import scala.language.implicitConversions
import scala.language.reflectiveCalls
import scala.annotation.tailrec
import scala.util.Try
def escape(raw: String) : String = {
import scala.reflect.runtime.universe._
Literal(Constant(raw)).toString
}
def esc2(r: (String, String)) = (escape(r._1), escape(r._2))
def distinctBy[B, C](xs: List[B], f: B => C, acc: List[C] = Nil): List[B] = xs match {
case Nil => Nil
case (x::xs) => {
val res = f(x)
if (acc.contains(res)) distinctBy(xs, f, acc)
else x::distinctBy(xs, f, res::acc)
}
}
abstract class Bit
case object Z extends Bit
case object S extends Bit
case class C(c: Char) extends Bit
type Bits = List[Bit]
// usual regular expressions
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class PRED(f: Char => Boolean, s: String = "_") extends Rexp
case class ALTS(rs: List[Rexp]) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class RECD(x: String, r: Rexp) extends Rexp
// abbreviations
def CHAR(c: Char) = PRED(_ == c, c.toString)
def ALT(r1: Rexp, r2: Rexp) = ALTS(List(r1, r2))
def PLUS(r: Rexp) = SEQ(r, STAR(r))
// annotated regular expressions
abstract class ARexp
case object AZERO extends ARexp
case class AONE(bs: Bits) extends ARexp
case class APRED(bs: Bits, f: Char => Boolean, s: String = "_") extends ARexp
case class AALTS(bs: Bits, rs: List[ARexp]) extends ARexp
case class ASEQ(bs: Bits, r1: ARexp, r2: ARexp) extends ARexp
case class ASTAR(bs: Bits, r: ARexp) extends ARexp
// abbreviations
def AALT(bs: Bits, r1: ARexp, r2: ARexp) = AALTS(bs, List(r1, r2))
// values
abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String, v: Val) extends Val
// some convenience for typing in regular expressions
def charlist2rexp(s : List[Char]): Rexp = s match {
case Nil => ONE
case c::Nil => CHAR(c)
case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s : String) : Rexp = charlist2rexp(s.toList)
implicit def RexpOps(r: Rexp) = new {
def | (s: Rexp) = ALT(r, s)
def % = STAR(r)
def ~ (s: Rexp) = SEQ(r, s)
}
implicit def stringOps(s: String) = new {
def | (r: Rexp) = ALT(s, r)
def | (r: String) = ALT(s, r)
def % = STAR(s)
def ~ (r: Rexp) = SEQ(s, r)
def ~ (r: String) = SEQ(s, r)
def $ (r: Rexp) = RECD(s, r)
}
// string of a regular expressions - for testing purposes
def string(r: Rexp): String = r match {
case ZERO => "0"
case ONE => "1"
case PRED(_, s) => s
case ALTS(rs) => rs.map(string).mkString("[", "|", "]")
case SEQ(r1, r2) => s"(${string(r1)} ~ ${string(r2)})"
case STAR(r) => s"{${string(r)}}*"
case RECD(x, r) => s"(${x}! ${string(r)})"
}
// string of an annotated regular expressions - for testing purposes
def astring(a: ARexp): String = a match {
case AZERO => "0"
case AONE(_) => "1"
case APRED(_, _, s) => s
case AALTS(_, rs) => rs.map(astring).mkString("[", "|", "]")
case ASEQ(_, r1, r2) => s"(${astring(r1)} ~ ${astring(r2)})"
case ASTAR(_, r) => s"{${astring(r)}}*"
}
//--------------------------------------------------------------
// START OF NON-BITCODE PART
//
// nullable function: tests whether the regular
// expression can recognise the empty string
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case PRED(_, _) => false
