diff -r ec3d221bfc45 -r 09f81fee11ce thys/Simplifying.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/thys/Simplifying.thy Mon Mar 14 23:08:58 2016 +0000 @@ -0,0 +1,322 @@ +theory Simplifying + imports "ReStar" +begin + +section {* Lexer including simplifications *} + + +fun F_RIGHT where + "F_RIGHT f v = Right (f v)" + +fun F_LEFT where + "F_LEFT f v = Left (f v)" + +fun F_ALT where + "F_ALT f\<^sub>1 f\<^sub>2 (Right v) = Right (f\<^sub>2 v)" +| "F_ALT f\<^sub>1 f\<^sub>2 (Left v) = Left (f\<^sub>1 v)" +| "F_ALT f1 f2 v = v" + + +fun F_SEQ1 where + "F_SEQ1 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 Void) (f\<^sub>2 v)" + +fun F_SEQ2 where + "F_SEQ2 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 v) (f\<^sub>2 Void)" + +fun F_SEQ where + "F_SEQ f\<^sub>1 f\<^sub>2 (Seq v\<^sub>1 v\<^sub>2) = Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)" +| "F_SEQ f1 f2 v = v" + +fun simp_ALT where + "simp_ALT (ZERO, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_RIGHT f\<^sub>2)" +| "simp_ALT (r\<^sub>1, f\<^sub>1) (ZERO, f\<^sub>2) = (r\<^sub>1, F_LEFT f\<^sub>1)" +| "simp_ALT (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (ALT r\<^sub>1 r\<^sub>2, F_ALT f\<^sub>1 f\<^sub>2)" + +fun simp_SEQ where + "simp_SEQ (ONE, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_SEQ1 f\<^sub>1 f\<^sub>2)" +| "simp_SEQ (r\<^sub>1, f\<^sub>1) (ONE, f\<^sub>2) = (r\<^sub>1, F_SEQ2 f\<^sub>1 f\<^sub>2)" +| "simp_SEQ (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (SEQ r\<^sub>1 r\<^sub>2, F_SEQ f\<^sub>1 f\<^sub>2)" + +lemma simp_SEQ_simps: + "simp_SEQ p1 p2 = (if (fst p1 = ONE) then (fst p2, F_SEQ1 (snd p1) (snd p2)) + else (if (fst p2 = ONE) then (fst p1, F_SEQ2 (snd p1) (snd p2)) + else (SEQ (fst p1) (fst p2), F_SEQ (snd p1) (snd p2))))" +apply(auto) +apply(case_tac p1) +apply(case_tac p2) +apply(simp) +apply(case_tac p1) +apply(case_tac p2) +apply(simp) +apply(case_tac a) +apply(simp_all) +apply(case_tac p1) +apply(case_tac p2) +apply(simp) +apply(case_tac p1) +apply(case_tac p2) +apply(simp) +apply(case_tac a) +apply(simp_all) +apply(case_tac aa) +apply(simp_all) +apply(auto) +apply(case_tac aa) +apply(simp_all) +apply(case_tac aa) +apply(simp_all) +apply(case_tac aa) +apply(simp_all) +apply(case_tac aa) +apply(simp_all) +done + +lemma simp_ALT_simps: + "simp_ALT p1 p2 = (if (fst p1 = ZERO) then (fst p2, F_RIGHT (snd p2)) + else (if (fst p2 = ZERO) then (fst p1, F_LEFT (snd p1)) + else (ALT (fst p1) (fst p2), F_ALT (snd p1) (snd p2))))" +apply(auto) +apply(case_tac p1) +apply(case_tac p2) +apply(simp) +apply(case_tac p1) +apply(case_tac p2) +apply(simp) +apply(case_tac a) +apply(simp_all) +apply(case_tac p1) +apply(case_tac p2) +apply(simp) +apply(case_tac p1) +apply(case_tac p2) +apply(simp) +apply(case_tac a) +apply(simp_all) +apply(case_tac aa) +apply(simp_all) +apply(auto) +apply(case_tac aa) +apply(simp_all) +apply(case_tac aa) +apply(simp_all) +apply(case_tac aa) +apply(simp_all) +apply(case_tac aa) +apply(simp_all) +done + + +fun + simp :: "rexp \ rexp * (val \ val)" +where + "simp (ALT r1 r2) = simp_ALT (simp r1) (simp r2)" +| "simp (SEQ r1 r2) = simp_SEQ (simp r1) (simp r2)" +| "simp r = (r, id)" + +fun + slexer :: "rexp \ string \ val option" +where + "slexer r [] = (if nullable r then Some(mkeps r) else None)" +| "slexer r (c#s) = (let (rs, fr) = simp (der c r) in + (case (slexer rs s) of + None \ None + | Some(v) \ Some(injval r c (fr v))))" + + +lemma L_fst_simp: + shows "L(r) = L(fst (simp r))" +using assms +apply(induct r rule: rexp.induct) +apply(auto simp add: simp_SEQ_simps simp_ALT_simps) +done + +lemma + shows "\ ((snd (simp r)) v) : r \ \ v : (fst (simp r))" +using assms +apply(induct r arbitrary: v rule: simp.induct) +apply(auto simp add: simp_SEQ_simps simp_ALT_simps intro: Prf.intros) +using Prf_elims(3) apply blast +apply(erule Prf_elims) +apply(simp) +apply(clarify) +apply(blast) +apply(simp) +apply(erule Prf_elims) +apply(simp) +apply(simp) +apply(clarify) +apply(blast) +apply(erule Prf_elims) +apply(case_tac v) +apply(simp_all) +apply(rule