theory Blexer2
imports "Lexer" "PDerivs"
begin
section \<open>Bit-Encodings\<close>
datatype bit = Z | S
fun code :: "val \<Rightarrow> bit list"
where
"code Void = []"
| "code (Char c) = []"
| "code (Left v) = Z # (code v)"
| "code (Right v) = S # (code v)"
| "code (Seq v1 v2) = (code v1) @ (code v2)"
| "code (Stars []) = [S]"
| "code (Stars (v # vs)) = (Z # code v) @ code (Stars vs)"
fun
Stars_add :: "val \<Rightarrow> val \<Rightarrow> val"
where
"Stars_add v (Stars vs) = Stars (v # vs)"
function
decode' :: "bit list \<Rightarrow> rexp \<Rightarrow> (val * bit list)"
where
"decode' bs ZERO = (undefined, bs)"
| "decode' bs ONE = (Void, bs)"
| "decode' bs (CH d) = (Char d, bs)"
| "decode' [] (ALT r1 r2) = (Void, [])"
| "decode' (Z # bs) (ALT r1 r2) = (let (v, bs') = decode' bs r1 in (Left v, bs'))"
| "decode' (S # bs) (ALT r1 r2) = (let (v, bs') = decode' bs r2 in (Right v, bs'))"
| "decode' bs (SEQ r1 r2) = (let (v1, bs') = decode' bs r1 in
let (v2, bs'') = decode' bs' r2 in (Seq v1 v2, bs''))"
| "decode' [] (STAR r) = (Void, [])"
| "decode' (S # bs) (STAR r) = (Stars [], bs)"
| "decode' (Z # bs) (STAR r) = (let (v, bs') = decode' bs r in
let (vs, bs'') = decode' bs' (STAR r)
in (Stars_add v vs, bs''))"
by pat_completeness auto
lemma decode'_smaller:
assumes "decode'_dom (bs, r)"
shows "length (snd (decode' bs r)) \<le> length bs"
using assms
apply(induct bs r)
apply(auto simp add: decode'.psimps split: prod.split)
using dual_order.trans apply blast
by (meson dual_order.trans le_SucI)
termination "decode'"
apply(relation "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))")
apply(auto dest!: decode'_smaller)
by (metis less_Suc_eq_le snd_conv)
definition
decode :: "bit list \<Rightarrow> rexp \<Rightarrow> val option"
where
"decode ds r \<equiv> (let (v, ds') = decode' ds r
in (if ds' = [] then Some v else None))"
lemma decode'_code_Stars:
assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> (\<forall>x. decode' (code v @ x) r = (v, x)) \<and> flat v \<noteq> []"
shows "decode' (code (Stars vs) @ ds) (STAR r) = (Stars vs, ds)"
using assms
apply(induct vs)
apply(auto)
done
lemma decode'_code:
assumes "\<Turnstile> v : r"
shows "decode' ((code v) @ ds) r = (v, ds)"
using assms
apply(induct v r arbitrary: ds)
apply(auto)
using decode'_code_Stars by blast
lemma decode_code:
assumes "\<Turnstile> v : r"
shows "decode (code v) r = Some v"
using assms unfolding decode_def
by (smt append_Nil2 decode'_code old.prod.case)
section {* Annotated Regular Expressions *}
datatype arexp =
AZERO
| AONE "bit list"
| ACHAR "bit list" char
| ASEQs "bit list" "arexp list"
| AALTs "bit list" "arexp list"
| ASTAR "bit list" arexp
abbreviation
"AALT bs r1 r2 \<equiv> AALTs bs [r1, r2]"
abbreviation
"ASEQ bs r1 r2 \<equiv> ASEQs bs [r1, r2]"
fun asize :: "arexp \<Rightarrow> nat" where
"asize AZERO = 1"
| "asize (AONE cs) = 1"
| "asize (ACHAR cs c) = 1"
| "asize (AALTs cs rs) = Suc (sum_list (map asize rs))"