case ALTS(rs) => rs.exists(nullable)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case RECD(_, r) => nullable(r)
}
// derivative of a regular expression w.r.t. a character
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case PRED(f, _) => if (f(c)) ONE else ZERO
case ALTS(List(r1, r2)) => ALTS(List(der(c, r1), der(c, r2)))
case SEQ(r1, r2) =>
if (nullable(r1)) ALTS(List(SEQ(der(c, r1), r2), der(c, r2)))
else SEQ(der(c, r1), r2)
case STAR(r) => SEQ(der(c, r), STAR(r))
case RECD(_, r1) => der(c, r1)
}
def flatten(v: Val) : String = v match {
case Empty => ""
case Chr(c) => c.toString
case Left(v) => flatten(v)
case Right(v) => flatten(v)
case Sequ(v1, v2) => flatten(v1) + flatten(v2)
case Stars(vs) => vs.map(flatten).mkString
case Rec(_, v) => flatten(v)
}
// extracts an environment from a value
def env(v: Val) : List[(String, String)] = v match {
case Empty => Nil
case Chr(c) => Nil
case Left(v) => env(v)
case Right(v) => env(v)
case Sequ(v1, v2) => env(v1) ::: env(v2)
case Stars(vs) => vs.flatMap(env)
case Rec(x, v) => (x, flatten(v))::env(v)
}
// injection part
def mkeps(r: Rexp) : Val = r match {
case ONE => Empty
case ALTS(List(r1, r2)) =>
if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2))
case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2))
case STAR(r) => Stars(Nil)
case RECD(x, r) => Rec(x, mkeps(r))
}
def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match {
case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs)
case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2)
case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2))
case (ALTS(List(r1, r2)), Left(v1)) => Left(inj(r1, c, v1))
case (ALTS(List(r1, r2)), Right(v2)) => Right(inj(r2, c, v2))
case (PRED(_, _), Empty) => Chr(c)
case (RECD(x, r1), _) => Rec(x, inj(r1, c, v))
}
// lexing without simplification
def lex(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
case c::cs => inj(r, c, lex(der(c, r), cs))
}
def lexing(r: Rexp, s: String) : Val = lex(r, s.toList)
//println(lexing(("ab" | "ab") ~ ("b" | ONE), "ab"))
// some "rectification" functions for simplification
def F_ID(v: Val): Val = v
def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Right(v) => Right(f2(v))
case Left(v) => Left(f1(v))
}
def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
}
def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(Empty), f2(v))
def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) =
(v:Val) => Sequ(f1(v), f2(Empty))
def F_RECD(f: Val => Val) = (v:Val) => v match {
case Rec(x, v) => Rec(x, f(v))
}
def F_ERROR(v: Val): Val = throw new Exception("error")
// simplification of regular expressions returning also an
// rectification function; no simplification under STAR
def simp(r: Rexp): (Rexp, Val => Val) = r match {
case ALTS(List(r1, r2)) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (r2s, F_RIGHT(f2s))
case (_, ZERO) => (r1s, F_LEFT(f1s))
case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
else (ALTS(List(r1s, r2s)), F_ALT(f1s, f2s))
}
}
case SEQ(r1, r2) => {
val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
(r1s, r2s) match {
