diff -r 2a07222e2a8b -r 6bb15b8e6301 AFP-Submission/Lexer.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/AFP-Submission/Lexer.thy Tue May 24 11:36:21 2016 +0100 @@ -0,0 +1,493 @@ +(* Title: POSIX Lexing with Derivatives of Regular Expressions + Authors: Fahad Ausaf , 2016 + Roy Dyckhoff , 2016 + Christian Urban , 2016 + Maintainer: Christian Urban +*) + +theory Lexer + imports Derivatives +begin + +section {* Values *} + +datatype 'a val = + Void +| Atm 'a +| Seq "'a val" "'a val" +| Right "'a val" +| Left "'a val" +| Stars "('a val) list" + + +section {* The string behind a value *} + +fun + flat :: "'a val \ 'a list" +where + "flat (Void) = []" +| "flat (Atm c) = [c]" +| "flat (Left v) = flat v" +| "flat (Right v) = flat v" +| "flat (Seq v1 v2) = (flat v1) @ (flat v2)" +| "flat (Stars []) = []" +| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" + +lemma flat_Stars [simp]: + "flat (Stars vs) = concat (map flat vs)" +by (induct vs) (auto) + +section {* Relation between values and regular expressions *} + +inductive + Prf :: "'a val \ 'a rexp \ bool" ("\ _ : _" [100, 100] 100) +where + "\\ v1 : r1; \ v2 : r2\ \ \ Seq v1 v2 : Times r1 r2" +| "\ v1 : r1 \ \ Left v1 : Plus r1 r2" +| "\ v2 : r2 \ \ Right v2 : Plus r1 r2" +| "\ Void : One" +| "\ Atm c : Atom c" +| "\ Stars [] : Star r" +| "\\ v : r; \ Stars vs : Star r\ \ \ Stars (v # vs) : Star r" + +inductive_cases Prf_elims: + "\ v : Zero" + "\ v : Times r1 r2" + "\ v : Plus r1 r2" + "\ v : One" + "\ v : Atom c" +(* "\ vs : Star r"*) + +lemma Prf_flat_lang: + assumes "\ v : r" shows "flat v \ lang r" +using assms +by(induct v r rule: Prf.induct) (auto) + +lemma Prf_Stars: + assumes "\v \ set vs. \ v : r" + shows "\ Stars vs : Star r" +using assms +by(induct vs) (auto intro: Prf.intros) + +lemma Star_string: + assumes "s \ star A" + shows "\ss. concat ss = s \ (\s \ set ss. s \ A)" +using assms +by (metis in_star_iff_concat set_mp) + +lemma Star_val: + assumes "\s\set ss. \v. s = flat v \ \ v : r" + shows "\vs. concat (map flat vs) = concat ss \ (\v\set vs. \ v : r)" +using assms +apply(induct ss) +apply(auto) +apply (metis empty_iff list.set(1)) +by (metis concat.simps(2) list.simps(9) set_ConsD) + +lemma L_flat_Prf1: + assumes "\ v : r" shows "flat v \ lang r" +using assms +by (induct)(auto) + +lemma L_flat_Prf2: + assumes "s \ lang r" shows "\v. \ v : r \ flat v = s" +using assms +apply(induct r arbitrary: s) +apply(auto intro: Prf.intros) +using Prf.intros(2) flat.simps(3) apply blast +using Prf.intros(3) flat.simps(4) apply blast +apply (metis Prf.intros(1) concE flat.simps(5)) +apply(subgoal_tac "\vs::('a val) list. concat (map flat vs) = s \ (\v \ set vs. \ v : r)") +apply(auto)[1] +apply(rule_tac x="Stars vs" in exI) +apply(simp) +apply (simp add: Prf_Stars) +apply(drule Star_string) +apply(auto) +apply(rule Star_val) +apply(auto) +done + +lemma L_flat_Prf: + "lang r = {flat v | v. \ v : r}" +using L_flat_Prf1 L_flat_Prf2 by blast + + +section {* Sulzmann and Lu functions *} + +fun + mkeps :: "'a rexp \ 'a val" +where + "mkeps(One) = Void" +| "mkeps(Times r1 r2) = Seq (mkeps r1) (mkeps r2)" +| "mkeps(Plus r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" +| "mkeps(Star r) = Stars []" + +fun injval :: "'a rexp \ 'a \ 'a val \ 'a val" +where + "injval (Atom d) c Void = Atm