diff -r 2a07222e2a8b -r 6bb15b8e6301 AFP-Submission/Derivatives.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/AFP-Submission/Derivatives.thy Tue May 24 11:36:21 2016 +0100 @@ -0,0 +1,370 @@ +section "Derivatives of regular expressions" + +(* Author: Christian Urban *) + +theory Derivatives +imports Regular_Exp +begin + +text{* This theory is based on work by Brozowski \cite{Brzozowski64} and Antimirov \cite{Antimirov95}. *} + +subsection {* Brzozowski's derivatives of regular expressions *} + +primrec + deriv :: "'a \ 'a rexp \ 'a rexp" +where + "deriv c (Zero) = Zero" +| "deriv c (One) = Zero" +| "deriv c (Atom c') = (if c = c' then One else Zero)" +| "deriv c (Plus r1 r2) = Plus (deriv c r1) (deriv c r2)" +| "deriv c (Times r1 r2) = + (if nullable r1 then Plus (Times (deriv c r1) r2) (deriv c r2) else Times (deriv c r1) r2)" +| "deriv c (Star r) = Times (deriv c r) (Star r)" + +primrec + derivs :: "'a list \ 'a rexp \ 'a rexp" +where + "derivs [] r = r" +| "derivs (c # s) r = derivs s (deriv c r)" + + +lemma atoms_deriv_subset: "atoms (deriv x r) \ atoms r" +by (induction r) (auto) + +lemma atoms_derivs_subset: "atoms (derivs w r) \ atoms r" +by (induction w arbitrary: r) (auto dest: atoms_deriv_subset[THEN subsetD]) + +lemma lang_deriv: "lang (deriv c r) = Deriv c (lang r)" +by (induct r) (simp_all add: nullable_iff) + +lemma lang_derivs: "lang (derivs s r) = Derivs s (lang r)" +by (induct s arbitrary: r) (simp_all add: lang_deriv) + +text {* A regular expression matcher: *} + +definition matcher :: "'a rexp \ 'a list \ bool" where +"matcher r s = nullable (derivs s r)" + +lemma matcher_correctness: "matcher r s \ s \ lang r" +by (induct s arbitrary: r) + (simp_all add: nullable_iff lang_deriv matcher_def Deriv_def) + + +subsection {* Antimirov's partial derivatives *} + +abbreviation + "Timess rs r \ (\r' \ rs. {Times r' r})" + +primrec + pderiv :: "'a \ 'a rexp \ 'a rexp set" +where + "pderiv c Zero = {}" +| "pderiv c One = {}" +| "pderiv c (Atom c') = (if c = c' then {One} else {})" +| "pderiv c (Plus r1 r2) = (pderiv c r1) \ (pderiv c r2)" +| "pderiv c (Times r1 r2) = + (if nullable r1 then Timess (pderiv c r1) r2 \ pderiv c r2 else Timess (pderiv c r1) r2)" +| "pderiv c (Star r) = Timess (pderiv c r) (Star r)" + +primrec + pderivs :: "'a list \ 'a rexp \ ('a rexp) set" +where + "pderivs [] r = {r}" +| "pderivs (c # s) r = \ (pderivs s ` pderiv c r)" + +abbreviation + pderiv_set :: "'a \ 'a rexp set \ 'a rexp set" +where + "pderiv_set c rs \ \ (pderiv c ` rs)" + +abbreviation + pderivs_set :: "'a list \ 'a rexp set \ 'a rexp set" +where + "pderivs_set s rs \ \ (pderivs s ` rs)" + +lemma pderivs_append: + "pderivs (s1 @ s2) r = \ (pderivs s2 ` pderivs s1 r)" +by (induct s1 arbitrary: r) (simp_all) + +lemma pderivs_snoc: + shows "pderivs (s @ [c]) r = pderiv_set c (pderivs s r)" +by (simp add: pderivs_append) + +lemma pderivs_simps [simp]: + shows "pderivs s Zero = (if s = [] then {Zero} else {})" + and "pderivs s One = (if s = [] then {One} else {})" + and "pderivs s (Plus r1 r2) = (if s = [] then {Plus r1 r2} else (pderivs s r1) \ (pderivs s r2))" +by (induct s) (simp_all) + +lemma pderivs_Atom: + shows "pderivs s (Atom c) \ {Atom c, One}" +by (induct s) (simp_all) + +subsection {* Relating left-quotients and partial