| "asize (ASEQs cs rs) = Suc (sum_list (map asize rs))"
| "asize (ASTAR cs r) = Suc (asize r)"
fun
erase :: "arexp \<Rightarrow> rexp"
where
"erase AZERO = ZERO"
| "erase (AONE _) = ONE"
| "erase (ACHAR _ c) = CH c"
| "erase (AALTs _ []) = ZERO"
| "erase (AALTs _ [r]) = (erase r)"
| "erase (AALTs bs (r#rs)) = ALT (erase r) (erase (AALTs bs rs))"
| "erase (ASEQs _ []) = ONE"
| "erase (ASEQs _ [r]) = (erase r)"
| "erase (ASEQs bs (r#rs)) = SEQ (erase r) (erase (ASEQs bs rs))"
| "erase (ASTAR _ r) = STAR (erase r)"
fun fuse :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp" where
"fuse bs AZERO = AZERO"
| "fuse bs (AONE cs) = AONE (bs @ cs)"
| "fuse bs (ACHAR cs c) = ACHAR (bs @ cs) c"
| "fuse bs (AALTs cs rs) = AALTs (bs @ cs) rs"
| "fuse bs (ASEQs cs rs) = ASEQs (bs @ cs) rs"
| "fuse bs (ASTAR cs r) = ASTAR (bs @ cs) r"
lemma fuse_append:
shows "fuse (bs1 @ bs2) r = fuse bs1 (fuse bs2 r)"
apply(induct r)
apply(auto)
done
fun intern :: "rexp \<Rightarrow> arexp" where
"intern ZERO = AZERO"
| "intern ONE = AONE []"
| "intern (CH c) = ACHAR [] c"
| "intern (ALT r1 r2) = AALT [] (fuse [Z] (intern r1))
(fuse [S] (intern r2))"
| "intern (SEQ r1 r2) = ASEQ [] (intern r1) (intern r2)"
| "intern (STAR r) = ASTAR [] (intern r)"
fun retrieve :: "arexp \<Rightarrow> val \<Rightarrow> bit list" where
"retrieve (AONE bs) Void = bs"
| "retrieve (ACHAR bs c) (Char d) = bs"
| "retrieve (AALTs bs [r]) v = bs @ retrieve r v"
| "retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v"
| "retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v"
| "retrieve (ASEQs bs []) v = bs"
| "retrieve (ASEQs bs [r]) v = bs @ retrieve r v"
| "retrieve (ASEQs bs (r#rs)) (Seq v1 v2) = bs @ retrieve r v1 @ retrieve (ASEQs [] rs) v2"
| "retrieve (ASTAR bs r) (Stars []) = bs @ [S]"
| "retrieve (ASTAR bs r) (Stars (v#vs)) =
bs @ [Z] @ retrieve r v @ retrieve (ASTAR [] r) (Stars vs)"
fun
bnullable :: "arexp \<Rightarrow> bool"
where
"bnullable (AZERO) = False"
| "bnullable (AONE bs) = True"
| "bnullable (ACHAR bs c) = False"
| "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)"
| "bnullable (ASEQs bs rs) = (\<forall>r \<in> set rs. bnullable r)"
| "bnullable (ASTAR bs r) = True"
abbreviation
bnullables :: "arexp list \<Rightarrow> bool"
where
"bnullables rs \<equiv> (\<exists>r \<in> set rs. bnullable r)"
fun
bmkeps :: "arexp \<Rightarrow> bit list" and
bmkepss :: "arexp list \<Rightarrow> bit list"
where
"bmkeps(AONE bs) = bs"
| "bmkeps(ASEQs bs rs) = bs @ concat (map bmkeps rs)"
| "bmkeps(AALTs bs rs) = bs @ (bmkepss rs)"
| "bmkeps(ASTAR bs r) = bs @ [S]"
| "bmkepss (r # rs) = (if bnullable(r) then (bmkeps r) else (bmkepss rs))"
lemma bmkepss1:
assumes "\<not> bnullables rs1"
shows "bmkepss (rs1 @ rs2) = bmkepss rs2"
using assms
by (induct rs1) (auto)
lemma bmkepss2:
assumes "bnullables rs1"
shows "bmkepss (rs1 @ rs2) = bmkepss rs1"
using assms
by (induct rs1) (auto)
fun
