thys2/BasicIdentities.thy
author Chengsong
Thu, 07 Apr 2022 21:38:01 +0100
changeset 481 feacb89b784c
parent 480 574749f5190b
child 486 f5b96a532c85
permissions -rw-r--r--
christian's

theory BasicIdentities imports 
"Lexer"  "PDerivs"
begin

datatype rrexp = 
  RZERO
| RONE 
| RCHAR char
| RSEQ rrexp rrexp
| RALTS "rrexp list"
| RSTAR rrexp

abbreviation
  "RALT r1 r2 \<equiv> RALTS [r1, r2]"



fun
 rnullable :: "rrexp \<Rightarrow> bool"
where
  "rnullable (RZERO) = False"
| "rnullable (RONE  ) = True"
| "rnullable (RCHAR   c) = False"
| "rnullable (RALTS   rs) = (\<exists>r \<in> set rs. rnullable r)"
| "rnullable (RSEQ  r1 r2) = (rnullable r1 \<and> rnullable r2)"
| "rnullable (RSTAR   r) = True"


fun
 rder :: "char \<Rightarrow> rrexp \<Rightarrow> rrexp"
where
  "rder c (RZERO) = RZERO"
| "rder c (RONE) = RZERO"
| "rder c (RCHAR d) = (if c = d then RONE else RZERO)"
| "rder c (RALTS rs) = RALTS (map (rder c) rs)"
| "rder c (RSEQ r1 r2) = 
     (if rnullable r1
      then RALT   (RSEQ (rder c r1) r2) (rder c r2)
      else RSEQ   (rder c r1) r2)"
| "rder c (RSTAR r) = RSEQ  (rder c r) (RSTAR r)"


fun 
  rders :: "rrexp \<Rightarrow> string \<Rightarrow> rrexp"
where
  "rders r [] = r"
| "rders r (c#s) = rders (rder c r) s"

fun rdistinct :: "'a list \<Rightarrow>'a set \<Rightarrow> 'a list"
  where
  "rdistinct [] acc = []"
| "rdistinct (x#xs)  acc = 
     (if x \<in> acc then rdistinct xs  acc 
      else x # (rdistinct xs  ({x} \<union> acc)))"

lemma rdistinct_does_the_job:
  shows "distinct (rdistinct rs s)"
  apply(induct rs arbitrary: s)
   apply simp
  apply simp
  sorry


lemma rdistinct_concat:
  shows "set rs \<subseteq> rset \<Longrightarrow> rdistinct (rs @ rsa) rset = rdistinct rsa rset"
  apply(induct rs)
   apply simp+
  done

lemma rdistinct_concat2:
  shows "\<forall>r \<in> set rs. r \<in> rset \<Longrightarrow> rdistinct (rs @ rsa) rset = rdistinct rsa rset"
  by (simp add: rdistinct_concat subsetI)


lemma distinct_not_exist:
  shows "a \<notin> set rs \<Longrightarrow> rdistinct rs rset = rdistinct rs (insert a rset)"
  apply(induct rs arbitrary: rset)
   apply simp
  apply(case_tac "aa \<in> rset")
   apply simp
  apply(subgoal_tac "a \<noteq> aa")
   prefer 2
  apply simp
  apply simp
  done

lemma rdistinct_on_distinct:
  shows "distinct rs \<Longrightarrow> rdistinct rs {} = rs"
  apply(induct rs)
   apply simp
  apply(subgoal_tac "rdistinct rs {} = rs")
   prefer 2
  apply simp
  using distinct_not_exist by fastforce


lemma distinct_rdistinct_append:
  assumes "distinct rs1" "\<forall>r \<in> set rs1. r \<notin> acc"
  shows "rdistinct (rs1 @ rsa) acc = rs1 @ (rdistinct rsa (acc \<union> set rs1))"
  using assms
  apply(induct rs1 arbitrary: rsa acc)
   apply(auto)[1]
  apply(auto)[1]
  apply(drule_tac x="rsa" in meta_spec)
  apply(drule_tac x="{a} \<union> acc" in meta_spec)
  apply(simp)
  apply(drule meta_mp)
   apply(auto)[1]
  apply(simp)
  done
  

lemma rdistinct_concat_general:
  shows "rdistinct (rs1 @ rs2) {} = (rdistinct rs1 {}) @ (rdistinct rs2 (set rs1))"
  sorry

