diff -r a42c773ec8ab -r 841f7b9c0a6a thys/ReStar.thy --- a/thys/ReStar.thy Tue May 17 14:28:22 2016 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,639 +0,0 @@ - -theory ReStar - imports "Main" -begin - - -section {* Sequential Composition of Languages *} - -definition - Sequ :: "string set \ string set \ string set" ("_ ;; _" [100,100] 100) -where - "A ;; B = {s1 @ s2 | s1 s2. s1 \ A \ s2 \ B}" - -text {* Two Simple Properties about Sequential Composition *} - -lemma seq_empty [simp]: - shows "A ;; {[]} = A" - and "{[]} ;; A = A" -by (simp_all add: Sequ_def) - -lemma seq_null [simp]: - shows "A ;; {} = {}" - and "{} ;; A = {}" -by (simp_all add: Sequ_def) - - -section {* Semantic Derivative (Left Quotient) of Languages *} - -definition - Der :: "char \ string set \ string set" -where - "Der c A \ {s. c # s \ A}" - -lemma Der_null [simp]: - shows "Der c {} = {}" -unfolding Der_def -by auto - -lemma Der_empty [simp]: - shows "Der c {[]} = {}" -unfolding Der_def -by auto - -lemma Der_char [simp]: - shows "Der c {[d]} = (if c = d then {[]} else {})" -unfolding Der_def -by auto - -lemma Der_union [simp]: - shows "Der c (A \ B) = Der c A \ Der c B" -unfolding Der_def -by auto - -lemma Der_Sequ [simp]: - shows "Der c (A ;; B) = (Der c A) ;; B \ (if [] \ A then Der c B else {})" -unfolding Der_def Sequ_def -by (auto simp add: Cons_eq_append_conv) - - -section {* Kleene Star for Languages *} - -inductive_set - Star :: "string set \ string set" ("_\" [101] 102) - for A :: "string set" -where - start[intro]: "[] \ A\" -| step[intro]: "\s1 \ A; s2 \ A\\ \ s1 @ s2 \ A\" - -lemma star_cases: - shows "A\ = {[]} \ A ;; A\" -unfolding Sequ_def -by (auto) (metis Star.simps) - -lemma star_decomp: - assumes a: "c # x \ A\" - shows "\a b. x = a @ b \ c # a \ A \ b \ A\" -using a -by (induct x\"c # x" rule: Star.induct) - (auto simp add: append_eq_Cons_conv) - -lemma Der_star [simp]: - shows "Der c (A\) = (Der c A) ;; A\" -proof - - have "Der c (A\) = Der c ({[]} \ A ;; A\)" - by (simp only: star_cases[symmetric]) - also have "... = Der c (A ;; A\)" - by (simp only: Der_union Der_empty) (simp) - also have "... = (Der c A) ;; A\ \ (if [] \ A then Der c (A\) else {})" - by simp - also have "... = (Der c A) ;; A\" - unfolding Sequ_def Der_def - by (auto dest: star_decomp) - finally show "Der c (A\) = (Der c A) ;; A\" . -qed - - -section {* Regular Expressions *} - -datatype rexp = - ZERO -| ONE -| CHAR char -| SEQ rexp rexp -| ALT rexp rexp -| STAR rexp - -section {* Semantics of Regular Expressions *} - -fun - L :: "rexp \ string set" -where - "L (ZERO) = {}" -| "L (ONE) = {[]}" -| "L (CHAR c) = {[c]}" -| "L (SEQ r1 r2) = (L r1) ;; (L r2)" -| "L (ALT r1 r2) = (L r1) \ (L r2)" -| "L (STAR r) = (L r)\" - - -section {* Nullable, Derivatives *} - -fun - nullable :: "rexp \ bool" -where - "nullable (ZERO) = False" -| "nullable (ONE) = True" -| "nullable (CHAR c) = False" -| "nullable (ALT r1 r2) = (nullable r1 \ nullable r2)" -| "nullable (SEQ r1 r2) = (nullable r1 \ nullable r2)" -| "nullable (STAR r) = True" - - -fun - der :: "char \ rexp \ rexp" -where - "der c (ZERO) = ZERO" -| "der c (ONE) = ZERO" -| "der c (CHAR d) = (if c = d then ONE else