theory Chap03
imports Main
begin
(* 2.5.6 Case Study: Boolean Expressions *)
datatype boolex = Const bool | Var nat | Neg boolex
| And boolex boolex
primrec "value2" :: "boolex \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> bool" where
"value2 (Const b) env = b" |
"value2 (Var x) env = env x" |
"value2 (Neg b) env = (\<not> value2 b env)" |
"value2 (And b c) env = (value2 b env \<and> value2 c env)"
value "Const true"
value "Var (Suc(0))"
value "value2 (Const False) (\<lambda>x. False)"
value "value2 (Var 11) (\<lambda>x. if (x = 10 | x = 11) then True else False)"
value "value2 (Var 11) (\<lambda>x. True )"
definition
"en1 \<equiv> (\<lambda>x. if x = 10 | x = 11 then True else False)"
abbreviation
"en2 \<equiv> (\<lambda>x. if x = 10 | x = 11 then True else False)"
value "value2 (And (Var 10) (Var 11)) en2"
lemma "value2 (And (Var 10) (Var 11)) en2 = True"
apply(simp)
done
datatype ifex =
CIF bool
| VIF nat
| IF ifex ifex ifex
primrec valif :: "ifex \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> bool" where
"valif (CIF b) env = b" |
"valif (VIF x) env = env x" |
"valif (IF b t e) env = (if valif b env then valif t env else valif e env)"
abbreviation "vif1 \<equiv> valif (CIF False) (\<lambda>x. False)"
abbreviation "vif2 \<equiv> valif (VIF 11) (\<lambda>x. False)"
abbreviation "vif3 \<equiv> valif (VIF 13) (\<lambda>x. True)"
value "valif (CIF False) (\<lambda>x. False)"
value "valif (VIF 11) (\<lambda>x. True)"
value "valif (IF (CIF False) (CIF True) (CIF True))"
primrec bool2if :: "boolex \<Rightarrow> ifex" where
"bool2if (Const b) = CIF b" |
"bool2if (Var x) = VIF x" |
"bool2if (Neg b) = IF (bool2if b) (CIF False) (CIF True)" |
"bool2if (And b c) = IF (bool2if b) (bool2if c) (CIF False)"
lemma "valif (bool2if b) env = value2 b env"
apply(induct_tac b)
apply(auto)
done
primrec normif :: "ifex \<Rightarrow> ifex \<Rightarrow> ifex \<Rightarrow> ifex" where
"normif (CIF b) t e = IF (CIF b) t e" |
"normif (VIF x) t e = IF (VIF x) t e" |
"normif (IF b t e) u f = normif b (normif t u f) (normif e u f)"
primrec norm :: "ifex \<Rightarrow> ifex" where
"norm (CIF b) = CIF b" |
"norm (VIF x) = VIF x" |
"norm (IF b t e) = normif b (norm t) (norm e)"
(*************** CHAPTER-3 ********************************)
lemma "\<lbrakk> xs @ zs = ys @ xs; [] @ xs = [] @ [] \<rbrakk> \<Longrightarrow> ys = zs"
apply simp
done
lemma "\<forall> x. f x = g (f (g x)) \<Longrightarrow> f [] = f [] @ []"
apply (simp (no_asm))
done
definition xor :: "bool \<Rightarrow> bool \<Rightarrow> bool" where
"xor A B \<equiv> (A \<and> \<not>B) \<or> (\<not>A \<and> B)"
lemma "xor A (\<not>A)"
apply(simp only: xor_def)
apply(simp add: xor_def)
done
lemma "(let xs = [] in xs@ys@xs) = ys"
apply(simp only: Let_def)
apply(simp add: Let_def)
done
(* 3.1.8 Conditioal Simplification Rules *)
lemma hd_Cons_tl: "xs \<noteq> [] \<Longrightarrow> hd xs # tl xs = xs"
using [[simp_trace=true]]
apply(case_tac xs)
apply(simp)
apply(simp)
done
lemma "xs \<noteq> [] \<Longrightarrow> hd(rev xs) # tl(rev xs) = rev xs"
apply(case_tac xs)
using [[simp_trace=true]]
apply(simp)
apply(simp)
done
(* 3.1.9 Automatic Case Splits *)
lemma "\<forall> xs. if xs = [] then rev xs = [] else rev xs \<noteq> []"
apply(split split_if)
apply(simp)
done
lemma "(case xs of [] \<Rightarrow> zs | y#ys \<Rightarrow> y#(ys@zs)) = xs@zs"
apply(split list.split)
apply(simp split: list.split)
done
lemma "if xs = [] then ys \<noteq> [] else ys = [] \<Longrightarrow> xs @ ys \<noteq> []"
apply(split split_if_asm)
apply(simp)
apply(auto)
done
(* 3.2 Induction Heuristics *)