case (ZERO, _) => (ZERO, F_ERROR)
case (_, ZERO) => (ZERO, F_ERROR)
case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
}
}
case RECD(x, r1) => {
val (r1s, f1s) = simp(r1)
(RECD(x, r1s), F_RECD(f1s))
}
case r => (r, F_ID)
}
def ders_simp(s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders_simp(s, simp(der(c, r))._1)
}
def lex_simp(r: Rexp, s: List[Char]) : Val = s match {
case Nil => if (nullable(r)) mkeps(r) else throw new Exception("Not matched")
case c::cs => {
val (r_simp, f_simp) = simp(der(c, r))
inj(r, c, f_simp(lex_simp(r_simp, cs)))
}
}
def lexing_simp(r: Rexp, s: String) : Val = lex_simp(r, s.toList)
//println(lexing_simp(("a" | "ab") ~ ("b" | ""), "ab"))
def tokenise_simp(r: Rexp, s: String) =
env(lexing_simp(r, s)).map(esc2)
//--------------------------------------------------------------------
// Partial Derivatives
def pder(c: Char, r: Rexp): Set[Rexp] = r match {
case ZERO => Set()
case ONE => Set()
case PRED(f, _) => if (f(c)) Set(ONE) else Set()
case ALTS(rs) => rs.toSet.flatMap(pder(c, _))
case SEQ(r1, r2) =>
(for (pr1 <- pder(c, r1)) yield SEQ(pr1, r2)) ++
(if (nullable(r1)) pder(c, r2) else Set())
case STAR(r1) =>
for (pr1 <- pder(c, r1)) yield SEQ(pr1, STAR(r1))
case RECD(_, r1) => pder(c, r1)
}
def pders(cs: List[Char], r: Rexp): Set[Rexp] = cs match {
case Nil => Set(r)
case c::cs => pder(c, r).flatMap(pders(cs, _))
}
def pders_simp(cs: List[Char], r: Rexp): Set[Rexp] = cs match {
case Nil => Set(r)
case c::cs => pder(c, r).flatMap(pders_simp(cs, _)).map(simp(_)._1)
}
def psize(rs: Set[Rexp]) =
rs.map(size).sum
//--------------------------------------------------------------------
// BITCODED PART
def fuse(bs: Bits, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(cs) => AONE(bs ++ cs)
case APRED(cs, f, s) => APRED(bs ++ cs, f, s)
case AALTS(cs, rs) => AALTS(bs ++ cs, rs)
case ASEQ(cs, r1, r2) => ASEQ(bs ++ cs, r1, r2)
case ASTAR(cs, r) => ASTAR(bs ++ cs, r)
}
// translation into ARexps
def internalise(r: Rexp) : ARexp = r match {
case ZERO => AZERO
case ONE => AONE(Nil)
case PRED(f, s) => APRED(Nil, f, s)
case ALTS(List(r1, r2)) =>
AALTS(Nil, List(fuse(List(Z), internalise(r1)), fuse(List(S), internalise(r2))))
case ALTS(r1::rs) => {
val AALTS(Nil, rs2) = internalise(ALTS(rs))
AALTS(Nil, fuse(List(Z), internalise(r1)) :: rs2.map(fuse(List(S), _)))
}
case SEQ(r1, r2) => ASEQ(Nil, internalise(r1), internalise(r2))
case STAR(r) => ASTAR(Nil, internalise(r))
case RECD(x, r) => internalise(r)
}
internalise(("a" | "ab") ~ ("b" | ""))
// decoding of values from bit sequences
def decode_aux(r: Rexp, bs: Bits) : (Val, Bits) = (r, bs) match {
case (ONE, bs) => (Empty, bs)
case (PRED(f, _), C(c)::bs) => (Chr(c), bs)
case (ALTS(r::Nil), bs) => decode_aux(r, bs)
case (ALTS(rs), bs) => bs match {
case Z::bs1 => {
val (v, bs2) = decode_aux(rs.head, bs1)
(Left(v), bs2)
}
case S::bs1 => {
val (v, bs2) = decode_aux(ALTS(rs.tail), bs1)
(Right(v), bs2)
}
}
case (SEQ(r1, r2), bs) => {
val (v1, bs1) = decode_aux(r1, bs)
val (v2, bs2) = decode_aux(r2, bs1)
(Sequ(v1, v2), bs2)
}
case (STAR(r1), S::bs) => {
val (v, bs1) = decode_aux(r1, bs)
