diff -r 2585e2a7a7ab -r 5c063eeda622 AFP-Submission/Lexer.thy --- a/AFP-Submission/Lexer.thy Tue Jun 14 12:37:46 2016 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,493 +0,0 @@ -(* Title: POSIX Lexing with Derivatives of Regular Expressions - Authors: Fahad Ausaf , 2016 - Roy Dyckhoff , 2016 - Christian Urban , 2016 - Maintainer: Christian Urban -*) - -theory Lexer - imports Derivatives -begin - -section {* Values *} - -datatype 'a val = - Void -| Atm 'a -| Seq "'a val" "'a val" -| Right "'a val" -| Left "'a val" -| Stars "('a val) list" - - -section {* The string behind a value *} - -fun - flat :: "'a val \ 'a list" -where - "flat (Void) = []" -| "flat (Atm c) = [c]" -| "flat (Left v) = flat v" -| "flat (Right v) = flat v" -| "flat (Seq v1 v2) = (flat v1) @ (flat v2)" -| "flat (Stars []) = []" -| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" - -lemma flat_Stars [simp]: - "flat (Stars vs) = concat (map flat vs)" -by (induct vs) (auto) - -section {* Relation between values and regular expressions *} - -inductive - Prf :: "'a val \ 'a rexp \ bool" ("\ _ : _" [100, 100] 100) -where - "\\ v1 : r1; \ v2 : r2\ \ \ Seq v1 v2 : Times r1 r2" -| "\ v1 : r1 \ \ Left v1 : Plus r1 r2" -| "\ v2 : r2 \ \ Right v2 : Plus r1 r2" -| "\ Void : One" -| "\ Atm c : Atom c" -| "\ Stars [] : Star r" -| "\\ v : r; \ Stars vs : Star r\ \ \ Stars (v # vs) : Star r" - -inductive_cases Prf_elims: - "\ v : Zero" - "\ v : Times r1 r2" - "\ v : Plus r1 r2" - "\ v : One" - "\ v : Atom c" -(* "\ vs : Star r"*) - -lemma Prf_flat_lang: - assumes "\ v : r" shows "flat v \ lang r" -using assms -by(induct v r rule: Prf.induct) (auto) - -lemma Prf_Stars: - assumes "\v \ set vs. \ v : r" - shows "\ Stars vs : Star r" -using assms -by(induct vs) (auto intro: Prf.intros) - -lemma Star_string: - assumes "s \ star A" - shows "\ss. concat ss = s \ (\s \ set ss. s \ A)" -using assms -by (metis in_star_iff_concat set_mp) - -lemma Star_val: - assumes "\s\set ss. \v. s = flat v \ \ v : r" - shows "\vs. concat (map flat vs) = concat ss \ (\v\set vs. \ v : r)" -using assms -apply(induct ss) -apply(auto) -apply (metis empty_iff list.set(1)) -by (metis concat.simps(2) list.simps(9) set_ConsD) - -lemma L_flat_Prf1: - assumes "\ v : r" shows "flat v \ lang r" -using assms -by (induct)(auto) - -lemma L_flat_Prf2: - assumes "s \ lang r" shows "\v. \ v : r \ flat v = s" -using assms -apply(induct r arbitrary: s) -apply(auto intro: Prf.intros) -using Prf.intros(2) flat.simps(3) apply blast -using Prf.intros(3) flat.simps(4) apply blast -apply (metis Prf.intros(1) concE flat.simps(5)) -apply(subgoal_tac "\vs::('a val) list. concat (map flat vs) = s \ (\v \ set vs. \ v : r)") -apply(auto)[1] -apply(rule_tac x="Stars vs" in exI) -apply(simp) -apply (simp add: Prf_Stars) -apply(drule Star_string) -apply(auto) -apply(rule Star_val) -apply(auto) -done - -lemma L_flat_Prf: - "lang r = {flat v | v. \ v : r}" -using L_flat_Prf1 L_flat_Prf2 by blast - - -section {* Sulzmann and Lu functions *} - -fun - mkeps :: "'a rexp \ 'a val" -where - "mkeps(One) = Void" -| "mkeps(Times r1 r2) = Seq (mkeps r1) (mkeps r2)" -| "mkeps(Plus r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" -| "mkeps(Star r) = Stars []" - -fun injval :: "'a rexp \ 'a \ 'a val \ 'a val" -where - "injval (Atom d) c Void = Atm d" -| "injval (Plus r1 r2) c (Left v1) = Left(injval r1 c v1)" -| "injval (Plus r1 r2) c (Right v2) = Right(injval r2 c v2)" -| "injval (Times r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2" -| "injval (Times r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" -| "injval (Times r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" -| "injval (Star r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" - - -section {* Mkeps, injval *} - -lemma mkeps_nullable: - assumes "nullable r" - shows "\ mkeps r : r" -using assms -by (induct r) - (auto intro: Prf.intros) - -lemma mkeps_flat: - assumes "nullable r" - shows "flat (mkeps r) = []" -using assms -by (induct r) (auto) - - -lemma Prf_injval: - assumes "\ v : deriv c r" - shows "\ (injval r c v) : r" -using assms -apply(induct r arbitrary: c v rule: rexp.induct) -apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits) -(* Star *) -apply(rotate_tac 2) -apply(erule Prf.cases) -apply(simp_all)[7] -apply(auto) -apply (metis Prf.intros(6) Prf.intros(7)) -by (metis Prf.intros(7)) - -lemma Prf_injval_flat: - assumes "\ v : deriv c r" - shows "flat (injval r c v) = c # (flat v)" -using assms -apply(induct r arbitrary: v c) -apply(auto elim!: Prf_elims split: if_splits) -apply(metis mkeps_flat) -apply(rotate_tac 2) -apply(erule Prf.cases) -apply(simp_all)[7] -done - -(* HERE *) - -section {* Our Alternative Posix definition *} - -inductive - Posix :: "'a list \ 'a rexp \ 'a val \ bool" ("_ \ _ \ _" [100, 100, 100] 100) -where - Posix_One: "[] \ One \ Void" -| Posix_Atom: "[c] \ (Atom c) \ (Atm c)" -| Posix_Plus1: "s \ r1 \ v \ s \ (Plus r1 r2) \ (Left v)" -| Posix_Plus2: "\s \ r2 \ v; s \ lang r1\ \ s \ (Plus r1 r2) \ (Right v)" -| Posix_Times: "\s1 \ r1 \ v1; s2 \ r2 \ v2; - \(\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (s1 @ s\<^sub>3) \ lang r1 \ s\<^sub>4 \ lang r2)\ \ - (s1 @ s2) \ (Times r1 r2) \ (Seq v1 v2)" -| Posix_Star1: "\s1 \ r \ v; s2 \ Star r \ Stars vs; flat v \ []; - \(\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (s1 @ s\<^sub>3) \ lang r \ s\<^sub>4 \ lang (Star r))\ - \ (s1 @ s2) \ Star r \ Stars (v # vs)" -| Posix_Star2: "[] \ Star r \ Stars []" - -inductive_cases Posix_elims: - "s \ Zero \ v" - "s \ One \ v" - "s \ Atom c \ v" - "s \ Plus r1 r2 \ v" - "s \ Times r1 r2 \ v" - "s \ Star r \ v" - -lemma Posix1: - assumes "s \ r \ v" - shows "s \ lang r" "flat v = s" -using assms -by (induct s r v rule: Posix.induct) (auto) - - -lemma Posix1a: - assumes "s \ r \ v" - shows "\ v : r" -using assms -by (induct s r v rule: Posix.induct)(auto intro: Prf.intros) - - -lemma Posix_mkeps: - assumes "nullable r" - shows "[] \ r \ mkeps r" -using assms -apply(induct r) -apply(auto intro: Posix.intros simp add: nullable_iff) -apply(subst append.simps(1)[symmetric]) -apply(rule Posix.intros) -apply(auto) -done - - -lemma Posix_determ: - assumes "s \ r \ v1" "s \ r \ v2" - shows "v1 = v2" -using assms -proof (induct s r v1 arbitrary: v2 rule: Posix.induct) - case (Posix_One v2) - have "[] \ One \ v2" by fact - then show "Void = v2" by cases auto -next - case (Posix_Atom c v2) - have "[c] \ Atom c \ v2" by fact - then show "Atm c = v2" by cases auto -next - case (Posix_Plus1 s r1 v r2 v2) - have "s \ Plus r1 r2 \ v2" by fact - moreover - have "s \ r1 \ v" by fact - then have "s \ lang r1" by (simp add: Posix1) - ultimately obtain v' where eq: "v2 = Left v'" "s \ r1 \ v'" by cases auto - moreover - have IH: "\v2. s \ r1 \ v2 \ v = v2" by fact - ultimately have "v = v'" by simp - then show "Left v = v2" using eq by simp -next - case (Posix_Plus2 s r2 v r1 v2) - have "s \ Plus r1 r2 \ v2" by fact - moreover - have "s \ lang r1" by fact - ultimately obtain v' where eq: "v2 = Right v'" "s \ r2 \ v'" - by cases (auto simp add: Posix1) - moreover - have IH: "\v2. s \ r2 \ v2 \ v = v2" by fact - ultimately have "v = v'" by simp - then show "Right v = v2" using eq by simp -next - case (Posix_Times s1 r1 v1 s2 r2 v2 v') - have "(s1 @ s2) \ Times r1 r2 \ v'" - "s1 \ r1 \ v1" "s2 \ r2 \ v2" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang r1 \ s\<^sub>4 \ lang r2)" by fact+ - then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \ r1 \ v1'" "s2 \ r2 \ v2'" - apply(cases) apply (auto simp add: append_eq_append_conv2) - using Posix1(1) by fastforce+ - moreover - have IHs: "\v1'. s1 \ r1 \ v1' \ v1 = v1'" - "\v2'. s2 \ r2 \ v2' \ v2 = v2'" by fact+ - ultimately show "Seq v1 v2 = v'" by simp -next - case (Posix_Star1 s1 r v s2 vs v2) - have "(s1 @ s2) \ Star r \ v2" - "s1 \ r \ v" "s2 \ Star r \ Stars vs" "flat v \ []" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang r \ s\<^sub>4 \ lang (Star r))" by fact+ - then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \ r \ v'" "s2 \ (Star r) \ (Stars vs')" - apply(cases) apply (auto simp add: append_eq_append_conv2) - using Posix1(1) apply fastforce - apply (metis Posix1(1) Posix_Star1.hyps(6) append_Nil append_Nil2) - using Posix1(2) by blast - moreover - have IHs: "\v2. s1 \ r \ v2 \ v = v2" - "\v2. s2 \ Star r \ v2 \ Stars vs = v2" by fact+ - ultimately show "Stars (v # vs) = v2" by auto -next - case (Posix_Star2 r v2) - have "[] \ Star r \ v2" by fact - then show "Stars [] = v2" by cases (auto simp add: Posix1) -qed - - -lemma Posix_injval: - assumes "s \ (deriv c r) \ v" - shows "(c # s) \ r \ (injval r c v)" -using assms -proof(induct r arbitrary: s v rule: rexp.induct) - case Zero - have "s \ deriv c Zero \ v" by fact - then have "s \ Zero \ v" by simp - then have "False" by cases - then show "(c # s) \ Zero \ (injval Zero c v)" by simp -next - case One - have "s \ deriv c One \ v" by fact - then have "s \ Zero \ v" by simp - then have "False" by cases - then show "(c # s) \ One \ (injval One c v)" by simp -next - case (Atom d) - consider (eq) "c = d" | (ineq) "c \ d" by blast - then show "(c # s) \ (Atom d) \ (injval (Atom d) c v)" - proof (cases) - case eq - have "s \ deriv c (Atom d) \ v" by fact - then have "s \ One \ v" using eq by simp - then have eqs: "s = [] \ v = Void" by cases simp - show "(c # s) \ Atom d \ injval (Atom d) c v" using eq eqs - by (auto intro: Posix.intros) - next - case ineq - have "s \ deriv c (Atom d) \ v" by fact - then have "s \ Zero \ v" using ineq by simp - then have "False" by cases - then show "(c # s) \ Atom d \ injval (Atom d) c v" by simp - qed -next - case (Plus r1 r2) - have IH1: "\s v. s \ deriv c r1 \ v \ (c # s) \ r1 \ injval r1 c v" by fact - have IH2: "\s v. s \ deriv c r2 \ v \ (c # s) \ r2 \ injval r2 c v" by fact - have "s \ deriv c (Plus r1 r2) \ v" by fact - then have "s \ Plus (deriv c r1) (deriv c r2) \ v" by simp - then consider (left) v' where "v = Left v'" "s \ deriv c r1 \ v'" - | (right) v' where "v = Right v'" "s \ lang (deriv c r1)" "s \ deriv c r2 \ v'" - by cases auto - then show "(c # s) \ Plus r1 r2 \ injval (Plus r1 r2) c v" - proof (cases) - case left - have "s \ deriv c r1 \ v'" by fact - then have "(c # s) \ r1 \ injval r1 c v'" using IH1 by simp - then have "(c # s) \ Plus r1 r2 \ injval (Plus r1 r2) c (Left v')" by (auto intro: Posix.intros) - then show "(c # s) \ Plus r1 r2 \ injval (Plus r1 r2) c v" using left by simp - next - case right - have "s \ lang (deriv c r1)" by fact - then have "c # s \ lang r1" by (simp add: lang_deriv Deriv_def) - moreover - have "s \ deriv c r2 \ v'" by fact - then have "(c # s) \ r2 \ injval r2 c v'" using IH2 by simp - ultimately have "(c # s) \ Plus r1 r2 \ injval (Plus r1 r2) c (Right v')" - by (auto intro: Posix.intros) - then show "(c # s) \ Plus r1 r2 \ injval (Plus r1 r2) c v" using right by simp - qed -next - case (Times r1 r2) - have IH1: "\s v. s \ deriv c r1 \ v \ (c # s) \ r1 \ injval r1 c v" by fact - have IH2: "\s v. s \ deriv c r2 \ v \ (c # s) \ r2 \ injval r2 c v" by fact - have "s \ deriv c (Times r1 r2) \ v" by fact - then consider - (left_nullable) v1 v2 s1 s2 where - "v = Left (Seq v1 v2)" "s = s1 @ s2" - "s1 \ deriv c r1 \ v1" "s2 \ r2 \ v2" "nullable r1" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang (deriv c r1) \ s\<^sub>4 \ lang r2)" - | (right_nullable) v1 s1 s2 where - "v = Right v1" "s = s1 @ s2" - "s \ deriv c r2 \ v1" "nullable r1" "s1 @ s2 \ lang (Times (deriv c r1) r2)" - | (not_nullable) v1 v2 s1 s2 where - "v = Seq v1 v2" "s = s1 @ s2" - "s1 \ deriv c r1 \ v1" "s2 \ r2 \ v2" "\nullable r1" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang (deriv c r1) \ s\<^sub>4 \ lang r2)" - by (force split: if_splits elim!: Posix_elims simp add: lang_deriv Deriv_def) - then show "(c # s) \ Times r1 r2 \ injval (Times r1 r2) c v" - proof (cases) - case left_nullable - have "s1 \ deriv c r1 \ v1" by fact - then have "(c # s1) \ r1 \ injval r1 c v1" using IH1 by simp - moreover - have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang (deriv c r1) \ s\<^sub>4 \ lang r2)" by fact - then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (c # s1) @ s\<^sub>3 \ lang r1 \ s\<^sub>4 \ lang r2)" - by (simp add: lang_deriv Deriv_def) - ultimately have "((c # s1) @ s2) \ Times r1 r2 \ Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros) - then show "(c # s) \ Times r1 r2 \ injval (Times r1 r2) c v" using left_nullable by simp - next - case right_nullable - have "nullable r1" by fact - then have "[] \ r1 \ (mkeps r1)" by (rule Posix_mkeps) - moreover - have "s \ deriv c r2 \ v1" by fact - then have "(c # s) \ r2 \ (injval r2 c v1)" using IH2 by simp - moreover - have "s1 @ s2 \ lang (Times (deriv c r1) r2)" by fact - then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = c # s \ [] @ s\<^sub>3 \ lang r1 \ s\<^sub>4 \ lang r2)" - using right_nullable - apply (auto simp add: lang_deriv Deriv_def append_eq_Cons_conv) - by (metis concI mem_Collect_eq) - ultimately have "([] @ (c # s)) \ Times r1 r2 \ Seq (mkeps r1) (injval r2 c v1)" - by(rule Posix.intros) - then show "(c # s) \ Times r1 r2 \ injval (Times r1 r2) c v" using right_nullable by simp - next - case not_nullable - have "s1 \ deriv c r1 \ v1" by fact - then have "(c # s1) \ r1 \ injval r1 c v1" using IH1 by simp - moreover - have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang (deriv c r1) \ s\<^sub>4 \ lang r2)" by fact - then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (c # s1) @ s\<^sub>3 \ lang r1 \ s\<^sub>4 \ lang r2)" by (simp add: lang_deriv Deriv_def) - ultimately have "((c # s1) @ s2) \ Times r1 r2 \ Seq (injval r1 c v1) v2" using not_nullable - by (rule_tac Posix.intros) (simp_all) - then show "(c # s) \ Times r1 r2 \ injval (Times r1 r2) c v" using not_nullable by simp - qed -next - case (Star r) - have IH: "\s v. s \ deriv c r \ v \ (c # s) \ r \ injval r c v" by fact - have "s \ deriv c (Star r) \ v" by fact - then consider - (cons) v1 vs s1 s2 where - "v = Seq v1 (Stars vs)" "s = s1 @ s2" - "s1 \ deriv c r \ v1" "s2 \ (Star r) \ (Stars vs)" - "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang (deriv c r) \ s\<^sub>4 \ lang (Star r))" - apply(auto elim!: Posix_elims(1-5) simp add: lang_deriv Deriv_def intro: Posix.intros) - apply(rotate_tac 3) - apply(erule_tac Posix_elims(6)) - apply (simp add: Posix.intros(6)) - using Posix.intros(7) by blast - then show "(c # s) \ Star r \ injval (Star r) c v" - proof (cases) - case cons - have "s1 \ deriv c r \ v1" by fact - then have "(c # s1) \ r \ injval r c v1" using IH by simp - moreover - have "s2 \ Star r \ Stars vs" by fact - moreover - have "(c # s1) \ r \ injval r c v1" by fact - then have "flat (injval r c v1) = (c # s1)" by (rule Posix1) - then have "flat (injval r c v1) \ []" by simp - moreover - have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ s1 @ s\<^sub>3 \ lang (deriv c r) \ s\<^sub>4 \ lang (Star r))" by fact - then have "\ (\s\<^sub>3 s\<^sub>4. s\<^sub>3 \ [] \ s\<^sub>3 @ s\<^sub>4 = s2 \ (c # s1) @ s\<^sub>3 \ lang r \ s\<^sub>4 \ lang (Star r))" - by (simp add: lang_deriv Deriv_def) - ultimately - have "((c # s1) @ s2) \ Star r \ Stars (injval r c v1 # vs)" by (rule Posix.intros) - then show "(c # s) \ Star r \ injval (Star r) c v" using cons by(simp) - qed -qed - - -section {* The Lexer by Sulzmann and Lu *} - -fun - lexer :: "'a rexp \ 'a list \ ('a val) option" -where - "lexer r [] = (if nullable r then Some(mkeps r) else None)" -| "lexer r (c#s) = (case (lexer (deriv c r) s) of - None \ None - | Some(v) \ Some(injval r c v))" - - -lemma lexer_correct_None: - shows "s \ lang r \ lexer r s = None" -using assms -apply(induct s arbitrary: r) -apply(simp add: nullable_iff) -apply(drule_tac x="deriv a r" in meta_spec) -apply(auto simp add: lang_deriv Deriv_def) -done - -lemma lexer_correct_Some: - shows "s \ lang r \ (\v. lexer r s = Some(v) \ s \ r \ v)" -using assms -apply(induct s arbitrary: r) -apply(auto simp add: Posix_mkeps nullable_iff)[1] -apply(drule_tac x="deriv a r" in meta_spec) -apply(simp add: lang_deriv Deriv_def) -apply(rule iffI) -apply(auto intro: Posix_injval simp add: Posix1(1)) -done - -lemma lexer_correctness: - shows "(lexer r s = Some v) \ s \ r \ v" - and "(lexer r s = None) \ \(\v. s \ r \ v)" -apply(auto) -using lexer_correct_None lexer_correct_Some apply fastforce -using Posix1(1) Posix_determ lexer_correct_Some apply blast -using Posix1(1) lexer_correct_None apply blast -using lexer_correct_None lexer_correct_Some by blast - - -end \ No newline at end of file