bder :: "char \<Rightarrow> arexp \<Rightarrow> arexp"
where
"bder c (AZERO) = AZERO"
| "bder c (AONE bs) = AZERO"
| "bder c (ACHAR bs d) = (if c = d then AONE bs else AZERO)"
| "bder c (AALTs bs rs) = AALTs bs (map (bder c) rs)"
| "bder c (ASEQs bs []) = AZERO"
| "bder c (ASEQs bs [r1]) = fuse bs (bder c r1)"
| "bder c (ASEQs bs (r1#rs)) =
(if bnullable r1
then AALT bs (ASEQs [] ((bder c r1) # rs)) (bder c (ASEQs (bmkeps r1) rs))
else ASEQs bs ((bder c r1) # rs))"
| "bder c (ASTAR bs r) = ASEQ (bs @ [Z]) (bder c r) (ASTAR [] r)"
fun
bders :: "arexp \<Rightarrow> string \<Rightarrow> arexp"
where
"bders r [] = r"
| "bders r (c#s) = bders (bder c r) s"
lemma bders_append:
"bders c (s1 @ s2) = bders (bders c s1) s2"
apply(induct s1 arbitrary: c s2)
apply(simp_all)
done
lemma bnullable_correctness:
shows "nullable (erase r) = bnullable r"
apply(induct r rule: erase.induct)
apply(simp_all)
done
lemma erase_fuse:
shows "erase (fuse bs r) = erase r"
apply(induct r rule: erase.induct)
apply(simp_all)
done
lemma erase_intern [simp]:
shows "erase (intern r) = r"
apply(induct r)
apply(simp_all add: erase_fuse)
done
lemma erase_ASEQs:
shows "erase (ASEQs [] rs) = erase (ASEQs bs rs)"
apply(induct rs arbitrary: bs)
apply(auto)
apply(case_tac rs)
apply(auto)
done
lemma erase_bder [simp]:
shows "erase (bder a r) = der a (erase r)"
apply(induct r rule: erase.induct)
apply(simp_all add: erase_fuse bnullable_correctness)
apply(case_tac va)
apply(simp_all add: erase_fuse bnullable_correctness)
apply(auto)
apply(simp_all add: erase_fuse bnullable_correctness erase_ASEQs)
by (metis erase_ASEQs)
lemma erase_bders [simp]:
shows "erase (bders r s) = ders s (erase r)"
apply(induct s arbitrary: r )
apply(simp_all)
done
lemma bnullable_fuse:
shows "bnullable (fuse bs r) = bnullable r"
apply(induct r arbitrary: bs)
apply(auto)
done
lemma retrieve_encode_STARS:
assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> code v = retrieve (intern r) v"
shows "code (Stars vs) = retrieve (ASTAR [] (intern r)) (Stars vs)"
using assms
apply(induct vs)
apply(simp_all)
done
lemma retrieve_fuse2:
assumes "\<Turnstile> v : (erase r)"
shows "retrieve (fuse bs r) v = bs @ retrieve r v"
using assms
apply(induct r arbitrary: v bs)
apply(auto elim: Prf_elims)[4]
defer
apply(case_tac x2a)
apply(simp)
using Prf_elims(1) apply blast
apply(simp)
apply(case_tac list)
apply(simp)
apply(simp)
apply (smt (verit, best) Prf_elims(3) append_assoc retrieve.simps(4) retrieve.simps(5))
using retrieve_encode_STARS
apply(auto elim!: Prf_elims)[1]
apply(case_tac vs)
apply(simp)
apply(simp)
apply(case_tac x2a)
apply(simp)
apply(simp)
apply(case_tac list)
apply(simp)
apply(simp)
by (smt (verit, best) Prf_elims(2) append_assoc retrieve.simps(8))
lemma retrieve_fuse:
assumes "\<Turnstile> v : r"
shows "retrieve (fuse bs (intern r)) v = bs @ retrieve (intern r) v"
using assms
by (simp_all add: retrieve_fuse2)
lemma retrieve_code:
assumes "\<Turnstile> v : r"