derivatives *} + +lemma Deriv_pderiv: + shows "Deriv c (lang r) = \ (lang ` pderiv c r)" +by (induct r) (auto simp add: nullable_iff conc_UNION_distrib) + +lemma Derivs_pderivs: + shows "Derivs s (lang r) = \ (lang ` pderivs s r)" +proof (induct s arbitrary: r) + case (Cons c s) + have ih: "\r. Derivs s (lang r) = \ (lang ` pderivs s r)" by fact + have "Derivs (c # s) (lang r) = Derivs s (Deriv c (lang r))" by simp + also have "\ = Derivs s (\ (lang ` pderiv c r))" by (simp add: Deriv_pderiv) + also have "\ = Derivss s (lang ` (pderiv c r))" + by (auto simp add: Derivs_def) + also have "\ = \ (lang ` (pderivs_set s (pderiv c r)))" + using ih by auto + also have "\ = \ (lang ` (pderivs (c # s) r))" by simp + finally show "Derivs (c # s) (lang r) = \ (lang ` pderivs (c # s) r)" . +qed (simp add: Derivs_def) + +subsection {* Relating derivatives and partial derivatives *} + +lemma deriv_pderiv: + shows "\ (lang ` (pderiv c r)) = lang (deriv c r)" +unfolding lang_deriv Deriv_pderiv by simp + +lemma derivs_pderivs: + shows "\ (lang ` (pderivs s r)) = lang (derivs s r)" +unfolding lang_derivs Derivs_pderivs by simp + + +subsection {* Finiteness property of partial derivatives *} + +definition + pderivs_lang :: "'a lang \ 'a rexp \ 'a rexp set" +where + "pderivs_lang A r \ \x \ A. pderivs x r" + +lemma pderivs_lang_subsetI: + assumes "\s. s \ A \ pderivs s r \ C" + shows "pderivs_lang A r \ C" +using assms unfolding pderivs_lang_def by (rule UN_least) + +lemma pderivs_lang_union: + shows "pderivs_lang (A \ B) r = (pderivs_lang A r \ pderivs_lang B r)" +by (simp add: pderivs_lang_def) + +lemma pderivs_lang_subset: + shows "A \ B \ pderivs_lang A r \ pderivs_lang B r" +by (auto simp add: pderivs_lang_def) + +definition + "UNIV1 \ UNIV - {[]}" + +lemma pderivs_lang_Zero [simp]: + shows "pderivs_lang UNIV1 Zero = {}" +unfolding UNIV1_def pderivs_lang_def by auto + +lemma pderivs_lang_One [simp]: + shows "pderivs_lang UNIV1 One = {}" +unfolding UNIV1_def pderivs_lang_def by (auto split: if_splits) + +lemma pderivs_lang_Atom [simp]: + shows "pderivs_lang UNIV1 (Atom c) = {One}" +unfolding UNIV1_def pderivs_lang_def +apply(auto) +apply(frule rev_subsetD) +apply(rule pderivs_Atom) +apply(simp) +apply(case_tac xa) +apply(auto split: if_splits) +done + +lemma pderivs_lang_Plus [simp]: + shows "pderivs_lang UNIV1 (Plus r1 r2) = pderivs_lang UNIV1 r1 \ pderivs_lang UNIV1 r2" +unfolding UNIV1_def pderivs_lang_def by auto + + +text {* Non-empty suffixes of a string (needed for the cases of @{const Times} and @{const Star} below) *} + +definition + "PSuf s \ {v. v \ [] \ (\u. u @ v = s)}" + +lemma PSuf_snoc: + shows "PSuf (s @ [c]) = (PSuf s) @@ {[c]} \ {[c]}" +unfolding PSuf_def conc_def +by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv) + +lemma PSuf_Union: + shows "(\v \ PSuf s @@ {[c]}. f v) = (\v \ PSuf s. f (v @ [c]))" +by (auto simp add: conc_def) + +lemma pderivs_lang_snoc: + shows "pderivs_lang (PSuf s @@ {[c]}) r = (pderiv_set c (pderivs_lang (PSuf s) r))" +unfolding pderivs_lang_def +by (simp add: PSuf_Union pderivs_snoc) + +lemma pderivs_Times: + shows "pderivs s (Times r1 r2) \ Timess (pderivs s r1) r2 \ (pderivs_lang (PSuf s) r2)" +proof (induct s rule: rev_induct) + case (snoc c s) + have ih: "pderivs s (Times r1 r2) \ Timess (pderivs s