val (Stars(vs), bs2) = decode_aux(STAR(r1), bs1)
(Stars(v::vs), bs2)
}
case (STAR(_), Z::bs) => (Stars(Nil), bs)
case (RECD(x, r1), bs) => {
val (v, bs1) = decode_aux(r1, bs)
(Rec(x, v), bs1)
}
}
def decode(r: Rexp, bs: Bits) = decode_aux(r, bs) match {
case (v, Nil) => v
case _ => throw new Exception("Not decodable")
}
//erase function: extracts a Rexp from Arexp
def erase(r: ARexp) : Rexp = r match{
case AZERO => ZERO
case AONE(_) => ONE
case APRED(bs, f, s) => PRED(f, s)
case AALTS(bs, rs) => ALTS(rs.map(erase(_)))
case ASEQ(bs, r1, r2) => SEQ (erase(r1), erase(r2))
case ASTAR(cs, r)=> STAR(erase(r))
}
// bnullable function: tests whether the aregular
// expression can recognise the empty string
def bnullable (r: ARexp) : Boolean = r match {
case AZERO => false
case AONE(_) => true
case APRED(_,_,_) => false
case AALTS(_, rs) => rs.exists(bnullable)
case ASEQ(_, r1, r2) => bnullable(r1) && bnullable(r2)
case ASTAR(_, _) => true
}
def bmkeps(r: ARexp) : Bits = r match {
case AONE(bs) => bs
case AALTS(bs, rs) => {
val n = rs.indexWhere(bnullable)
bs ++ bmkeps(rs(n))
}
case ASEQ(bs, r1, r2) => bs ++ bmkeps(r1) ++ bmkeps(r2)
case ASTAR(bs, r) => bs ++ List(Z)
}
// derivative of a regular expression w.r.t. a character
def bder(c: Char, r: ARexp) : ARexp = r match {
case AZERO => AZERO
case AONE(_) => AZERO
case APRED(bs, f, _) => if (f(c)) AONE(bs:::List(C(c))) else AZERO
case AALTS(bs, rs) => AALTS(bs, rs.map(bder(c, _)))
case ASEQ(bs, r1, r2) =>
if (bnullable(r1)) AALT(bs, ASEQ(Nil, bder(c, r1), r2), fuse(bmkeps(r1), bder(c, r2)))
else ASEQ(bs, bder(c, r1), r2)
case ASTAR(bs, r) => ASEQ(bs, fuse(List(S), bder(c, r)), ASTAR(Nil, r))
}
// derivative w.r.t. a string (iterates bder)
@tailrec
def bders (s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => bders(s, bder(c, r))
}
def flats(rs: List[ARexp]): List[ARexp] = rs match {
case Nil => Nil
case AZERO :: rs1 => flats(rs1)
case AALTS(bs, rs1) :: rs2 => rs1.map(fuse(bs, _)) ::: flats(rs2)
case r1 :: rs2 => r1 :: flats(rs2)
}
def bsimp(r: ARexp): ARexp = r match {
case ASEQ(bs1, r1, r2) => (bsimp(r1), bsimp(r2)) match {
case (AZERO, _) => AZERO
case (_, AZERO) => AZERO
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
}
case AALTS(bs1, rs) => distinctBy(flats(rs.map(bsimp)), erase) match {
case Nil => AZERO
case r :: Nil => fuse(bs1, r)
case rs => AALTS(bs1, rs)
}
//case ASTAR(bs1, r1) => ASTAR(bs1, bsimp(r1))
case r => r
}
def bders_simp (s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => bders_simp(s, bsimp(bder(c, r)))
}
def blex_simp(r: ARexp, s: List[Char]) : Bits = s match {
case Nil => if (bnullable(r)) bmkeps(r)
else throw new Exception("Not matched")
case c::cs => blex_simp(bsimp(bder(c, r)), cs)
}
def blexing_simp(r: Rexp, s: String) : Val =
decode(r, blex_simp(internalise(r), s.toList))
def btokenise_simp(r: Rexp, s: String) = env(blexing_simp(r, s)).map(esc2)
// INCLUDING SIMPLIFICATION UNDER STARS
def bsimp_full(r: ARexp): ARexp = r match {
case ASEQ(bs1, r1, r2) => (bsimp_full(r1), bsimp_full(r2)) match {
case (AZERO, _) => AZERO
case (_, AZERO) => AZERO
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
}