lemma rdistinct_set_equality:
  shows "set (rdistinct rs {}) = set rs"
  sorry

lemma distinct_once_enough:
  shows "rdistinct (rs @ rsa) {} = rdistinct (rdistinct rs {} @ rsa) {}"
  apply(subgoal_tac "distinct (rdistinct rs {})")
   apply(subgoal_tac 
" rdistinct (rdistinct rs {} @ rsa) {} = rdistinct rs {} @ (rdistinct rsa (set rs))")
  apply(simp only:)
  using rdistinct_concat_general apply blast
  apply (simp add: distinct_rdistinct_append rdistinct_set_equality)
  by (simp add: rdistinct_does_the_job)
  


fun rflts :: "rrexp list \<Rightarrow> rrexp list"
  where 
  "rflts [] = []"
| "rflts (RZERO # rs) = rflts rs"
| "rflts ((RALTS rs1) # rs) = rs1 @ rflts rs"
| "rflts (r1 # rs) = r1 # rflts rs"

lemma rflts_def_idiot:
  shows "\<lbrakk> a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk>
       \<Longrightarrow> rflts (a # rs) = a # rflts rs"
  apply(case_tac a)
       apply simp_all
  done

lemma rflts_def_idiot2:
  shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1; a \<in> set rs\<rbrakk> \<Longrightarrow> a \<in> set (rflts rs)"
  apply(induct rs)
   apply simp
  by (metis append.assoc in_set_conv_decomp insert_iff list.simps(15) rflts.simps(2) rflts.simps(3) rflts_def_idiot)



lemma flts_append:
  shows "rflts (rs1 @ rs2) = rflts rs1 @ rflts rs2"
  apply(induct rs1)
   apply simp
  apply(case_tac a)
       apply simp+
  done


fun rsimp_ALTs :: " rrexp list \<Rightarrow> rrexp"
  where
  "rsimp_ALTs  [] = RZERO"
| "rsimp_ALTs [r] =  r"
| "rsimp_ALTs rs = RALTS rs"

lemma rsimpalts_gte2elems:
  shows "size rlist \<ge> 2 \<Longrightarrow> rsimp_ALTs rlist = RALTS rlist"
  apply(induct rlist)
   apply simp
  apply(induct rlist)
   apply simp
  apply (metis Suc_le_length_iff rsimp_ALTs.simps(3))
  by blast

lemma rsimpalts_conscons:
  shows "rsimp_ALTs (r1 # rsa @ r2 # rsb) = RALTS (r1 # rsa @ r2 # rsb)"
  by (metis Nil_is_append_conv list.exhaust rsimp_ALTs.simps(3))

lemma rsimp_alts_equal:
  shows "rsimp_ALTs (rsa @ a # rsb @ a # rsc) = RALTS (rsa @ a # rsb @ a # rsc) "
  by (metis append_Cons append_Nil neq_Nil_conv rsimpalts_conscons)


fun rsimp_SEQ :: " rrexp \<Rightarrow> rrexp \<Rightarrow> rrexp"
  where
  "rsimp_SEQ  RZERO _ = RZERO"
| "rsimp_SEQ  _ RZERO = RZERO"
| "rsimp_SEQ RONE r2 = r2"
| "rsimp_SEQ r1 r2 = RSEQ r1 r2"


fun rsimp :: "rrexp \<Rightarrow> rrexp" 
  where
  "rsimp (RSEQ r1 r2) = rsimp_SEQ  (rsimp r1) (rsimp r2)"
| "rsimp (RALTS rs) = rsimp_ALTs  (rdistinct (rflts (map rsimp rs))  {}) "
| "rsimp r = r"


fun 
  rders_simp :: "rrexp \<Rightarrow> string \<Rightarrow> rrexp"
where
  "rders_simp r [] = r"
| "rders_simp r (c#s) = rders_simp (rsimp (rder c r)) s"

fun rsize :: "rrexp \<Rightarrow> nat" where
  "rsize RZERO = 1"
| "rsize (RONE) = 1" 
| "rsize (RCHAR  c) = 1"
| "rsize (RALTS  rs) = Suc (sum_list (map rsize rs))"
| "rsize (RSEQ  r1 r2) = Suc (rsize r1 + rsize r2)"
| "rsize (RSTAR  r) = Suc (rsize r)"


lemma rder_rsimp_ALTs_commute:
  shows "  (rder x (rsimp_ALTs rs)) = rsimp_ALTs (map (rder x) rs)"
  apply(induct rs)
   apply simp
  apply(case_tac rs)
   apply simp
  apply auto
  done