primrec itrev :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"
lemma "itrev xs [] = rev xs"
apply(induct_tac xs)
apply(simp)
apply(auto)
oops
lemma "itrev xs ys = rev xs @ ys"
apply(induct_tac xs)
apply(simp_all)
oops
lemma "\<forall> ys. itrev xs ys = rev xs @ ys"
apply(induct_tac xs)
apply(simp)
apply(simp)
done
primrec add1 :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
"add1 m 0 = m" |
"add1 m (Suc n) = add1 (Suc m) n"
primrec add2 :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
"add2 m 0 = m" |
"add2 m (Suc n) = Suc (add2 m n)"
value "add1 1 3"
value "1 + 3"
lemma abc [simp]: "add1 m 0 = m"
apply(induction m)
apply(simp)
apply(simp)
done
lemma abc2: "\<forall>m. add1 m n = m + n"
apply(induction n)
apply(simp)
apply(simp del: add1.simps)
apply(simp (no_asm) only: add1.simps)
apply(simp only: )
apply(simp)
done
thm abc2
lemma abc3: "add1 m n = m + n"
apply(induction n arbitrary: m)
apply(simp)
apply(simp del: add1.simps)
apply(simp (no_asm) only: add1.simps)
apply(simp only: )
done
thm abc3
lemma abc4: "add1 m n = add2 m n"
apply(induction n arbitrary: m)
apply(simp)
apply(simp add: abc3)
done
find_theorems "_ \<and> _ "
(* added anottest *)
lemma abc5: "add2 m n = m + n"
apply(induction n)
apply(simp)
apply(simp)
done
(* 3.3 Case Study: Compiling Expressions *)
type_synonym 'v binop = "'v \<Rightarrow> 'v \<Rightarrow> 'v"
datatype ('a, 'v)expr =
Cex 'v
| Vex 'a
| Bex "'v binop" "('a,'v)expr" "('a,'v)expr"
primrec "value" :: "('a,'v)expr \<Rightarrow> ('a \<Rightarrow> 'v) \<Rightarrow> 'v" where
"value (Cex v) env = v" |
"value (Vex a) env = env a" |
"value (Bex f e1 e2) env = f (value e1 env) (value e2 env)"
value "value (Cex a) (\<lambda>x. True)"
datatype ('a,'v)instr =
Const 'v
| Load 'a
| Apply "'v binop"
primrec exec :: "('a,'v)instr list \<Rightarrow> ('a\<Rightarrow>'v) \<Rightarrow> 'v list \<Rightarrow> 'v list" where
"exec [] s vs = vs" |
"exec (i#is) s vs = (case i of
Const v \<Rightarrow> exec is s (v#vs)
| Load a \<Rightarrow> exec is s ((s a)#vs)
| Apply f \<Rightarrow> exec is s ((f (hd vs) (hd(tl vs)))#(tl(tl vs))))"
primrec compile :: "('a,'v)expr \<Rightarrow> ('a,'v)instr list" where
"compile (Cex v) = [Const v]" |
"compile (Vex a) = [Load a]" |
"compile (Bex f e1 e2) = (compile e2) @ (compile e1) @ [Apply f]"
theorem "exec (compile e) s [] = [value e s]"
(*the theorem needs to be generalized*)
oops
(*more generalized theorem*)
theorem "\<forall> vs. exec (compile e) s vs = (value e s) # vs"
apply(induct_tac e)
apply(simp)
apply(simp)
oops
lemma exec_app[simp]: "\<forall> vs. exec (xs@ys) s vs = exec ys s (exec xs s vs)"
apply(induct_tac xs)
apply(simp)
apply(simp)
apply(simp split: instr.split)
done
(* 3.4 Advanced Datatypes *)
datatype 'a aexp = IF "'a bexp" "'a aexp" "'a aexp"
| Sum "'a aexp" "'a aexp"
| Diff "'a aexp" "'a aexp"
| Var 'a
| Num nat
and 'a bexp = Less "'a aexp" "'a aexp"
| And "'a bexp" "'a bexp"
| Neg "'a bexp"
(* Total Recursive Functions: Fun *)
(* 3.5.1 Definition *)
fun fib :: "nat \<Rightarrow> nat" where
"fib 0 = 0" |
"fib (Suc 0) = 1" |
"fib (Suc(Suc x)) = fib x + fib (Suc x)"
value "fib (Suc(Suc(Suc(Suc(Suc 0)))))"
fun sep :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |
"sep a (x#y#zs) = x # a # sep a (y#zs)"
fun last :: "'a list \<Rightarrow> 'a" where
"last [x] = x" |
"last (_#y#zs) = last (y#zs)"
fun sep1 :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
"sep1 a (x#y#zs) = x # a # sep1 a (y#zs)" |
"sep1 _ xs = xs"
fun swap12:: "'a list \<Rightarrow> 'a list" where
"swap12 (x#y#zs) = y#x#zs" |
"swap12 zs = zs"