "erase r"}. The cases for rule 1) and 2) are - straightforward as @{term "der c ZERO"} and @{term "der c ONE"} are both equal to - @{term ZERO}. This means @{term "\ v : ZERO"} cannot hold. Similarly in case of rule 3) - where @{term r} is of the form @{term "ACHAR d"} with @{term "c = d"}. Then by assumption - we know @{term "\ v : ONE"}, which implies @{term "v = Void"}. The equation follows by - simplification of left- and right-hand side. In case @{term "c \ d"} we have again - @{term "\ v : ZERO"}, which cannot hold. - - For rule 4a) we have again @{term "\ v : ZERO"}. The property holds by IH for rule 4b). - The induction hypothesis is - \[ - @{term "retrieve (bder c r) v = retrieve r (injval (erase r) c v)"} - \] - which is what left- and right-hand side simplify to. The slightly more interesting case - is for 4c). By assumption we have - @{term "\ v : ALT (der c (erase r\<^sub>1)) (der c (erase (AALTs bs (r\<^sub>2 # rs))))"}. This means we - have either (*) @{term "\ v1 : der c (erase r\<^sub>1)"} with @{term "v = Left v1"} or - (**) @{term "\ v2 : der c (erase (AALTs bs (r\<^sub>2 # rs)))"} with @{term "v = Right v2"}. - The former case is straightforward by simplification. The second case is \ldots TBD. - - Rule 5) TBD. - - Finally for rule 6) the reasoning is as follows: By assumption we have - @{term "\ v : SEQ (der c (erase r)) (STAR (erase r))"}. This means we also have - @{term "v = Seq v1 v2"}, @{term "\ v1 : der c (erase r)"} and @{term "v2 = Stars vs"}. - We want to prove - \begin{align} - & @{term "retrieve (ASEQ bs (fuse [Z] (bder c r)) (ASTAR [] r)) v"}\\ - &= @{term "retrieve (ASTAR bs r) (injval (STAR (erase r)) c v)"} - \end{align} - The right-hand side @{term inj}-expression is equal to - @{term "Stars (injval (erase r) c v1 # vs)"}, which means the @{term retrieve}-expression - simplifies to - \[ - @{term "bs @ [Z] @ retrieve r (injval (erase r) c v1) @ retrieve (ASTAR [] r) (Stars vs)"} - \] - The left-hand side (3) above simplifies to - \[ - @{term "bs @ retrieve (fuse [Z] (bder c r)) v1 @ retrieve (ASTAR [] r) (Stars vs)"} - \] - We can move out the @{term "fuse [Z]"} and then use the IH to show that left-hand side - and right-hand side are equal. This completes the proof. - \end{proof} - - - - \bibliographystyle{plain} - \bibliography{root} - -\ -(*<*) -end -(*>*) - -(* - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) code.simps(1)} & $\dn$ & @{thm (rhs) code.simps(1)}\\ - @{thm (lhs) code.simps(2)} & $\dn$ & @{thm (rhs) code.simps(2)}\\ - @{thm (lhs) code.simps(3)} & $\dn$ & @{thm (rhs) code.simps(3)}\\ - @{thm (lhs) code.simps(4)} & $\dn$ & @{thm (rhs) code.simps(4)}\\ - @{thm (lhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\ - @{thm (lhs) code.simps(6)} & $\dn$ & @{thm (rhs) code.simps(6)}\\ - @{thm (lhs) code.simps(7)} & $\dn$ & @{thm (rhs) code.simps(7)} -\end{tabular} -\end{center} - -\begin{center} -\begin{tabular}{lcl} - @{term areg} & $::=$ & @{term "AZERO"}\\ - & $\mid$ & @{term "AONE bs"}\\ - & $\mid$ & @{term "ACHAR bs c"}\\ - & $\mid$ & @{term "AALT bs r1 r2"}\\ - & $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\ - & $\mid$ & @{term "ASTAR bs r"} -\end{tabular} -\end{center} - - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) intern.simps(1)} & $\dn$ & @{thm (rhs) intern.simps(1)}\\ - @{thm (lhs) intern.simps(2)} & $\dn$ & @{thm (rhs) intern.simps(2)}\\ - @{thm (lhs) intern.simps(3)} & $\dn$ & @{thm (rhs) intern.simps(3)}\\ - @{thm (lhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) intern.simps(6)} & $\dn$ & @{thm (rhs) intern.simps(6)}\\ -\end{tabular} -\end{center} - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) erase.simps(1)} & $\dn$ & @{thm (rhs) erase.simps(1)}\\ - @{thm (lhs) erase.simps(2)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(2)[of bs]}\\ - @{thm (lhs) erase.simps(3)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(3)[of bs]}\\ - @{thm (lhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) erase.simps(6)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(6)[of bs]}\\ -\end{tabular} -\end{center} - -Some simple facts about erase - -\begin{lemma}\mbox{}\\ -@{thm erase_bder}\\ -@{thm erase_intern} -\end{lemma} - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) bnullable.simps(1)} & $\dn$ & @{thm (rhs) bnullable.simps(1)}\\ - @{thm (lhs) bnullable.simps(2)} & $\dn$ & @{thm (rhs) bnullable.simps(2)}\\ - @{thm (lhs) bnullable.simps(3)} & $\dn$ & @{thm (rhs) bnullable.simps(3)}\\ - @{thm (lhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bnullable.simps(6)} & $\dn$ & @{thm (rhs) bnullable.simps(6)}\medskip\\ - -% \end{tabular} -% \end{center} - -% \begin{center} -% \begin{tabular}{lcl} - - @{thm (lhs) bder.simps(1)} & $\dn$ & @{thm (rhs) bder.simps(1)}\\ - @{thm (lhs) bder.simps(2)} & $\dn$ & @{thm (rhs) bder.simps(2)}\\ - @{thm (lhs) bder.simps(3)} & $\dn$ & @{thm (rhs) bder.simps(3)}\\ - @{thm (lhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bder.simps(6)} & $\dn$ & @{thm (rhs) bder.simps(6)} - \end{tabular} - \end{center} - - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) bmkeps.simps(1)} & $\dn$ & @{thm (rhs) bmkeps.simps(1)}\\ - @{thm (lhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bmkeps.simps(4)} & $\dn$ & @{thm (rhs) bmkeps.simps(4)}\medskip\\ -\end{tabular} -\end{center} - - -@{thm [mode=IfThen] bder_retrieve} - -By induction on \r\ - -\begin{theorem}[Main Lemma]\mbox{}\\ -@{thm [mode=IfThen] MAIN_decode} -\end{theorem} - -\noindent -Definition of the bitcoded lexer - -@{thm blexer_def} - - -\begin{theorem} -@{thm blexer_correctness} -\end{theorem} - - - - - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) code.simps(1)} & $\dn$ & @{thm (rhs) code.simps(1)}\\ - @{thm (lhs) code.simps(2)} & $\dn$ & @{thm (rhs) code.simps(2)}\\ - @{thm (lhs) code.simps(3)} & $\dn$ & @{thm (rhs) code.simps(3)}\\ - @{thm (lhs) code.simps(4)} & $\dn$ & @{thm (rhs) code.simps(4)}\\ - @{thm (lhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\ - @{thm (lhs) code.simps(6)} & $\dn$ & @{thm (rhs) code.simps(6)}\\ - @{thm (lhs) code.simps(7)} & $\dn$ & @{thm (rhs) code.simps(7)} -\end{tabular} -\end{center} - -\begin{center} -\begin{tabular}{lcl} - @{term areg} & $::=$ & @{term "AZERO"}\\ - & $\mid$ & @{term "AONE bs"}\\ - & $\mid$ & @{term "ACHAR bs c"}\\ - & $\mid$ & @{term "AALT bs r1 r2"}\\ - & $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\ - & $\mid$ & @{term "ASTAR bs r"} -\end{tabular} -\end{center} - - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) intern.simps(1)} & $\dn$ & @{thm (rhs) intern.simps(1)}\\ - @{thm (lhs) intern.simps(2)} & $\dn$ & @{thm (rhs) intern.simps(2)}\\ - @{thm (lhs) intern.simps(3)} & $\dn$ & @{thm (rhs) intern.simps(3)}\\ - @{thm (lhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) intern.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) intern.simps(6)} & $\dn$ & @{thm (rhs) intern.simps(6)}\\ -\end{tabular} -\end{center} - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) erase.simps(1)} & $\dn$ & @{thm (rhs) erase.simps(1)}\\ - @{thm (lhs) erase.simps(2)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(2)[of bs]}\\ - @{thm (lhs) erase.simps(3)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(3)[of bs]}\\ - @{thm (lhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) erase.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) erase.simps(6)[of bs]} & $\dn$ & @{thm (rhs) erase.simps(6)[of bs]}\\ -\end{tabular} -\end{center} - -Some simple facts about erase - -\begin{lemma}\mbox{}\\ -@{thm erase_bder}\\ -@{thm erase_intern} -\end{lemma} - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) bnullable.simps(1)} & $\dn$ & @{thm (rhs) bnullable.simps(1)}\\ - @{thm (lhs) bnullable.simps(2)} & $\dn$ & @{thm (rhs) bnullable.simps(2)}\\ - @{thm (lhs) bnullable.simps(3)} & $\dn$ & @{thm (rhs) bnullable.simps(3)}\\ - @{thm (lhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bnullable.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bnullable.simps(6)} & $\dn$ & @{thm (rhs) bnullable.simps(6)}\medskip\\ - -% \end{tabular} -% \end{center} - -% \begin{center} -% \begin{tabular}{lcl} - - @{thm (lhs) bder.simps(1)} & $\dn$ & @{thm (rhs) bder.simps(1)}\\ - @{thm (lhs) bder.simps(2)} & $\dn$ & @{thm (rhs) bder.simps(2)}\\ - @{thm (lhs) bder.simps(3)} & $\dn$ & @{thm (rhs) bder.simps(3)}\\ - @{thm (lhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(4)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bder.simps(5)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bder.simps(6)} & $\dn$ & @{thm (rhs) bder.simps(6)} - \end{tabular} - \end{center} - - -\begin{center} - \begin{tabular}{lcl} - @{thm (lhs) bmkeps.simps(1)} & $\dn$ & @{thm (rhs) bmkeps.simps(1)}\\ - @{thm (lhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(2)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) bmkeps.simps(3)[of bs "r\<^sub>1" "r\<^sub>2"]}\\ - @{thm (lhs) bmkeps.simps(4)} & $\dn$ & @{thm (rhs) bmkeps.simps(4)}\medskip\\ -\end{tabular} -\end{center} - - -@{thm [mode=IfThen] bder_retrieve} - -By induction on \r\ - -\begin{theorem}[Main Lemma]\mbox{}\\ -@{thm [mode=IfThen] MAIN_decode} -\end{theorem} - -\noindent -Definition of the bitcoded lexer - -@{thm blexer_def} - - -\begin{theorem} -@{thm blexer_correctness} -\end{theorem} - -\ -\*) \ No newline at end of file