r1) r2 \ (pderivs_lang (PSuf s) r2)" + by fact + have "pderivs (s @ [c]) (Times r1 r2) = pderiv_set c (pderivs s (Times r1 r2))" + by (simp add: pderivs_snoc) + also have "\ \ pderiv_set c (Timess (pderivs s r1) r2 \ (pderivs_lang (PSuf s) r2))" + using ih by fast + also have "\ = pderiv_set c (Timess (pderivs s r1) r2) \ pderiv_set c (pderivs_lang (PSuf s) r2)" + by (simp) + also have "\ = pderiv_set c (Timess (pderivs s r1) r2) \ pderivs_lang (PSuf s @@ {[c]}) r2" + by (simp add: pderivs_lang_snoc) + also + have "\ \ pderiv_set c (Timess (pderivs s r1) r2) \ pderiv c r2 \ pderivs_lang (PSuf s @@ {[c]}) r2" + by auto + also + have "\ \ Timess (pderiv_set c (pderivs s r1)) r2 \ pderiv c r2 \ pderivs_lang (PSuf s @@ {[c]}) r2" + by (auto simp add: if_splits) + also have "\ = Timess (pderivs (s @ [c]) r1) r2 \ pderiv c r2 \ pderivs_lang (PSuf s @@ {[c]}) r2" + by (simp add: pderivs_snoc) + also have "\ \ Timess (pderivs (s @ [c]) r1) r2 \ pderivs_lang (PSuf (s @ [c])) r2" + unfolding pderivs_lang_def by (auto simp add: PSuf_snoc) + finally show ?case . +qed (simp) + +lemma pderivs_lang_Times_aux1: + assumes a: "s \ UNIV1" + shows "pderivs_lang (PSuf s) r \ pderivs_lang UNIV1 r" +using a unfolding UNIV1_def PSuf_def pderivs_lang_def by auto + +lemma pderivs_lang_Times_aux2: + assumes a: "s \ UNIV1" + shows "Timess (pderivs s r1) r2 \ Timess (pderivs_lang UNIV1 r1) r2" +using a unfolding pderivs_lang_def by auto + +lemma pderivs_lang_Times: + shows "pderivs_lang UNIV1 (Times r1 r2) \ Timess (pderivs_lang UNIV1 r1) r2 \ pderivs_lang UNIV1 r2" +apply(rule pderivs_lang_subsetI) +apply(rule subset_trans) +apply(rule pderivs_Times) +using pderivs_lang_Times_aux1 pderivs_lang_Times_aux2 +apply(blast) +done + +lemma pderivs_Star: + assumes a: "s \ []" + shows "pderivs s (Star r) \ Timess (pderivs_lang (PSuf s) r) (Star r)" +using a +proof (induct s rule: rev_induct) + case (snoc c s) + have ih: "s \ [] \ pderivs s (Star r) \ Timess (pderivs_lang (PSuf s) r) (Star r)" by fact + { assume asm: "s \ []" + have "pderivs (s @ [c]) (Star r) = pderiv_set c (pderivs s (Star r))" by (simp add: pderivs_snoc) + also have "\ \ pderiv_set c (Timess (pderivs_lang (PSuf s) r) (Star r))" + using ih[OF asm] by fast + also have "\ \ Timess (pderiv_set c (pderivs_lang (PSuf s) r)) (Star r) \ pderiv c (Star r)" + by (auto split: if_splits) + also have "\ \ Timess (pderivs_lang (PSuf (s @ [c])) r) (Star r) \ (Timess (pderiv c r) (Star r))" + by (simp only: PSuf_snoc pderivs_lang_snoc pderivs_lang_union) + (auto simp add: pderivs_lang_def) + also have "\ = Timess (pderivs_lang (PSuf (s @ [c])) r) (Star r)" + by (auto simp add: PSuf_snoc PSuf_Union pderivs_snoc pderivs_lang_def) + finally have ?case . + } + moreover + { assume asm: "s = []" + then have ?case by (auto simp add: pderivs_lang_def pderivs_snoc PSuf_def) + } + ultimately show ?case by blast +qed (simp) + +lemma pderivs_lang_Star: + shows "pderivs_lang UNIV1 (Star r) \ Timess (pderivs_lang UNIV1 r) (Star r)" +apply(rule pderivs_lang_subsetI) +apply(rule subset_trans) +apply(rule pderivs_Star) +apply(simp add: UNIV1_def) +apply(simp add: UNIV1_def PSuf_def) +apply(auto simp add: pderivs_lang_def) +done + +lemma finite_Timess [simp]: + assumes a: "finite A" + shows "finite (Timess A r)" +using a by auto + +lemma