lemma rsimp_aalts_smaller:
  shows "rsize (rsimp_ALTs  rs) \<le> rsize (RALTS rs)"
  apply(induct rs)
   apply simp
  apply simp
  apply(case_tac "rs = []")
   apply simp
  apply(subgoal_tac "\<exists>rsp ap. rs = ap # rsp")
   apply(erule exE)+
   apply simp
  apply simp
  by(meson neq_Nil_conv)
  




lemma rSEQ_mono:
  shows "rsize (rsimp_SEQ r1 r2) \<le>rsize ( RSEQ r1 r2)"
  apply auto
  apply(induct r1)
       apply auto
      apply(case_tac "r2")
       apply simp_all
     apply(case_tac r2)
          apply simp_all
     apply(case_tac r2)
         apply simp_all
     apply(case_tac r2)
        apply simp_all
     apply(case_tac r2)
  apply simp_all
  done

lemma ralts_cap_mono:
  shows "rsize (RALTS rs) \<le> Suc ( sum_list (map rsize rs)) "
  by simp




lemma rflts_mono:
  shows "sum_list (map rsize (rflts rs))\<le> sum_list (map rsize rs)"
  apply(induct rs)
  apply simp
  apply(case_tac "a = RZERO")
   apply simp
  apply(case_tac "\<exists>rs1. a = RALTS rs1")
  apply(erule exE)
   apply simp
  apply(subgoal_tac "rflts (a # rs) = a # (rflts rs)")
  prefer 2
  using rflts_def_idiot apply blast
  apply simp
  done

lemma rdistinct_smaller: shows "sum_list (map rsize (rdistinct rs ss)) \<le>
sum_list (map rsize rs )"
  apply (induct rs arbitrary: ss)
   apply simp
  by (simp add: trans_le_add2)

lemma rdistinct_phi_smaller: "sum_list (map rsize (rdistinct rs {})) \<le> sum_list (map rsize rs)"
  by (simp add: rdistinct_smaller)


lemma rsimp_alts_mono :
  shows "\<And>x. (\<And>xa. xa \<in> set x \<Longrightarrow> rsize (rsimp xa) \<le> rsize xa)  \<Longrightarrow>
rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {})) \<le> Suc (sum_list (map rsize x))"
  apply(subgoal_tac "rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {} )) 
                    \<le> rsize (RALTS (rdistinct (rflts (map rsimp x)) {} ))")
  prefer 2
  using rsimp_aalts_smaller apply auto[1]
  apply(subgoal_tac "rsize (RALTS (rdistinct (rflts (map rsimp x)) {})) \<le>Suc( sum_list (map rsize (rdistinct (rflts (map rsimp x)) {})))")
  prefer 2
  using ralts_cap_mono apply blast
  apply(subgoal_tac "sum_list (map rsize (rdistinct (rflts (map rsimp x)) {})) \<le>
                     sum_list (map rsize ( (rflts (map rsimp x))))")
  prefer 2
  using rdistinct_smaller apply presburger
  apply(subgoal_tac "sum_list (map rsize (rflts (map rsimp x))) \<le> 
                     sum_list (map rsize (map rsimp x))")
  prefer 2
  using rflts_mono apply blast
  apply(subgoal_tac "sum_list (map rsize (map rsimp x)) \<le> sum_list (map rsize x)")
  prefer 2
  
  apply (simp add: sum_list_mono)
  by linarith





lemma rsimp_mono:
  shows "rsize (rsimp r) \<le> rsize r"
  apply(induct r)
  apply simp_all
  apply(subgoal_tac "rsize (rsimp_SEQ (rsimp r1) (rsimp r2)) \<le> rsize (RSEQ (rsimp r1) (rsimp r2))")
    apply force
  using rSEQ_mono
   apply presburger
  using rsimp_alts_mono by auto

lemma idiot:
  shows "rsimp_SEQ RONE r = r"
  apply(case_tac r)
       apply simp_all
  done

lemma no_alt_short_list_after_simp:
  shows "RALTS rs = rsimp r \<Longrightarrow> rsimp_ALTs rs = RALTS rs"
  sorry

lemma no_further_dB_after_simp:
  shows "RALTS rs = rsimp r \<Longrightarrow> rdistinct rs {} = rs"
  sorry


lemma idiot2:
  shows " \<lbrakk>r1 \<noteq> RZERO; r1 \<noteq> RONE;r2 \<noteq> RZERO\<rbrakk>
    \<Longrightarrow> rsimp_SEQ r1 r2 = RSEQ r1 r2"
  apply(case_tac r1)
       apply(case_tac r2)
  apply simp_all
     apply(case_tac r2)
  apply simp_all
     apply(case_tac r2)
  apply simp_all
   apply(case_tac r2)
  apply simp_all
  apply(case_tac r2)
       apply simp_all
  done