Prf.intros) +apply(clarify) +apply(simp) +apply(case_tac v) +apply(simp_all) +apply(rule Prf.intros) +apply(clarify) +apply(simp) +apply(erule Prf_elims) +apply(simp) +apply(rule Prf.intros) +apply(simp) +apply(simp) +apply(rule Prf.intros) +apply(simp) +apply(erule Prf_elims) +apply(simp) +apply(blast) +apply(rule Prf.intros) +apply(erule Prf_elims) +apply(simp) +apply(rule Prf.intros) +apply(erule Prf_elims) +apply(simp) +apply(rule Prf.intros) +apply(erule Prf_elims) +apply(simp) +apply(clarify) +apply(blast) +apply(rule Prf.intros) +apply(blast) +using Prf.intros(4) apply blast +apply(erule Prf_elims) +apply(simp) +apply(clarify) +apply(blast) +apply(rule Prf.intros) +using Prf.intros(4) apply blast +apply blast +apply(erule Prf_elims) +apply(case_tac v) +apply(simp_all) +apply(rule Prf.intros) +apply(clarify) +apply(simp) +apply(clarify) +apply(blast) +apply(erule Prf_elims) +apply(case_tac v) +apply(simp_all) +apply(rule Prf.intros) +apply(clarify) +apply(simp) +apply(simp) +done + +lemma Posix_simp_nullable: + assumes "nullable r" "[] \ (fst (simp r)) \ v" + shows "((snd (simp r)) v) = mkeps r" +using assms +apply(induct r arbitrary: v) +apply(auto simp add: simp_SEQ_simps simp_ALT_simps) +apply(erule Posix_elims) +apply(simp) +apply(erule Posix_elims) +apply(clarify) +using Posix.intros(1) apply blast +using Posix.intros(1) apply blast +using Posix.intros(1) apply blast +apply(erule Posix_elims) +apply(simp) +apply(erule Posix_elims) +apply (metis L_fst_simp nullable.simps(1) nullable_correctness) +apply(erule Posix_elims) +apply(clarify) +apply(simp) +apply(clarify) +apply(simp) +apply(simp only: L_fst_simp[symmetric]) +apply (simp add: nullable_correctness) +apply(erule Posix_elims) +using L_fst_simp Posix1(1) nullable_correctness apply blast +apply (metis L.simps(1) L_fst_simp Prf_flat_L empty_iff mkeps_nullable) +apply(erule Posix_elims) +apply(clarify) +apply(simp) +apply(simp only: L_fst_simp[symmetric]) +apply (simp add: nullable_correctness) +apply(erule Posix_elims) +apply(clarify) +apply(simp) +using L_fst_simp Posix1(1) nullable_correctness apply blast +apply(simp) +apply(erule Posix_elims) +apply(clarify) +apply(simp) +using Posix1(2) apply auto[1] +apply(simp) +done + +lemma Posix_simp: + assumes "s \ (fst (simp r)) \ v" + shows "s \ r \ ((snd (simp r)) v)" +using assms +apply(induct r arbitrary: s v rule: rexp.induct) +apply(auto split: if_splits simp add: simp_SEQ_simps simp_ALT_simps) +prefer 3 +apply(erule Posix_elims) +apply(clarify) +apply(simp) +apply(rule Posix.intros) +apply(blast) +apply(blast) +apply(auto)[1] +apply(simp add: L_fst_simp[symmetric]) +apply(auto)[1] +prefer 3 +apply(rule Posix.intros) +apply(blast) +apply (metis L.simps(1) L_fst_simp equals0D) +prefer 3 +apply(rule Posix.intros) +apply(blast) +prefer 3 +apply(erule Posix_elims) +apply(clarify) +apply(simp) +apply(rule Posix.intros) +apply(blast) +apply(simp) +apply(rule Posix.intros) +apply(blast) +apply(simp add: L_fst_simp[symmetric]) +apply(subst append.simps[symmetric]) +apply(rule Posix.intros) +prefer 2 +apply(blast) +prefer 2 +apply(auto)[1] +apply (metis L_fst_simp Posix_elims(2) lex_correct3a) +apply(subst Posix_simp_nullable) +using Posix.intros(1) Posix1(1) nullable_correctness apply blast +apply(simp) +apply(rule Posix.intros) +apply(rule Posix_mkeps) +using Posix.intros(1) Posix1(1) nullable_correctness apply blast +apply(subst append_Nil2[symmetric]) +apply(rule Posix.intros) +apply(blast) +apply(subst Posix_simp_nullable) +using Posix.intros(1) Posix1(1) nullable_correctness apply blast +apply(simp) +apply(rule Posix.intros) +apply(rule Posix_mkeps) +using Posix.intros(1) Posix1(1) nullable_correctness apply blast +apply(auto) +done + +lemma slexer_correctness: + shows "slexer r s = lexer r s" +apply(induct s arbitrary: r) +apply(simp) +apply(simp) +apply(auto split: option.split prod.split) +apply (metis L_fst_simp fst_conv lex_correct1a) +using L_fst_simp lex_correct1a apply fastforce +by (metis Posix_determ Posix_simp fst_conv lex_correct1 lex_correct3a option.distinct(1) option.inject snd_conv) + + + +end \ No newline at end of file