case AALTS(bs1, rs) => distinctBy(flats(rs.map(bsimp_full)), erase) match {
case Nil => AZERO
case r :: Nil => fuse(bs1, r)
case rs => AALTS(bs1, rs)
}
case ASTAR(bs1, r1) => ASTAR(bs1, bsimp_full(r1))
case r => r
}
def bders_simp_full(s: List[Char], r: ARexp) : ARexp = s match {
case Nil => r
case c::s => bders_simp_full(s, bsimp_full(bder(c, r)))
}
def blex_simp_full(r: ARexp, s: List[Char]) : Bits = s match {
case Nil => if (bnullable(r)) bmkeps(r)
else throw new Exception("Not matched")
case c::cs => blex_simp_full(bsimp_full(bder(c, r)), cs)
}
def blexing_simp_full(r: Rexp, s: String) : Val =
decode(r, blex_simp_full(internalise(r), s.toList))
def btokenise_simp_full(r: Rexp, s: String) = env(blexing_simp_full(r, s)).map(esc2)
// Testing
//============
def time[T](code: => T) = {
val start = System.nanoTime()
val result = code
val end = System.nanoTime()
((end - start)/1.0e9).toString
//result
}
def timeR[T](code: => T) = {
val start = System.nanoTime()
for (i <- 1 to 10) code
val result = code
val end = System.nanoTime()
(result, (end - start))
}
//size: of a Aregx for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case PRED(_,_) => 1
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case ALTS(rs) => 1 + rs.map(size).sum
case STAR(r) => 1 + size(r)
case RECD(_, r) => size(r)
}
def asize(a: ARexp) = size(erase(a))
// Lexing Rules for a Small While Language
//symbols
val SYM = PRED("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".contains(_), "SYM")
//digits
val DIGIT = PRED("0123456789".contains(_), "NUM")
//identifiers
val ID = SYM ~ (SYM | DIGIT).%
//numbers
val NUM = STAR(DIGIT)
//keywords
val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" | "true" | "false"
//semicolons
val SEMI: Rexp = ";"
//operators
val OP: Rexp = ":=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/"
//whitespaces
val WHITESPACE = PLUS(" " | "\n" | "\t")
//parentheses
val RPAREN: Rexp = ")"
val LPAREN: Rexp = "("
val BEGIN: Rexp = "{"
val END: Rexp = "}"
//strings...but probably needs not
val STRING: Rexp = "\"" ~ SYM.% ~ "\""
val WHILE_REGS = (("k" $ KEYWORD) |
("i" $ ID) |
("o" $ OP) |
("n" $ NUM) |
("s" $ SEMI) |
("str" $ STRING) |
("p" $ (LPAREN | RPAREN)) |
("b" $ (BEGIN | END)) |
("w" $ WHITESPACE)).%
// Some Small Tests
//==================
println("Small tests")
val re1 = STAR("a" | "aa")
println(astring(bders_simp("".toList, internalise(re1))))
println(astring(bders_simp("a".toList, internalise(re1))))
println(astring(bders_simp("aa".toList, internalise(re1))))
println(astring(bders_simp("aaa".toList, internalise(re1))))
println(astring(bders_simp("aaaaaa".toList, internalise(re1))))
println(astring(bders_simp("aaaaaaaaa".toList, internalise(re1))))
println(astring(bders_simp("aaaaaaaaaaaa".toList, internalise(re1))))
println(astring(bders_simp("aaaaaaaaaaaaaaaaaaaaaaaaa".toList, internalise(re1))))
println(astring(bders_simp("aaaaaabaaaabbbbbaaaaaaaaaaaaaaa".toList, internalise(re1))))
// Bigger Tests
//==============
val fib_prog = """
write "Fib";
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {
temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n - 1
