diff -r 85ef42888929 -r 7ac7782a7318 thys/Pr.thy --- a/thys/Pr.thy Mon Jul 06 20:44:30 2015 +0100 +++ b/thys/Pr.thy Thu Dec 17 13:14:36 2015 +0000 @@ -2,6 +2,68 @@ imports Main "~~/src/HOL/Number_Theory/Primes" "~~/src/HOL/Real" begin +fun + add :: "nat \ nat \ nat" +where + "add 0 n = n" | + "add (Suc m) n = Suc (add m n)" + +fun + doub :: "nat \ nat" +where + "doub 0 = 0" | + "doub n = n + n" + +lemma add_lem: + "add m n = m + n" +apply(induct m arbitrary: ) +apply(auto) +done + +fun + count :: "'a \ 'a list \ nat" +where + "count n Nil = 0" | + "count n (x # xs) = (if n = x then (add 1 (count n xs)) else count n xs)" + +value "count 3 [1,2,3,3,4,3,5]" + +fun + count2 :: "nat \ nat list \ nat" +where +"count2 n Nil = 0" | +"count2 n (Cons x xs) = (if n = x then (add 1 (count2 n xs)) else count2 n xs)" + +value "count2 (2::nat) [2,2,3::nat]" + +lemma + "count2 x xs \ length xs" +apply(induct xs) +apply(simp) +apply(simp) +apply(auto) +done + +fun + sum :: "nat \ nat" +where + "sum 0 = 0" +| "sum (Suc n) = (Suc n) + sum n" + +lemma + "sum n = (n * (Suc n)) div 2" +apply(induct n) +apply(auto) +done + + +lemma + "doub n = add n n" +apply(induct n) +apply(simp) +apply(simp add: add_lem) +done + lemma fixes a b::nat shows "(a + b) ^ 2 = a ^ 2 + 2 * a * b + b ^ 2"