ZERO)" -| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" -| "der c (SEQ r1 r2) = - (if nullable r1 - then ALT (SEQ (der c r1) r2) (der c r2) - else SEQ (der c r1) r2)" -| "der c (STAR r) = SEQ (der c r) (STAR r)" - -fun - ders :: "string \ rexp \ rexp" -where - "ders [] r = r" -| "ders (c # s) r = ders s (der c r)" - - -lemma nullable_correctness: - shows "nullable r \ [] \ (L r)" -by (induct r) (auto simp add: Sequ_def) - - -lemma der_correctness: - shows "L (der c r) = Der c (L r)" -by (induct r) (simp_all add: nullable_correctness) - - -section {* Values *} - -datatype val = - Void -| Char char -| Seq val val -| Right val -| Left val -| Stars "val list" - - -section {* The string behind a value *} - -fun - flat :: "val \ string" -where - "flat (Void) = []" -| "flat (Char c) = [c]" -| "flat (Left v) = flat v" -| "flat (Right v) = flat v" -| "flat (Seq v1 v2) = (flat v1) @ (flat v2)" -| "flat (Stars []) = []" -| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" - -lemma flat_Stars [simp]: - "flat (Stars vs) = concat (map flat vs)" -by (induct vs) (auto) - - -section {* Relation between values and regular expressions *} - -inductive - Prf :: "val \ rexp \ bool" ("\ _ : _" [100, 100] 100) -where - "\\ v1 : r1; \ v2 : r2\ \ \ Seq v1 v2 : SEQ r1 r2" -| "\ v1 : r1 \ \ Left v1 : ALT r1 r2" -| "\ v2 : r2 \ \ Right v2 : ALT r1 r2" -| "\ Void : ONE" -| "\ Char c : CHAR c" -| "\ Stars [] : STAR r" -| "\\ v : r; \ Stars vs : STAR r\ \ \ Stars (v # vs) : STAR r" - -inductive_cases Prf_elims: - "\ v : ZERO" - "\ v : SEQ r1 r2" - "\ v : ALT r1 r2" - "\ v : ONE" - "\ v : CHAR c" -(* "\ vs : STAR r"*) - -lemma Prf_flat_L: - assumes "\ v : r" shows "flat v \ L r" -using assms -by(induct v r rule: Prf.induct) - (auto simp add: Sequ_def) - -lemma Prf_Stars: - assumes "\v \ set vs. \ v : r" - shows "\ Stars vs : STAR r" -using assms -apply(induct vs) -apply (metis Prf.intros(6)) -by (metis Prf.intros(7) insert_iff set_simps(2)) - -lemma Star_string: - assumes "s \ A\" - shows "\ss. concat ss = s \ (\s \ set ss. s \ A)" -using assms -apply(induct rule: Star.induct) -apply(auto) -apply(rule_tac x="[]" in exI) -apply(simp) -apply(rule_tac x="s1#ss" in exI) -apply(simp) -done - - -lemma Star_val: - assumes "\s\set ss. \v. s = flat v \ \ v : r" - shows "\vs. concat (map flat vs) = concat ss \ (\v\set vs. \ v : r)" -using assms -apply(induct ss) -apply(auto) -apply (metis empty_iff list.set(1)) -by (metis concat.simps(2) list.simps(9) set_ConsD) - -lemma L_flat_Prf: - "L(r) = {flat v | v. \ v : r}" -apply(induct r) -apply(auto dest: Prf_flat_L simp add: Sequ_def) -apply (metis Prf.intros(4) flat.simps(1)) -apply (metis Prf.intros(5) flat.simps(2)) -apply (metis Prf.intros(1) flat.simps(5)) -apply (metis Prf.intros(2) flat.simps(3)) -apply (metis Prf.intros(3) flat.simps(4)) -apply(auto elim!: Prf_elims) -apply(subgoal_tac "\vs::val list. concat (map flat vs) = x \ (\v \ set vs. \ v : r)") -apply(auto)[1] -apply(rule_tac x="Stars vs" in exI) -apply(simp) -apply(rule Prf_Stars) -apply(simp) -apply(drule Star_string) -apply(auto) -apply(rule Star_val) -apply(simp) -done - - -section {* Sulzmann and Lu functions *} - -fun - mkeps :: "rexp \ val" -where - "mkeps(ONE) = Void" -| "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" -| "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" -| "mkeps(STAR r) = Stars []" - -fun injval :: "rexp \ char \ val \ val" -where - "injval (CHAR d) c Void = Char d" -| "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)" -| "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)" -| "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2" -| "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" -| "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" -| "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" - - -section {* Mkeps, injval *} - -lemma mkeps_nullable: - assumes "nullable(r)" - shows "\ mkeps r : r" -using assms -by (induct rule: nullable.induct) - (auto intro: Prf.intros) - -lemma mkeps_flat: - assumes "nullable(r)" - shows "flat (mkeps r) = []" -using assms -by (induct rule: nullable.induct) (auto) - - -lemma Prf_injval: - assumes "\ v : der c r" - shows "\ (injval r c v) : r" -using assms -apply(induct r arbitrary: c v rule: rexp.induct) -apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits) -(* STAR *) -apply(rotate_tac 2) -apply(erule Prf.cases) -apply(simp_all)[7] -apply(auto) -apply (metis Prf.intros(6) Prf.intros(7)) -by (metis Prf.intros(7)) - -lemma Prf_injval_flat: - assumes "\ v : der c r" - shows "flat (injval r c v) = c # (flat v)" -using assms -apply(induct arbitrary: v rule: der.induct) -apply(auto elim!: Prf_elims split: if_splits) -apply(metis mkeps_flat) -apply(rotate_tac 2) -apply(erule Prf.cases) -apply(simp_all)[7] -done - - - -section {* Our Alternative Posix definition *} - -inductive - Posix :: "string \ rexp \ val \ bool" ("_ \ _ \ _" [100, 100, 100] 100) -where - Posix_ONE: "[] \ ONE \ Void" -| Posix_CHAR: "[c] \ (CHAR c) \ (Char c)" -| Posix_ALT1: "s \ r1 \ v \ s \ (ALT r1 r2) \ (Left v)" -| Posix_ALT2: "\s \ r2 \ v; s \ L(r1)\ \ s \ (ALT r1 r2) \ (Right v)" -| Posix_SEQ: "\s1 \ r1 \ v1; s2 \ r2 \ v2; - \(\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (s1 @ s\<^sub>3) \ L r1 \ s\<^sub>4 \ L r2)\ \ - (s1 @ s2) \ (SEQ r1 r2) \ (Seq v1 v2)" -| Posix_STAR1: "\s1 \ r \ v; s2 \ STAR r \ Stars vs; flat v \ []; - \(\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (s1 @ s\<^sub>3) \ L r \ s\<^sub>4 \ L (STAR r))\ - \ (s1 @ s2) \ STAR r \ Stars (v # vs)" -| Posix_STAR2: "[] \ STAR r \ Stars []" - -inductive_cases Posix_elims: - "s \ ZERO \ v" - "s \ ONE \ v" - "s \ CHAR c \ v" - "s \ ALT r1 r2 \ v" - "s \ SEQ r1 r2 \ v" - "s \ STAR r \ v" - -lemma Posix1: - assumes "s \ r \ v" - shows "s \ L r" "flat v = s" -using assms -by (induct s r v rule: Posix.induct) - (auto simp add: Sequ_def) - - -lemma Posix1a: - assumes "s \ r \ v" - shows "\ v : r" -using assms -apply(induct s r v rule: Posix.induct) -apply(auto intro: Prf.intros) -done - -lemma Posix_mkeps: - assumes "nullable r" - shows "[] \ r \ mkeps r" -using assms -apply(induct r) -apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def) -apply(subst append.simps(1)[symmetric]) -apply(rule Posix.intros) -apply(auto) -done - - -lemma Posix_determ: - assumes "s \ r \ v1" "s \ r \ v2" - shows "v1 = v2" -using assms -proof (induct s r v1 