lemma rders__onechar:
  shows " (rders_simp r [c]) =  (rsimp (rders r [c]))"
  by simp

lemma rders_append:
  "rders c (s1 @ s2) = rders (rders c s1) s2"
  apply(induct s1 arbitrary: c s2)
  apply(simp_all)
  done

lemma rders_simp_append:
  "rders_simp c (s1 @ s2) = rders_simp (rders_simp c s1) s2"
  apply(induct s1 arbitrary: c s2)
   apply(simp_all)
  done



lemma set_related_list:
  shows "distinct rs  \<Longrightarrow> length rs = card (set rs)"
  by (simp add: distinct_card)
(*this section deals with the property of distinctBy: creates a list without duplicates*)
lemma rdistinct_never_added_twice:
  shows "rdistinct (a # rs) {a} = rdistinct rs {a}"
  by force







lemma rders_simp_one_char:
  shows "rders_simp r [c] = rsimp (rder c r)"
  apply auto
  done

lemma rsimp_idem:
  shows "rsimp (rsimp r) = rsimp r"
  sorry

corollary rsimp_inner_idem1:
  shows "rsimp r = RSEQ r1 r2 \<Longrightarrow> rsimp r1 = r1 \<and> rsimp r2 = r2"
  
  sorry

corollary rsimp_inner_idem2:
  shows "rsimp r = RALTS rs \<Longrightarrow> \<forall>r' \<in> (set rs). rsimp r' = r'"
  sorry

corollary rsimp_inner_idem3:
  shows "rsimp r = RALTS rs \<Longrightarrow> map rsimp rs = rs"
  by (meson map_idI rsimp_inner_idem2)

corollary rsimp_inner_idem4:
  shows "rsimp r = RALTS rs \<Longrightarrow> rflts rs = rs"
  sorry


lemma head_one_more_simp:
  shows "map rsimp (r # rs) = map rsimp (( rsimp r) # rs)"
  by (simp add: rsimp_idem)

lemma head_one_more_dersimp:
  shows "map rsimp ((rder x (rders_simp r s) # rs)) = map rsimp ((rders_simp r (s@[x]) ) # rs)"
  using head_one_more_simp rders_simp_append rders_simp_one_char by presburger




lemma ders_simp_nullability:
  shows "rnullable (rders r s) = rnullable (rders_simp r s)"
  sorry

lemma der_simp_nullability:
  shows "rnullable r = rnullable (rsimp r)"
  sorry


lemma  first_elem_seqder:
  shows "\<not>rnullable r1p \<Longrightarrow> map rsimp (rder x (RSEQ r1p r2)
                   # rs) = map rsimp ((RSEQ (rder x r1p) r2) # rs) "
  by auto

lemma first_elem_seqder1:
  shows  "\<not>rnullable (rders_simp r xs) \<Longrightarrow> map rsimp ( (rder x (RSEQ (rders_simp r xs) r2)) # rs) = 
                                          map rsimp ( (RSEQ (rsimp (rder x (rders_simp r xs))) r2) # rs)"
  by (simp add: rsimp_idem)

lemma first_elem_seqdersimps:
  shows "\<not>rnullable (rders_simp r xs) \<Longrightarrow> map rsimp ( (rder x (RSEQ (rders_simp r xs) r2)) # rs) = 
                                          map rsimp ( (RSEQ (rders_simp r (xs @ [x])) r2) # rs)"
  using first_elem_seqder1 rders_simp_append by auto






lemma seq_ders_closed_form1:
  shows "\<exists>Ss. rders_simp (RSEQ r1 r2) [c] = rsimp (RALTS ((RSEQ (rders_simp r1 [c]) r2) # 
(map ( rders_simp r2 ) Ss)))"
  apply(case_tac "rnullable r1")
   apply(subgoal_tac " rders_simp (RSEQ r1 r2) [c] = 
rsimp (RALTS ((RSEQ (rders_simp r1 [c]) r2) # (map (rders_simp r2) [[c]])))")
    prefer 2
    apply (simp add: rsimp_idem)
   apply(rule_tac x = "[[c]]" in exI)
   apply simp
  apply(subgoal_tac  " rders_simp (RSEQ r1 r2) [c] = 
rsimp (RALTS ((RSEQ (rders_simp r1 [c]) r2) # (map (rders_simp r2) [])))")
   apply blast
  apply(simp add: rsimp_idem)
  sorry