finite_pderivs_lang_UNIV1: + shows "finite (pderivs_lang UNIV1 r)" +apply(induct r) +apply(simp_all add: + finite_subset[OF pderivs_lang_Times] + finite_subset[OF pderivs_lang_Star]) +done + +lemma pderivs_lang_UNIV: + shows "pderivs_lang UNIV r = pderivs [] r \ pderivs_lang UNIV1 r" +unfolding UNIV1_def pderivs_lang_def +by blast + +lemma finite_pderivs_lang_UNIV: + shows "finite (pderivs_lang UNIV r)" +unfolding pderivs_lang_UNIV +by (simp add: finite_pderivs_lang_UNIV1) + +lemma finite_pderivs_lang: + shows "finite (pderivs_lang A r)" +by (metis finite_pderivs_lang_UNIV pderivs_lang_subset rev_finite_subset subset_UNIV) + + +text{* The following relationship between the alphabetic width of regular expressions +(called @{text awidth} below) and the number of partial derivatives was proved +by Antimirov~\cite{Antimirov95} and formalized by Max Haslbeck. *} + +fun awidth :: "'a rexp \ nat" where +"awidth Zero = 0" | +"awidth One = 0" | +"awidth (Atom a) = 1" | +"awidth (Plus r1 r2) = awidth r1 + awidth r2" | +"awidth (Times r1 r2) = awidth r1 + awidth r2" | +"awidth (Star r1) = awidth r1" + +lemma card_Timess_pderivs_lang_le: + "card (Timess (pderivs_lang A r) s) \ card (pderivs_lang A r)" +by (metis card_image_le finite_pderivs_lang image_eq_UN) + +lemma card_pderivs_lang_UNIV1_le_awidth: "card (pderivs_lang UNIV1 r) \ awidth r" +proof (induction r) + case (Plus r1 r2) + have "card (pderivs_lang UNIV1 (Plus r1 r2)) = card (pderivs_lang UNIV1 r1 \ pderivs_lang UNIV1 r2)" by simp + also have "\ \ card (pderivs_lang UNIV1 r1) + card (pderivs_lang UNIV1 r2)" + by(simp add: card_Un_le) + also have "\ \ awidth (Plus r1 r2)" using Plus.IH by simp + finally show ?case . +next + case (Times r1 r2) + have "card (pderivs_lang UNIV1 (Times r1 r2)) \ card (Timess (pderivs_lang UNIV1 r1) r2 \ pderivs_lang UNIV1 r2)" + by (simp add: card_mono finite_pderivs_lang pderivs_lang_Times) + also have "\ \ card (Timess (pderivs_lang UNIV1 r1) r2) + card (pderivs_lang UNIV1 r2)" + by (simp add: card_Un_le) + also have "\ \ card (pderivs_lang UNIV1 r1) + card (pderivs_lang UNIV1 r2)" + by (simp add: card_Timess_pderivs_lang_le) + also have "\ \ awidth (Times r1 r2)" using Times.IH by simp + finally show ?case . +next + case (Star r) + have "card (pderivs_lang UNIV1 (Star r)) \ card (Timess (pderivs_lang UNIV1 r) (Star r))" + by (simp add: card_mono finite_pderivs_lang pderivs_lang_Star) + also have "\ \ card (pderivs_lang UNIV1 r)" by (rule card_Timess_pderivs_lang_le) + also have "\ \ awidth (Star r)" by (simp add: Star.IH) + finally show ?case . +qed (auto) + +text{* Antimirov's Theorem 3.4: *} +theorem card_pderivs_lang_UNIV_le_awidth: "card (pderivs_lang UNIV r) \ awidth r + 1" +proof - + have "card (insert r (pderivs_lang UNIV1 r)) \ Suc (card (pderivs_lang UNIV1 r))" + by(auto simp: card_insert_if[OF finite_pderivs_lang_UNIV1]) + also have "\ \ Suc (awidth r)" by(simp add: card_pderivs_lang_UNIV1_le_awidth) + finally show ?thesis by(simp add: pderivs_lang_UNIV) +qed + +text{* Antimirov's Corollary 3.5: *} +corollary card_pderivs_lang_le_awidth: "card (pderivs_lang A r) \ awidth r + 1" +by(rule order_trans[OF + card_mono[OF finite_pderivs_lang_UNIV pderivs_lang_subset[OF subset_UNIV]] + card_pderivs_lang_UNIV_le_awidth]) + +end \ No newline at end of file