arbitrary: v2 rule: Posix.induct) - case (Posix_ONE v2) - have "[] \ ONE \ v2" by fact - then show "Void = v2" by cases auto -next - case (Posix_CHAR c v2) - have "[c] \ CHAR c \ v2" by fact - then show "Char c = v2" by cases auto -next - case (Posix_ALT1 s r1 v r2 v2) - have "s \ ALT r1 r2 \ v2" by fact - moreover - have "s \ r1 \ v" by fact - then have "s \ L r1" by (simp add: Posix1) - ultimately obtain v' where eq: "v2 = Left v'" "s \ r1 \ v'" by cases auto - moreover - have IH: "\v2. s \ r1 \ v2 \ v = v2" by fact - ultimately have "v = v'" by simp - then show "Left v = v2" using eq by simp -next - case (Posix_ALT2 s r2 v r1 v2) - have "s \ ALT r1 r2 \ v2" by fact - moreover - have "s \ L r1" by fact - ultimately obtain v' where eq: "v2 = Right v'" "s \ r2 \ v'" - by cases (auto simp add: Posix1) - moreover - have IH: "\v2. s \ r2 \ v2 \ v = v2" by fact - ultimately have "v = v'" by simp - then show "Right v = v2" using eq by simp -next - case (Posix_SEQ s1 r1 v1 s2 r2 v2 v') - have "(s1 @ s2) \ SEQ r1 r2 \ v'" - "s1 \ r1 \ v1" "s2 \ r2 \ v2" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L r1 \ s\<^sub>4 \ L r2)" by fact+ - then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \ r1 \ v1'" "s2 \ r2 \ v2'" - apply(cases) apply (auto simp add: append_eq_append_conv2) - using Posix1(1) by fastforce+ - moreover - have IHs: "\v1'. s1 \ r1 \ v1' \ v1 = v1'" - "\v2'. s2 \ r2 \ v2' \ v2 = v2'" by fact+ - ultimately show "Seq v1 v2 = v'" by simp -next - case (Posix_STAR1 s1 r v s2 vs v2) - have "(s1 @ s2) \ STAR r \ v2" - "s1 \ r \ v" "s2 \ STAR r \ Stars vs" "flat v \ []" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L r \ s\<^sub>4 \ L (STAR r))" by fact+ - then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \ r \ v'" "s2 \ (STAR r) \ (Stars vs')" - apply(cases) apply (auto simp add: append_eq_append_conv2) - using Posix1(1) apply fastforce - apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2) - using Posix1(2) by blast - moreover - have IHs: "\v2. s1 \ r \ v2 \ v = v2" - "\v2. s2 \ STAR r \ v2 \ Stars vs = v2" by fact+ - ultimately show "Stars (v # vs) = v2" by auto -next - case (Posix_STAR2 r v2) - have "[] \ STAR r \ v2" by fact - then show "Stars [] = v2" by cases (auto simp add: Posix1) -qed - - -lemma Posix_injval: - assumes "s \ (der c r) \ v" - shows "(c # s) \ r \ (injval r c v)" -using assms -proof(induct r arbitrary: s v rule: rexp.induct) - case ZERO - have "s \ der c ZERO \ v" by fact - then have "s \ ZERO \ v" by simp - then have "False" by cases - then show "(c # s) \ ZERO \ (injval ZERO c v)" by simp -next - case ONE - have "s \ der c ONE \ v" by fact - then have "s \ ZERO \ v" by simp - then have "False" by cases - then show "(c # s) \ ONE \ (injval ONE c v)" by simp -next - case (CHAR d) - consider (eq) "c = d" | (ineq) "c \ d" by blast - then show "(c # s) \ (CHAR d) \ (injval (CHAR d) c v)" - proof (cases) - case eq - have "s \ der c (CHAR d) \ v" by fact - then have "s \ ONE \ v" using eq by simp - then have eqs: "s = [] \ v = Void" by cases simp - show "(c # s) \ CHAR d \ injval (CHAR d) c v" using eq eqs - by (auto intro: Posix.intros) - next - case ineq - have "s \ der c (CHAR d) \ v" by