diff -r 17c079699ea0 -r 624b4154325b thys/LexerExt.thy --- a/thys/LexerExt.thy Tue Feb 28 13:35:12 2017 +0000 +++ b/thys/LexerExt.thy Tue Feb 28 13:47:36 2017 +0000 @@ -1175,8 +1175,9 @@ have "s \ der c (FROMNTIMES r n) \ v" by fact then consider (null) v1 vs s1 s2 where + "n = 0" "v = Seq v1 (Stars vs)" "s = s1 @ s2" - "s1 \ der c r \ v1" "s2 \ (FROMNTIMES r 0) \ (Stars vs)" + "s1 \ der c r \ v1" "s2 \ (STAR r) \ (Stars vs)" "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ L (der c r) \ s\<^sub>4 \ L (FROMNTIMES r 0))" | (cons) m v1 vs s1 s2 where "n = Suc m" @@ -1200,10 +1201,13 @@ apply(drule_tac x="s1a @ s2a" in meta_spec) apply(simp) apply(drule meta_mp) - defer + apply(rule Posix.intros) + apply(simp) + apply(simp) + apply(simp) + apply(simp) using Pow_in_Star apply blast - apply (meson Posix_FROMNTIMES2 append_is_Nil_conv self_append_conv) - sorry + by (meson Posix_STAR2 append_is_Nil_conv self_append_conv) then show "(c # s) \ FROMNTIMES r n \ injval (FROMNTIMES r n) c v" proof (cases) case cons @@ -1223,6 +1227,11 @@ apply(simp_all) done then show "(c # s) \ FROMNTIMES r n \ injval (FROMNTIMES r n) c v" using cons by(simp) + next + case null + then show ?thesis + apply(simp) + sorry qed qed