};
write "Result";
write minus2
"""
println("fib prog tests :")
println(tokenise_simp(WHILE_REGS, fib_prog))
println(btokenise_simp(WHILE_REGS, fib_prog))
println("equal? " + (tokenise_simp(WHILE_REGS, fib_prog) == btokenise_simp(WHILE_REGS, fib_prog)))
for (i <- 1 to 20) {
print("Old: " + time(tokenise_simp(WHILE_REGS, fib_prog * i)))
print(" Bit: " + time(btokenise_simp(WHILE_REGS, fib_prog * i)))
println(" Bit full simp: " + time(btokenise_simp_full(WHILE_REGS, fib_prog * i)))
}
println("Original " + size(WHILE_REGS))
println("Size Bit " + asize(bders_simp((fib_prog * 1).toList, internalise(WHILE_REGS))))
println("Size Bitf " + asize(bders_simp_full((fib_prog * 1).toList, internalise(WHILE_REGS))))
println("Size Old " + size(ders_simp((fib_prog * 1).toList, WHILE_REGS)))
println("Size Pder " + psize(pders_simp((fib_prog * 1).toList, WHILE_REGS)))
System.exit(0)
println("Internal sizes test OK or strange")
def perc(p1: Double, p2: Double) : String =
f"${(((p1 - p2) / p2) * 100.0) }%5.0f" + "%"
def ders_test(n: Int, s: List[Char], r: Rexp, a: ARexp) : (Rexp, ARexp) = s match {
case Nil => (r, a)
case c::s => {
// derivative
val (rd1, tr1) = timeR(der(c, r))
val (ad1, ta1) = timeR(bder(c, a))
val trs1 = f"${tr1}%.5f"
val tas1 = f"${ta1}%.5f"
if (tr1 < ta1) println(s"Time strange der (step) ${n} ${perc(ta1, tr1)} sizes der ${size(rd1)} ${asize(ad1)}")
//simplification
val (rd, tr) = timeR(simp(rd1)._1)
val (ad, ta) = timeR(bsimp(ad1))
val trs = f"${tr}%.5f"
val tas = f"${ta}%.5f"
//full simplification
val (adf, taf) = timeR(bsimp_full(ad1))
if (tr < ta) println(s"Time strange simp (step) ${n} ${perc(ta, tr)} sizes simp ${size(rd)} ${asize(ad)}")
if (n == 1749 || n == 1734) {
println{s"Aregex before bder (size: ${asize(a)})\n ${string(erase(a))}"}
println{s"Aregex after bder (size: ${asize(ad1)})\n ${string(erase(ad1))}"}
println{s"Aregex after bsimp (size: ${asize(ad)})\n ${string(erase(ad))}"}
println{s"Aregex after bsimp_full (size: ${asize(adf)})\n ${string(erase(adf))}"}
}
ders_test(n + 1, s, rd, ad)
}
}
val prg = (fib_prog * 10).toList
ders_test(0, prg, WHILE_REGS, internalise(WHILE_REGS))
//testing the two lexings produce the same value
//enumerates strings of length n over alphabet cs
def strs(n: Int, cs: String) : Set[String] = {
if (n == 0) Set("")
else {
val ss = strs(n - 1, cs)
ss ++
(for (s <- ss; c <- cs.toList) yield c + s)
}
}
def enum(n: Int, s: String) : Stream[Rexp] = n match {
case 0 => ZERO #:: ONE #:: s.toStream.map(CHAR)
case n => {
val rs = enum(n - 1, s)
rs #:::
(for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #:::
(for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #:::
(for (r1 <- rs) yield STAR(r1))
}
}
//tests blexing and lexing
def tests(ss: Set[String])(r: Rexp) = {
//println(s"Testing ${r}")
for (s <- ss.par) yield {
val res1 = Try(Some(lexing_simp(r, s))).getOrElse(None)
val res2 = Try(Some(blexing_simp(r, s))).getOrElse(None)
if (res1 != res2)
{ println(s"Disagree on ${r} and ${s}")
println(s" ${res1} != ${res2}")
Some((r, s)) } else None
}
}
println("Partial searching: ")
enum(2, "abc").map(tests(strs(3, "abc"))).toSet