d" +| "injval (Plus r1 r2) c (Left v1) = Left(injval r1 c v1)" +| "injval (Plus r1 r2) c (Right v2) = Right(injval r2 c v2)" +| "injval (Times r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2" +| "injval (Times r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" +| "injval (Times r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" +| "injval (Star r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" + + +section {* Mkeps, injval *} + +lemma mkeps_nullable: + assumes "nullable r" + shows "\ mkeps r : r" +using assms +by (induct r) + (auto intro: Prf.intros) + +lemma mkeps_flat: + assumes "nullable r" + shows "flat (mkeps r) = []" +using assms +by (induct r) (auto) + + +lemma Prf_injval: + assumes "\ v : deriv c r" + shows "\ (injval r c v) : r" +using assms +apply(induct r arbitrary: c v rule: rexp.induct) +apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits) +(* Star *) +apply(rotate_tac 2) +apply(erule Prf.cases) +apply(simp_all)[7] +apply(auto) +apply (metis Prf.intros(6) Prf.intros(7)) +by (metis Prf.intros(7)) + +lemma Prf_injval_flat: + assumes "\ v : deriv c r" + shows "flat (injval r c v) = c # (flat v)" +using assms +apply(induct r arbitrary: v c) +apply(auto elim!: Prf_elims split: if_splits) +apply(metis mkeps_flat) +apply(rotate_tac 2) +apply(erule Prf.cases) +apply(simp_all)[7] +done + +(* HERE *) + +section {* Our Alternative Posix definition *} + +inductive + Posix :: "'a list \ 'a rexp \ 'a val \ bool" ("_ \ _ \ _" [100, 100, 100] 100) +where + Posix_One: "[] \ One \ Void" +| Posix_Atom: "[c] \ (Atom c) \ (Atm c)" +| Posix_Plus1: "s \ r1 \ v \ s \ (Plus r1 r2) \ (Left v)" +| Posix_Plus2: "\s \ r2 \ v; s \ lang r1\ \ s \ (Plus r1 r2) \ (Right v)" +| Posix_Times: "\s1 \ r1 \ v1; s2 \ r2 \ v2; + \(\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (s1 @ s\<^sub>3) \ lang r1 \ s\<^sub>4 \ lang r2)\ \ + (s1 @ s2) \ (Times r1 r2) \ (Seq v1 v2)" +| Posix_Star1: "\s1 \ r \ v; s2 \ Star r \ Stars vs; flat v \ []; + \(\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (s1 @ s\<^sub>3) \ lang r \ s\<^sub>4 \ lang (Star r))\ + \ (s1 @ s2) \ Star r \ Stars (v # vs)" +| Posix_Star2: "[] \ Star r \ Stars []" + +inductive_cases Posix_elims: + "s \ Zero \ v" + "s \ One \ v" + "s \ Atom c \ v" + "s \ Plus r1 r2 \ v" + "s \ Times r1 r2 \ v" + "s \ Star r \ v" + +lemma Posix1: + assumes "s \ r \ v" + shows "s \ lang r" "flat v = s" +using assms +by (induct s r v rule: Posix.induct) (auto) + + +lemma Posix1a: + assumes "s \ r \ v" + shows "\ v : r" +using assms +by (induct s r v rule: Posix.induct)(auto intro: Prf.intros) + + +lemma Posix_mkeps: + assumes "nullable r" + shows "[] \ r \ mkeps r" +using assms +apply(induct r) +apply(auto intro: Posix.intros simp add: nullable_iff) +apply(subst append.simps(1)[symmetric]) +apply(rule Posix.intros) +apply(auto) +done + + +lemma Posix_determ: + assumes "s \ r \ v1" "s \ r \ v2" + shows "v1 = v2" +using assms +proof (induct s r v1 arbitrary: v2 rule: Posix.induct) + case (Posix_One v2) + have "[] \ One \ v2" by fact + then show "Void = v2" by cases auto +next + case (Posix_Atom c v2) + have "[c] \ Atom c \ v2" by fact + then show "Atm c = v2" by cases auto +next + case (Posix_Plus1 s r1 v r2 v2) + have "s \ Plus r1 r2 \ v2" by fact + moreover + have "s \ r1 \ v" by fact + then have "s \ lang r1" by (simp add: Posix1) + ultimately obtain v' where eq: "v2 = Left v'" "s \ r1 \ v'" by cases auto + moreover + have IH: "\v2. s \ r1 \ v2 \ v = v2" by fact + ultimately have "v = v'" by simp + then show "Left v = v2" using eq by simp +next + case (Posix_Plus2 s r2 v r1 v2) + have "s \ Plus r1 r2 \ v2" by fact + moreover + have "s \ lang r1" by fact + ultimately obtain v' where eq: "v2 = Right v'" "s \ r2 \ v'" + by cases (auto simp add: Posix1) + moreover + have IH: "\v2. s \ r2 \ v2 \ v = v2" by fact + ultimately have "v = v'" by simp + then show "Right v = v2" using eq by simp +next + case (Posix_Times s1 r1 v1 s2 r2 v2 v') + have "(s1 @ s2) \ Times r1 r2 \ v'" + "s1 \ r1 \ v1" "s2 \ r2 \ v2" + "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang r1 \ s\<^sub>4 \ lang r2)" by fact+ + then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \ r1 \ v1'" "s2 \ r2 \ v2'" + apply(cases) apply (auto simp add: append_eq_append_conv2) + using Posix1(1) by fastforce+ + moreover + have IHs: "\v1'. s1 \ r1 \ v1' \ v1 = v1'" + "\v2'. s2 \ r2 \ v2' \ v2 = v2'" by fact+ + ultimately show "Seq v1 v2 = v'" by simp +next + case (Posix_Star1 s1 r v s2 vs v2) + have "(s1 @ s2) \ Star r \ v2" + "s1 \ r \ v" "s2 \ Star r \ Stars vs" "flat v \ []" + "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang r \ s\<^sub>4 \ lang (Star r))" by fact+ + then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \ r \ v'" "s2 \ (Star r) \ (Stars vs')" + apply(cases) apply (auto simp add: append_eq_append_conv2) + using Posix1(1) apply fastforce + apply (metis Posix1(1) Posix_Star1.hyps(6) append_Nil append_Nil2) + using Posix1(2) by blast + moreover + have IHs: "\v2. s1 \ r \ v2 \ v = v2" + "\v2. s2 \ Star r \ v2 \ Stars vs = v2" by fact+ + ultimately show "Stars (v # vs) = v2" by auto +next + case (Posix_Star2 r v2) + have "[] \ Star r \ v2" by fact + then show "Stars [] = v2" by cases (auto simp add: Posix1) +qed + + +lemma Posix_injval: + assumes "s \ (deriv c r) \ v" + shows "(c # s) \ r \ (injval r c v)" +using assms +proof(induct r arbitrary: s v rule: rexp.induct) + case Zero + have "s \ deriv c Zero \ v" by fact + then have "s \ Zero \ v" by simp + then have "False" by cases + then show "(c # s) \ Zero \ (injval Zero c v)" by simp +next + case One + have "s \ deriv c One \ v" by fact + then have "s \ Zero \ v" by simp + then have "False" by cases + then show "(c # s) \ One \ (injval One c v)" by simp +next + case (Atom d) + consider (eq) "c = d" | (ineq) "c \ d" by blast + then show "(c # s) \ (Atom d) \ (injval (Atom d) c v)" + proof (cases) + case eq + have "s \ deriv c (Atom d) \ v" by fact + then have "s \ One \ v" using eq by simp + then have eqs: "s = [] \ v = Void" by cases simp + show "(c # s) \ Atom d \ injval (Atom d) c v" using eq eqs + by (auto intro: Posix.intros) + next + case ineq + have "s \ deriv c (Atom d) \ v" by fact + then have "s \ Zero \ v" using ineq by simp + then have "False" by cases + then show "(c # s) \ Atom d \ injval (Atom d) c v" by simp + qed +next + case (Plus r1 r2) + have IH1: "\s v. s \ deriv c r1 \ v \ (c # s) \ r1 \ injval r1 c v" by fact + have IH2: "\s v. s \ deriv c r2 \ v \ (c # s) \ r2 \ injval r2 c v" by fact + have "s \ deriv c (Plus r1 r2) \ v" by fact + then have "s \ Plus (deriv c r1) (deriv c r2) \ v" by