lemma idem_after_simp1:
  shows "rsimp_ALTs (rdistinct (rflts [rsimp aa]) {}) = rsimp aa"
  apply(case_tac "rsimp aa")
  apply simp+
  apply (metis no_alt_short_list_after_simp no_further_dB_after_simp)
  by simp

lemma identity_wwo0:
  shows "rsimp (rsimp_ALTs (RZERO # rs)) = rsimp (rsimp_ALTs rs)"
  by (metis idem_after_simp1 list.exhaust list.simps(8) list.simps(9) rflts.simps(2) rsimp.simps(2) rsimp.simps(3) rsimp_ALTs.simps(1) rsimp_ALTs.simps(2) rsimp_ALTs.simps(3))


lemma distinct_removes_last:
  shows "\<lbrakk>a \<in> set as\<rbrakk>
    \<Longrightarrow> rdistinct as rset = rdistinct (as @ [a]) rset"
and "rdistinct (ab # as @ [ab]) rset1 = rdistinct (ab # as) rset1"
  apply(induct as arbitrary: rset ab rset1 a)
     apply simp
    apply simp
  apply(case_tac "aa \<in> rset")
   apply(case_tac "a = aa")
  apply (metis append_Cons)
    apply simp
   apply(case_tac "a \<in> set as")
  apply (metis append_Cons rdistinct.simps(2) set_ConsD)
   apply(case_tac "a = aa")
    prefer 2
    apply simp
   apply (metis append_Cons)
  apply(case_tac "ab \<in> rset1")
  prefer 2
   apply(subgoal_tac "rdistinct (ab # (a # as) @ [ab]) rset1 = 
               ab # (rdistinct ((a # as) @ [ab]) (insert ab rset1))")
  prefer 2
  apply force
  apply(simp only:)
     apply(subgoal_tac "rdistinct (ab # a # as) rset1 = ab # (rdistinct (a # as) (insert ab rset1))")
    apply(simp only:)
    apply(subgoal_tac "rdistinct ((a # as) @ [ab]) (insert ab rset1) = rdistinct (a # as) (insert ab rset1)")
     apply blast
    apply(case_tac "a \<in> insert ab rset1")
     apply simp
     apply (metis insertI1)
    apply simp
    apply (meson insertI1)
   apply simp
  apply(subgoal_tac "rdistinct ((a # as) @ [ab]) rset1 = rdistinct (a # as) rset1")
   apply simp
  by (metis append_Cons insert_iff insert_is_Un rdistinct.simps(2))


lemma distinct_removes_middle:
  shows  "\<lbrakk>a \<in> set as\<rbrakk>
    \<Longrightarrow> rdistinct (as @ as2) rset = rdistinct (as @ [a] @ as2) rset"
and "rdistinct (ab # as @ [ab] @ as3) rset1 = rdistinct (ab # as @ as3) rset1"
   apply(induct as arbitrary: rset rset1 ab as2 as3 a)
     apply simp
    apply simp
   apply(case_tac "a \<in> rset")
    apply simp
    apply metis
   apply simp
   apply (metis insertI1)
  apply(case_tac "a = ab")
   apply simp
   apply(case_tac "ab \<in> rset")
    apply simp
    apply presburger
   apply (meson insertI1)
  apply(case_tac "a \<in> rset")
  apply (metis (no_types, opaque_lifting) Un_insert_left append_Cons insert_iff rdistinct.simps(2) sup_bot_left)
  apply(case_tac "ab \<in> rset")
  apply simp
   apply (meson insert_iff)
  apply simp
  by (metis insertI1)


lemma distinct_removes_middle3:
  shows  "\<lbrakk>a \<in> set as\<rbrakk>
    \<Longrightarrow> rdistinct (as @ a #as2) rset = rdistinct (as @ as2) rset"
  using distinct_removes_middle(1) by fastforce

lemma distinct_removes_last2:
  shows "\<lbrakk>a \<in> set as\<rbrakk>
    \<Longrightarrow> rdistinct as rset = rdistinct (as @ [a]) rset"
  by (simp add: distinct_removes_last(1))

lemma distinct_removes_middle2:
  shows "a \<in> set as \<Longrightarrow> rdistinct (as @ [a] @ rs) {} = rdistinct (as @ rs) {}"
  by (metis distinct_removes_middle(1))

