diff -r d67149236738 -r 38cde0214ad5 thys/Re1.thy --- a/thys/Re1.thy Mon Jan 26 16:01:58 2015 +0000 +++ b/thys/Re1.thy Thu Jan 29 09:05:40 2015 +0000 @@ -117,6 +117,7 @@ | "Void \EMPTY Void" | "(Char c) \(CHAR c) (Char c)" + section {* The ordering is reflexive *} lemma ValOrd_refl: @@ -357,8 +358,6 @@ - - section {* The Matcher *} fun @@ -630,8 +629,37 @@ apply(auto)[2] done +lemma v3_proj: + assumes "\ v : r" and "\s. (flat v) = c # s" + shows "\ (projval r c v) : der c r" +using assms +apply(induct rule: Prf.induct) +prefer 4 +apply(simp) +prefer 4 +apply(simp) +apply (metis Prf.intros(4)) +prefer 2 +apply(simp) +apply (metis Prf.intros(2)) +prefer 2 +apply(simp) +apply (metis Prf.intros(3)) +apply(auto) +apply(rule Prf.intros) +apply(simp) +apply (metis Prf_flat_L nullable_correctness) +apply(rule Prf.intros) +apply(rule Prf.intros) +apply (metis Cons_eq_append_conv) +apply(simp) +apply(rule Prf.intros) +apply (metis Cons_eq_append_conv) +apply(simp) +done + text {* - The string behin the injection value is an added c + The string behind the injection value is an added c *} lemma v4: @@ -671,6 +699,331 @@ apply(simp_all)[5] done +lemma v4_proj: + assumes "\ v : r" and "\s. (flat v) = c # s" + shows "c # flat (projval r c v) = flat v" +using assms +apply(induct rule: Prf.induct) +prefer 4 +apply(simp) +prefer 4 +apply(simp) +prefer 2 +apply(simp) +prefer 2 +apply(simp) +apply(auto) +by (metis Cons_eq_append_conv) + +lemma v4_proj2: + assumes "\ v : r" and "(flat v) = c # s" + shows "flat (projval r c v) = s" +using assms +by (metis list.inject v4_proj) + +lemma t: "(c#xs = c#ys) \ xs = ys" +by (metis list.sel(3)) + +lemma Prf_proj: + assumes "v1 \r v2" "\ v1 : r" "\ v2 : r" "\s. (flat v1) = c # s" "\s. (flat v2) = c # s" + shows "(projval r c v1) \(der c r) (projval r c v2)" +using assms +apply(induct arbitrary: v1 v2 rule: der.induct) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(case_tac "c = c'") +apply(simp) +apply (metis ValOrd.intros(7)) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros) +apply(subst v4_proj2) +apply(simp) +apply(simp) +apply(subst v4_proj2) +apply(simp) +apply(simp) +apply(simp) +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros) +apply(subst v4_proj2) +apply(simp) +apply(simp) +apply(subst v4_proj2) +apply(simp) +apply(simp) +apply(simp) +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros) +apply metis +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros) +apply metis +apply(clarify) +apply(simp) +apply(auto) +defer +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(simp) +apply (metis Prf_flat_L nullable_correctness) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros) +apply(simp) +apply(simp) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply (metis Prf_flat_L nullable_correctness) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply (metis Prf_flat_L nullable_correctness) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply (metis Prf_flat_L nullable_correctness) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros(2)) +apply (metis append_Cons list.inject neq_Nil_conv) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(auto) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(auto)[1] +apply(rule ValOrd.intros) +apply metis +apply(clarify) +apply(rule ValOrd.intros) + +apply(rule ValOrd.intros) +apply(simp) +apply(simp) +apply(auto)[1] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros) +defer +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(simp add: append_eq_Cons_conv) +apply(clarify) +apply(rule ValOrd.intros) +apply(simp) +apply(subst v4_proj2) +apply(simp) +apply(simp) +apply(subst v4_proj2) +apply(simp) +apply(simp) + +apply(simp) + +apply (metis Prf_flat_L nullable_correctness) + + + + +apply(rule