simp + then consider (left) v' where "v = Left v'" "s \ deriv c r1 \ v'" + | (right) v' where "v = Right v'" "s \ lang (deriv c r1)" "s \ deriv c r2 \ v'" + by cases auto + then show "(c # s) \ Plus r1 r2 \ injval (Plus r1 r2) c v" + proof (cases) + case left + have "s \ deriv c r1 \ v'" by fact + then have "(c # s) \ r1 \ injval r1 c v'" using IH1 by simp + then have "(c # s) \ Plus r1 r2 \ injval (Plus r1 r2) c (Left v')" by (auto intro: Posix.intros) + then show "(c # s) \ Plus r1 r2 \ injval (Plus r1 r2) c v" using left by simp + next + case right + have "s \ lang (deriv c r1)" by fact + then have "c # s \ lang r1" by (simp add: lang_deriv Deriv_def) + moreover + have "s \ deriv c r2 \ v'" by fact + then have "(c # s) \ r2 \ injval r2 c v'" using IH2 by simp + ultimately have "(c # s) \ Plus r1 r2 \ injval (Plus r1 r2) c (Right v')" + by (auto intro: Posix.intros) + then show "(c # s) \ Plus r1 r2 \ injval (Plus r1 r2) c v" using right by simp + qed +next + case (Times r1 r2) + have IH1: "\s v. s \ deriv c r1 \ v \ (c # s) \ r1 \ injval r1 c v" by fact + have IH2: "\s v. s \ deriv c r2 \ v \ (c # s) \ r2 \ injval r2 c v" by fact + have "s \ deriv c (Times r1 r2) \ v" by fact + then consider + (left_nullable) v1 v2 s1 s2 where + "v = Left (Seq v1 v2)" "s = s1 @ s2" + "s1 \ deriv c r1 \ v1" "s2 \ r2 \ v2" "nullable r1" + "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang (deriv c r1) \ s\<^sub>4 \ lang r2)" + | (right_nullable) v1 s1 s2 where + "v = Right v1" "s = s1 @ s2" + "s \ deriv c r2 \ v1" "nullable r1" "s1 @ s2 \ lang (Times (deriv c r1) r2)" + | (not_nullable) v1 v2 s1 s2 where + "v = Seq v1 v2" "s = s1 @ s2" + "s1 \ deriv c r1 \ v1" "s2 \ r2 \ v2" "\nullable r1" + "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang (deriv c r1) \ s\<^sub>4 \ lang r2)" + by (force split: if_splits elim!: Posix_elims simp add: lang_deriv Deriv_def) + then show "(c # s) \ Times r1 r2 \ injval (Times r1 r2) c v" + proof (cases) + case left_nullable + have "s1 \ deriv c r1 \ v1" by fact + then have "(c # s1) \ r1 \ injval r1 c v1" using IH1 by simp + moreover + have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang (deriv c r1) \ s\<^sub>4 \ lang r2)" by fact + then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (c # s1) @ s\<^sub>3 \ lang r1 \ s\<^sub>4 \ lang r2)" + by (simp add: lang_deriv Deriv_def) + ultimately have "((c # s1) @ s2) \ Times r1 r2 \ Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros) + then show "(c # s) \ Times r1 r2 \ injval (Times r1 r2) c v" using left_nullable by simp + next + case right_nullable + have "nullable r1" by fact + then have "[] \ r1 \ (mkeps r1)" by (rule Posix_mkeps) + moreover + have "s \ deriv c r2 \ v1" by fact + then have "(c # s) \ r2 \ (injval r2 c v1)" using IH2 by simp + moreover + have "s1 @ s2 \ lang (Times (deriv c r1) r2)" by fact + then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = c # s \ [] @ s\<^sub>3 \ lang r1 \ s\<^sub>4 \ lang r2)" + using right_nullable + apply (auto simp add: lang_deriv Deriv_def append_eq_Cons_conv) + by (metis concI mem_Collect_eq) + ultimately have "([] @ (c # s)) \ Times r1 r2 \ Seq (mkeps r1) (injval r2 c v1)" + by(rule Posix.intros) + then show "(c # s) \ Times r1 r2 \ injval (Times r1 r2) c v" using right_nullable by simp + next + case