lemma distinct_removes_list:
  shows "\<lbrakk> \<forall>r \<in> set rs. r \<in> set as\<rbrakk> \<Longrightarrow> rdistinct (as @ rs) {} = rdistinct as {}"
  apply(induct rs)
   apply simp+
  apply(subgoal_tac "rdistinct (as @ a # rs) {} = rdistinct (as @ rs) {}")
   prefer 2
  apply (metis append_Cons append_Nil distinct_removes_middle(1))
  by presburger


lemma spawn_simp_rsimpalts:
  shows "rsimp (rsimp_ALTs rs) = rsimp (rsimp_ALTs (map rsimp rs))"
  apply(cases rs)
   apply simp
  apply(case_tac list)
   apply simp
   apply(subst rsimp_idem[symmetric])
   apply simp
  apply(subgoal_tac "rsimp_ALTs rs = RALTS rs")
   apply(simp only:)
   apply(subgoal_tac "rsimp_ALTs (map rsimp rs) = RALTS (map rsimp rs)")
    apply(simp only:)
  prefer 2
  apply simp
   prefer 2
  using rsimp_ALTs.simps(3) apply presburger
  apply auto
  apply(subst rsimp_idem)+
  by (metis comp_apply rsimp_idem)




inductive good1 :: "rrexp \<Rightarrow> bool"
  where
"\<lbrakk>RZERO \<notin> set rs; \<nexists>rs1. RALTS rs1 \<in> set rs\<rbrakk> \<Longrightarrow> good1 (RALTS rs)"
|"good1 RZERO"
|"good1 RONE"
|"good1 (RCHAR c)"
|"good1 (RSEQ r1 r2)"
|"good1 (RSTAR r0)"

inductive goods :: "rrexp list \<Rightarrow> bool"
  where
 "goods []"
|"\<lbrakk>goods rs; r \<noteq> RZERO; \<nexists>rs1. RALTS rs1 = r\<rbrakk> \<Longrightarrow> goods (r # rs)"

lemma goods_good1:
  shows "goods rs = good1 (RALTS rs)"
  apply(induct rs)
  apply (simp add: good1.intros(1) goods.intros(1))
  apply(case_tac "goods rs")
   apply(case_tac a)
        apply simp
  using good1.simps goods.cases apply auto[1]
  apply (simp add: good1.simps goods.intros(2))
  apply (simp add: good1.simps goods.intros(2))
     apply (simp add: good1.simps goods.intros(2))
  using good1.simps goods.cases apply auto[1]
  apply (metis good1.cases good1.intros(1) goods.intros(2) rrexp.distinct(15) rrexp.distinct(21) rrexp.distinct(25) rrexp.distinct(29) rrexp.distinct(7) rrexp.distinct(9) rrexp.inject(3) set_ConsD)
  apply simp
  by (metis good1.cases good1.intros(1) goods.cases list.distinct(1) list.inject list.set_intros(2) rrexp.distinct(15) rrexp.distinct(29) rrexp.distinct(7) rrexp.inject(3) rrexp.simps(26) rrexp.simps(30))

lemma rsimp_good1:
  shows "rsimp r = r1 \<Longrightarrow> good1 r1"

  sorry

lemma rsimp_no_dup:
  shows "rsimp r = RALTS rs \<Longrightarrow> distinct rs"
  sorry


lemma rsimp_good1_2:
  shows "map rsimp rsa = [RALTS rs] \<Longrightarrow> good1 (RALTS rs)"
  by (metis Cons_eq_map_D rsimp_good1)
  


lemma simp_singlealt_flatten:
  shows "rsimp (RALTS [RALTS rsa]) = rsimp (RALTS (rsa @ []))"
  apply(induct rsa)
   apply simp
  apply simp
  by (metis idem_after_simp1 list.simps(9) rsimp.simps(2))


lemma good1_rsimpalts:
  shows "rsimp r = RALTS rs \<Longrightarrow> rsimp_ALTs rs = RALTS rs"
  by (metis no_alt_short_list_after_simp) 
  

lemma good1_flts:
  shows "good1 (RALTS rs1) \<Longrightarrow> rflts rs1 = rs1"
  apply(induct rs1)
   apply simp 
  by (metis good1.cases good1.intros(1) list.set_intros(1) rflts_def_idiot rrexp.distinct(21) rrexp.distinct(25) rrexp.distinct(29) rrexp.inject(3) rsimp.simps(3) rsimp.simps(4) rsimp_inner_idem4 set_subset_Cons subsetD)
 