ValOrd.intros(2)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(simp) + +lemma Prf_inj: + assumes "v1 \(der c r) v2" "\ v1 : der c r" "\ v2 : der c r" + shows "(injval r c v1) \r (injval r c v2)" +using assms +apply(induct arbitrary: v1 v2 rule: der.induct) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(case_tac "c = c'") +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(rule ValOrd.intros) +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(rule ValOrd.intros) +apply(subst v4) +apply(clarify) +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(subst v4) +apply(clarify) +apply(rotate_tac 2) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(rule ValOrd.intros) +apply(subst v4) +apply(clarify) +apply(rotate_tac 3) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(subst v4) +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(rule ValOrd.intros) +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule ValOrd.intros) +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(case_tac "nullable r1") +defer +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(rule ValOrd.intros) +apply(simp) +apply(simp) +apply(rule ValOrd.intros(2)) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(simp) +apply(erule ValOrd.cases) +apply(simp_all)[8] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(clarify) +apply(simp) +apply(case_tac "injval r1 c v1 = mkeps r1") +apply(rule ValOrd.intros(1)) +apply(simp) +apply (metis impossible_Cons le_add2 list.size(3) mkeps_flat monoid_add_class.add.right_neutral v4) +apply(rule ValOrd.intros(2)) + +apply(rotate_tac 1) +apply(drule meta_mp) +apply(rule + +lemma POSIX_der: + assumes "POSIX v (der c r)" "\ v : der c r" + shows "POSIX (injval r c v) r" +using assms +unfolding POSIX_def +apply(auto) +apply(subst (asm) v4) +apply(assumption) +apply(drule_tac x="projval r c v'" in spec) +apply(drule mp) +apply(auto) +apply(rule v3_proj) +apply(simp) +apply(rule_tac x="flat v" in exI) +apply(simp) +apply(rule_tac c="c" in t) +apply(simp) +apply(subst v4_proj) +apply(simp) +apply(rule_tac x="flat v" in exI) +apply(simp) +apply(simp) +apply(simp add: Cons_eq_append_conv) +apply(auto)[1] + text {* Injection followed by projection is the identity. *} @@ -754,7 +1107,7 @@ apply(simp) apply (metis ValOrd_refl) apply(simp add: POSIX3_def) - +oops lemma "\v. POSIX v r" apply(induct r) @@ -817,12 +1170,15 @@ shows "POSIX (injval r c v) r" using assms apply(induct arbitrary: v rule: der.induct) +(* NULL case *) apply(simp) apply(erule Prf.cases) apply(simp_all)[5] +(* EMPTY case *) apply(simp) apply(erule Prf.cases) apply(simp_all)[5] +(* CHAR case *) apply(simp) apply(case_tac "c = c'") apply(auto simp add: POSIX_def)[1] @@ -830,8 +1186,8 @@ apply(simp_all)[5] apply(erule Prf.cases) apply(simp_all)[5] -using ValOrd.simps apply blast -apply(auto) +apply(rule ValOrd.intros) +apply(auto)[1] apply(erule Prf.cases) apply(simp_all)[5] (* base cases done *) @@ -840,6 +1196,30 @@ apply(simp_all)[5] using POSIX_ALT POSIX_ALT_I1 apply blast apply(clarify) +apply(simp) +apply(rule POSIX_ALT_I2) +apply(drule POSIX_ALT1a) +apply metis +apply(auto)[1] +apply(subst v4) +apply(assumption) +apply(simp) +apply(drule POSIX_ALT1a) +apply(rotate_tac 1) +apply(drule_tac x="v2" in meta_spec) +apply(simp) + +apply(rotate_tac 4) +apply(erule Prf.cases) +apply(simp_all)[5] +apply(rule ValOrd.intros) +apply(simp) +apply(subst (asm) v4) +apply(assumption) +apply(clarify) +thm POSIX_ALT1a POSIX_ALT1b POSIX_ALT_I2 +apply(subst (asm) v4) +apply(auto simp add: POSIX_def)[1] apply(subgoal_tac "POSIX v2 (der c r2)") prefer 2 apply(auto simp add: POSIX_def)[1] @@ -853,7 +1233,6 @@ apply(subgoal_tac "\ Right (injval r2 c v2) : (ALT r1 r2)") prefer 2 apply (metis Prf.intros(3) v3) - apply auto[1] apply(subst v4) apply(auto)[2]