not_nullable + have "s1 \ deriv c r1 \ v1" by fact + then have "(c # s1) \ r1 \ injval r1 c v1" using IH1 by simp + moreover + have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang (deriv c r1) \ s\<^sub>4 \ lang r2)" by fact + then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (c # s1) @ s\<^sub>3 \ lang r1 \ s\<^sub>4 \ lang r2)" by (simp add: lang_deriv Deriv_def) + ultimately have "((c # s1) @ s2) \ Times r1 r2 \ Seq (injval r1 c v1) v2" using not_nullable + by (rule_tac Posix.intros) (simp_all) + then show "(c # s) \ Times r1 r2 \ injval (Times r1 r2) c v" using not_nullable by simp + qed +next + case (Star r) + have IH: "\s v. s \ deriv c r \ v \ (c # s) \ r \ injval r c v" by fact + have "s \ deriv c (Star r) \ v" by fact + then consider + (cons) v1 vs s1 s2 where + "v = Seq v1 (Stars vs)" "s = s1 @ s2" + "s1 \ deriv c r \ v1" "s2 \ (Star r) \ (Stars vs)" + "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang (deriv c r) \ s\<^sub>4 \ lang (Star r))" + apply(auto elim!: Posix_elims(1-5) simp add: lang_deriv Deriv_def intro: Posix.intros) + apply(rotate_tac 3) + apply(erule_tac Posix_elims(6)) + apply (simp add: Posix.intros(6)) + using Posix.intros(7) by blast + then show "(c # s) \ Star r \ injval (Star r) c v" + proof (cases) + case cons + have "s1 \ deriv c r \ v1" by fact + then have "(c # s1) \ r \ injval r c v1" using IH by simp + moreover + have "s2 \ Star r \ Stars vs" by fact + moreover + have "(c # s1) \ r \ injval r c v1" by fact + then have "flat (injval r c v1) = (c # s1)" by (rule Posix1) + then have "flat (injval r c v1) \ []" by simp + moreover + have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang (deriv c r) \ s\<^sub>4 \ lang (Star r))" by fact + then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (c # s1) @ s\<^sub>3 \ lang r \ s\<^sub>4 \ lang (Star r))" + by (simp add: lang_deriv Deriv_def) + ultimately + have "((c # s1) @ s2) \ Star r \ Stars (injval r c v1 # vs)" by (rule Posix.intros) + then show "(c # s) \ Star r \ injval (Star r) c v" using cons by(simp) + qed +qed + + +section {* The Lexer by Sulzmann and Lu *} + +fun + lexer :: "'a rexp \ 'a list \ ('a val) option" +where + "lexer r [] = (if nullable r then Some(mkeps r) else None)" +| "lexer r (c#s) = (case (lexer (deriv c r) s) of + None \ None + | Some(v) \ Some(injval r c v))" + + +lemma lexer_correct_None: + shows "s \ lang r \ lexer r s = None" +using assms +apply(induct s arbitrary: r) +apply(simp add: nullable_iff) +apply(drule_tac x="deriv a r" in meta_spec) +apply(auto simp add: lang_deriv Deriv_def) +done + +lemma lexer_correct_Some: + shows "s \ lang r \ (\v. lexer r s = Some(v) \ s \ r \ v)" +using assms +apply(induct s arbitrary: r) +apply(auto simp add: Posix_mkeps nullable_iff)[1] +apply(drule_tac x="deriv a r" in meta_spec) +apply(simp add: lang_deriv Deriv_def) +apply(rule iffI) +apply(auto intro: Posix_injval simp add: Posix1(1)) +done + +lemma lexer_correctness: + shows "(lexer r s = Some v) \ s \ r \ v" + and "(lexer r s = None) \ \(\v. s \ r \ v)" +apply(auto) +using lexer_correct_None lexer_correct_Some apply fastforce +using Posix1(1) Posix_determ lexer_correct_Some apply blast +using Posix1(1) lexer_correct_None apply blast +using lexer_correct_None lexer_correct_Some by blast + + +end \ No newline at end of file