lemma good1_flatten:
  shows "\<lbrakk> rsimp r =  (RALTS rs1)\<rbrakk>
       \<Longrightarrow> rflts (rsimp_ALTs rs1 # map rsimp rsb) = rflts (rs1 @ map rsimp rsb)"
  apply(subst good1_rsimpalts)
   apply simp+
  apply(subgoal_tac "rflts (rs1 @ map rsimp rsb) = rs1 @ rflts (map rsimp rsb)")
   apply simp
  apply(subgoal_tac "good1 (RALTS rs1)")
  prefer 2
  using rsimp_good1 apply blast
  using flts_append good1_flts by presburger

lemma flatten_rsimpalts:
  shows "rflts (rsimp_ALTs (rdistinct (rflts (map rsimp rsa)) {}) # map rsimp rsb) = 
         rflts ( (rdistinct (rflts (map rsimp rsa)) {}) @ map rsimp rsb)"
  apply(case_tac "map rsimp rsa")
   apply simp
  apply(case_tac "list")
   apply simp
   apply(case_tac a)
        apply simp+
    apply(rename_tac rs1)
    apply(subgoal_tac "good1 (RALTS rs1)")
     apply(subgoal_tac "distinct rs1")
  apply(subst rdistinct_on_distinct)
  apply blast
  apply(subst rdistinct_on_distinct)
       apply blast
  using good1_flatten apply blast
 
  using rsimp_no_dup apply force
  
  using rsimp_good1_2 apply presburger

   apply simp+
  apply(case_tac "rflts (a # aa # lista)")
   apply simp
  by (smt (verit) append_Cons append_Nil empty_iff good1_flatten list.distinct(1) rdistinct.simps(2) rsimp.simps(2) rsimp_ALTs.elims rsimp_good1)


lemma flts_good_good:
  shows "\<forall>r \<in> set rs. good1 r \<Longrightarrow> good1 (RALTS (rflts rs ))"
  apply(induct rs)
   apply simp
  using goods.intros(1) goods_good1 apply auto[1]
  apply(case_tac  "a")
  apply simp
  apply (metis goods.intros(2) goods_good1 list.set_intros(2) rflts.simps(4) rrexp.distinct(1) rrexp.distinct(15))
     apply simp
  using goods.intros(2) goods_good1 apply blast
  using goods.intros(2) goods_good1 apply auto[1]
   apply(subgoal_tac "good1 a")
  apply (metis Un_iff good1.cases good1.intros(1) list.set_intros(2) rflts.simps(3) rrexp.distinct(15) rrexp.distinct(21) rrexp.distinct(25) rrexp.distinct(29) rrexp.distinct(7) rrexp.inject(3) set_append)
  apply simp
  by (metis goods.intros(2) goods_good1 list.set_intros(2) rflts.simps(7) rrexp.distinct(29) rrexp.distinct(9))


lemma simp_flatten_aux1:
  shows "\<forall>r \<in> set (map rsimp rsa). good1 r"
  apply(induct rsa)
   apply(simp add: goods.intros)
  using rsimp_good1 by auto



lemma simp_flatten_aux:
  shows "\<forall>r \<in> set rs. good1 r \<Longrightarrow> rflts (rdistinct (rflts rs) {}) = (rdistinct (rflts rs) {})"
  sorry



lemma simp_flatten:
  shows "rsimp (RALTS ((RALTS rsa) # rsb)) = rsimp (RALTS (rsa @ rsb))"
  apply simp
  apply(subst flatten_rsimpalts)
  apply(simp add: flts_append)
  apply(subgoal_tac "\<forall>r \<in> set (map rsimp rsa). good1 r")
  apply (metis distinct_once_enough simp_flatten_aux)
  using simp_flatten_aux1 by blast

lemma simp_flatten3:
  shows "rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) = rsimp (RALTS (rsa @ rs @ rsb))"
  sorry



fun vsuf :: "char list \<Rightarrow> rrexp \<Rightarrow> char list list" where
"vsuf [] _ = []"
|"vsuf (c#cs) r1 = (if (rnullable r1) then  (vsuf cs (rder c r1)) @ [c # cs]
                                      else  (vsuf cs (rder c r1))
                   ) "






fun star_update :: "char \<Rightarrow> rrexp \<Rightarrow> char list list \<Rightarrow> char list list" where
"star_update c r [] = []"
|"star_update c r (s # Ss) = (if (rnullable (rders_simp r s)) 
                                then (s@[c]) # [c] # (star_update c r Ss) 
                               else   (s@[c]) # (star_update c r Ss) )"

fun star_updates :: "char list \<Rightarrow> rrexp \<Rightarrow> char list list \<Rightarrow> char list list"
  where
"star_updates [] r Ss = Ss"
| "star_updates (c # cs) r Ss = star_updates cs r (star_update c r Ss)"