fact - then have "s \ ZERO \ v" using ineq by simp - then have "False" by cases - then show "(c # s) \ CHAR d \ injval (CHAR d) c v" by simp - qed -next - case (ALT r1 r2) - have IH1: "\s v. s \ der c r1 \ v \ (c # s) \ r1 \ injval r1 c v" by fact - have IH2: "\s v. s \ der c r2 \ v \ (c # s) \ r2 \ injval r2 c v" by fact - have "s \ der c (ALT r1 r2) \ v" by fact - then have "s \ ALT (der c r1) (der c r2) \ v" by simp - then consider (left) v' where "v = Left v'" "s \ der c r1 \ v'" - | (right) v' where "v = Right v'" "s \ L (der c r1)" "s \ der c r2 \ v'" - by cases auto - then show "(c # s) \ ALT r1 r2 \ injval (ALT r1 r2) c v" - proof (cases) - case left - have "s \ der c r1 \ v'" by fact - then have "(c # s) \ r1 \ injval r1 c v'" using IH1 by simp - then have "(c # s) \ ALT r1 r2 \ injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros) - then show "(c # s) \ ALT r1 r2 \ injval (ALT r1 r2) c v" using left by simp - next - case right - have "s \ L (der c r1)" by fact - then have "c # s \ L r1" by (simp add: der_correctness Der_def) - moreover - have "s \ der c r2 \ v'" by fact - then have "(c # s) \ r2 \ injval r2 c v'" using IH2 by simp - ultimately have "(c # s) \ ALT r1 r2 \ injval (ALT r1 r2) c (Right v')" - by (auto intro: Posix.intros) - then show "(c # s) \ ALT r1 r2 \ injval (ALT r1 r2) c v" using right by simp - qed -next - case (SEQ r1 r2) - have IH1: "\s v. s \ der c r1 \ v \ (c # s) \ r1 \ injval r1 c v" by fact - have IH2: "\s v. s \ der c r2 \ v \ (c # s) \ r2 \ injval r2 c v" by fact - have "s \ der c (SEQ r1 r2) \ v" by fact - then consider - (left_nullable) v1 v2 s1 s2 where - "v = Left (Seq v1 v2)" "s = s1 @ s2" - "s1 \ der c r1 \ v1" "s2 \ r2 \ v2" "nullable r1" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r1) \ s\<^sub>4 \ L r2)" - | (right_nullable) v1 s1 s2 where - "v = Right v1" "s = s1 @ s2" - "s \ der c r2 \ v1" "nullable r1" "s1 @ s2 \ L (SEQ (der c r1) r2)" - | (not_nullable) v1 v2 s1 s2 where - "v = Seq v1 v2" "s = s1 @ s2" - "s1 \ der c r1 \ v1" "s2 \ r2 \ v2" "\nullable r1" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r1) \ s\<^sub>4 \ L r2)" - by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def) - then show "(c # s) \ SEQ r1 r2 \ injval (SEQ r1 r2) c v" - proof (cases) - case left_nullable - have "s1 \ der c r1 \ v1" by fact - then have "(c # s1) \ r1 \ injval r1 c v1" using IH1 by simp - moreover - have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r1) \ s\<^sub>4 \ L r2)" by fact - then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (c # s1) @ s\<^sub>3 \ L r1 \ s\<^sub>4 \ L r2)" by (simp add: der_correctness Der_def) - ultimately have "((c # s1) @ s2) \ SEQ r1 r2 \ Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros) - then show "(c # s) \ SEQ r1 r2 \ injval (SEQ r1 r2) c v" using left_nullable by simp - next - case right_nullable - have "nullable r1" by fact - then have "[] \ r1 \ (mkeps r1)" by (rule Posix_mkeps) - moreover - have "s \ der c r2 \ v1" by fact - then have "(c # s) \ r2 \ (injval r2 c v1)" using IH2 by simp - moreover - have "s1 @ s2 \ L (SEQ (der c r1) r2)" by fact - then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = c # s \ [] @ s\<^sub>3 \ L r1 \ s\<^sub>4 \ L r2)" using right_nullable - by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def) - ultimately have "([] @ (c # s)) \ SEQ r1 r2 \ Seq (mkeps r1) (injval r2 c v1)" - by(rule Posix.intros) - then show "(c # s) \ SEQ r1 r2 \ injval (SEQ r1 r2) c v" using right_nullable by simp - next - case not_nullable - have "s1 \ der c r1 \ v1" by fact - then have "(c # s1) \ r1 \ injval r1 c v1" using IH1 by simp - moreover - have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r1) \ s\<^sub>4 \ L r2)" by fact - then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (c # s1) @ s\<^sub>3 \ L r1 \ s\<^sub>4 \ L r2)" by (simp add: der_correctness Der_def) - ultimately have "((c # s1) @ s2) \ SEQ r1 r2 \ Seq (injval r1 c v1) v2" using not_nullable - by (rule_tac Posix.intros) (simp_all) - then show "(c # s) \ SEQ r1 r2 \ injval (SEQ r1 r2) c v" using not_nullable by simp - qed -next - case (STAR r) - have IH: "\s v. s \ der c r \ v \ (c # s) \ r \ injval r c v" by fact - have "s \ der c (STAR r) \ v" by fact - then consider - (cons) v1 vs s1 s2 where - "v = Seq v1 (Stars vs)" "s = s1 @ s2" - "s1 \ der c r \ v1" "s2 \ (STAR r) \ (Stars vs)" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r) \ s\<^sub>4 \ L (STAR r))" - apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros) - apply(rotate_tac 3) - apply(erule_tac Posix_elims(6)) - apply (simp add: Posix.intros(6)) - using Posix.intros(7) by blast - then show "(c # s) \ STAR r \ injval (STAR r) c v" - proof (cases) - case cons - have "s1 \ der c r \ v1" by fact - then have "(c # s1) \ r \ injval r c v1" using IH by simp - moreover - have "s2 \ STAR r \ Stars vs" by fact - moreover - have "(c # s1) \ r \ injval r c v1" by fact - then have "flat (injval r c v1) = (c # s1)" by (rule Posix1) - then have "flat (injval r c v1) \ []" by simp - moreover - have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r) \ s\<^sub>4 \ L (STAR r))" by fact - then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (c # s1) @ s\<^sub>3 \ L r \ s\<^sub>4 \ L (STAR r))" - by (simp add: der_correctness Der_def) - ultimately - have "((c # s1) @ s2) \ STAR r \ Stars (injval r c v1 # vs)" by (rule Posix.intros) - then show "(c # s) \ STAR r \ injval (STAR r) c v" using cons by(simp) - qed -qed - - -section {* The Lexer by Sulzmann and Lu *} - -fun - lexer :: "rexp \ string \ val option" -where - "lexer r [] = (if nullable r then Some(mkeps r) else None)" -| "lexer r (c#s) = (case (lexer (der c r) s) of - None \ None - | Some(v) \ Some(injval r c v))" - - -lemma lexer_correct_None: - shows "s \ L r \ lexer r s = None" -using assms -apply(induct s arbitrary: r) -apply(simp add: nullable_correctness) -apply(drule_tac x="der a r" in meta_spec) -apply(auto simp add: der_correctness Der_def) -done - -lemma lexer_correct_Some: - shows "s \ L r \ (\!v. lexer r s = Some(v) \ s \ r \ v)" -using assms -apply(induct s arbitrary: r) -apply(auto simp add: Posix_mkeps nullable_correctness)[1] -apply(drule_tac x="der a r" in meta_spec) -apply(simp add: der_correctness Der_def) -apply(rule iffI) -apply(auto intro: Posix_injval simp add: Posix1(1)) -done - - -end \ No newline at end of file