lemma distinct_flts_no0:
  shows "  rflts (map rsimp (rdistinct rs (insert RZERO rset)))  =
           rflts (map rsimp (rdistinct rs rset))  "
  
  apply(induct rs arbitrary: rset)
   apply simp
  apply(case_tac a)
  apply simp+
    apply (smt (verit, ccfv_SIG) rflts.simps(2) rflts.simps(3) rflts_def_idiot)
  prefer 2
  apply simp  
  by (smt (verit, ccfv_threshold) Un_insert_right insert_iff list.simps(9) rdistinct.simps(2) rflts.simps(2) rflts.simps(3) rflts_def_idiot rrexp.distinct(7))

lemma flts_removes0:
  shows "  rflts (rs @ [RZERO])  =
           rflts rs"
  apply(induct rs)
   apply simp
  by (metis append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)
  

lemma rflts_spills_last:
  shows "a = RALTS rs \<Longrightarrow> rflts (rs1 @ [a]) = rflts rs1 @ rs"
  apply (induct rs1)
  apply simp
  by (metis append.assoc append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)

lemma flts_keeps1:
  shows " rflts (rs @ [RONE]) = 
          rflts  rs @ [RONE] "
  apply (induct rs)
   apply simp
  by (metis append.assoc append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)

lemma flts_keeps_others:
  shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk> \<Longrightarrow>rflts (rs @ [a]) = rflts rs @ [a]"
  apply(induct rs)
   apply simp
  apply (simp add: rflts_def_idiot)
  apply(case_tac a)
       apply simp
  using flts_keeps1 apply blast
     apply (metis append.assoc append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)
  apply (metis append.assoc append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)
  apply blast
  by (metis append.assoc append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot)

lemma spilled_alts_contained:
  shows "\<lbrakk>a = RALTS rs ; a \<in> set rs1\<rbrakk> \<Longrightarrow> \<forall>r \<in> set rs. r \<in> set (rflts rs1)"
  apply(induct rs1)
   apply simp 
  apply(case_tac "a = aa")
   apply simp
  apply(subgoal_tac " a \<in> set rs1")
  prefer 2
   apply (meson set_ConsD)
  apply(case_tac aa)
  using rflts.simps(2) apply presburger
      apply fastforce
  apply fastforce
  apply fastforce
  apply fastforce
  by fastforce


lemma distinct_removes_duplicate_flts:
  shows " a \<in> set rsa
       \<Longrightarrow> rdistinct (rflts (map rsimp rsa @ [rsimp a])) {} =
           rdistinct (rflts (map rsimp rsa)) {}"
  apply(subgoal_tac "rsimp a \<in> set (map rsimp rsa)")
  prefer 2
  apply simp
  apply(induct "rsimp a")
       apply simp
  using flts_removes0 apply presburger
      apply(subgoal_tac " rdistinct (rflts (map rsimp rsa @ [rsimp a])) {} =  
                          rdistinct (rflts (map rsimp rsa @ [RONE])) {}")
      apply (simp only:)
       apply(subst flts_keeps1)
  apply (metis distinct_removes_last2 rflts_def_idiot2 rrexp.simps(20) rrexp.simps(6))
      apply presburger
        apply(subgoal_tac " rdistinct (rflts (map rsimp rsa @ [rsimp a]))    {} =  
                            rdistinct ((rflts (map rsimp rsa)) @ [RCHAR x]) {}")
      apply (simp only:)
      prefer 2
      apply (metis flts_keeps_others rrexp.distinct(21) rrexp.distinct(3))
  apply (metis distinct_removes_last2 rflts_def_idiot2 rrexp.distinct(21) rrexp.distinct(3))

    apply (metis distinct_removes_last2 flts_keeps_others rflts_def_idiot2 rrexp.distinct(25) rrexp.distinct(5))
   prefer 2
   apply (metis distinct_removes_last2 flts_keeps_others flts_removes0 rflts_def_idiot2 rrexp.distinct(29))
  apply(subgoal_tac "rflts (map rsimp rsa @ [rsimp a]) = rflts (map rsimp rsa) @ x")
  prefer 2
  apply (simp add: rflts_spills_last)
  apply(simp only:)
  apply(subgoal_tac "\<forall> r \<in> set x. r \<in> set (rflts (map rsimp rsa))")
  prefer 2
  using spilled_alts_contained apply presburger
  using distinct_removes_list by blast



(*some basic facts about rsimp*)




end