shows "code v = retrieve (intern r) v"
using assms
apply(induct v r )
apply(simp_all add: retrieve_fuse retrieve_encode_STARS)
done
lemma retrieve_AALTs_bnullable1:
assumes "bnullable r"
shows "retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))
= bs @ retrieve r (mkeps (erase r))"
using assms
apply(case_tac rs)
apply(auto simp add: bnullable_correctness)
done
lemma retrieve_AALTs_bnullable2:
assumes "\<not>bnullable r" "bnullables rs"
shows "retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))
= retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))"
using assms
apply(induct rs arbitrary: r bs)
apply(auto)
using bnullable_correctness apply blast
apply(case_tac rs)
apply(auto)
using bnullable_correctness apply blast
apply(case_tac rs)
apply(auto)
done
lemma bmkeps_retrieve_AALTs:
assumes "\<forall>r \<in> set rs. bnullable r \<longrightarrow> bmkeps r = retrieve r (mkeps (erase r))"
"bnullables rs"
shows "bs @ bmkepss rs = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))"
using assms
apply(induct rs arbitrary: bs)
apply(auto)
using retrieve_AALTs_bnullable1 apply presburger
apply (metis retrieve_AALTs_bnullable2)
apply (simp add: retrieve_AALTs_bnullable1)
by (metis retrieve_AALTs_bnullable2)
lemma bmkeps_retrieve_ASEQs:
assumes "\<forall>r \<in> set rs. bmkeps r = retrieve r (mkeps (erase r))"
"\<forall>r \<in> set rs. bnullable r"
shows "x1 @ concat (map bmkeps rs) = retrieve (ASEQs x1 rs) (mkeps (erase (ASEQs x1 rs)))"
using assms
apply(induct rs arbitrary: x1)
apply(auto)
apply(case_tac rs)
apply(auto)
by (metis erase_ASEQs self_append_conv2)
lemma bmkeps_retrieve:
assumes "bnullable r"
shows "bmkeps r = retrieve r (mkeps (erase r))"
using assms
apply(induct r)
apply(auto)
defer
using bmkeps_retrieve_AALTs apply auto
by (simp add: bmkeps_retrieve_ASEQs)
lemma bder_retrieve:
assumes "\<Turnstile> v : der c (erase r)"
shows "retrieve (bder c r) v = retrieve r (injval (erase r) c v)"
using assms
apply(induct r arbitrary: v rule: erase.induct)
using Prf_elims(1) apply auto[1]
using Prf_elims(1) apply auto[1]
apply(auto)[1]
apply (metis Prf_elims(4) injval.simps(1) retrieve.simps(1) retrieve.simps(2))
using Prf_elims(1) apply blast
(* AALTs case *)
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(simp)
apply(rename_tac "r\<^sub>1" "r\<^sub>2" rs v)
apply(erule Prf_elims)
apply(simp)
apply(simp)
apply(case_tac rs)
apply(simp)
apply(simp)
using Prf_elims(3) apply fastforce
(* ASTAR case *)
prefer 4
apply(rename_tac bs r v)
apply(simp)
apply(erule Prf_elims)
apply(clarify)
apply(erule Prf_elims)
apply(clarify)
apply (simp add: retrieve_fuse2)
(* ASEQ case *)
prefer 2
apply(simp)
apply (simp add: erase_fuse retrieve_fuse2)
apply(auto)[1]
using Prf_elims(1) apply auto[1]
apply(simp)
apply(auto)
apply(subgoal_tac "nullable (erase r)")
prefer 2
using bnullable_correctness apply blast
apply(simp)
apply(erule Prf_elims)
apply(simp)
using Prf_elims(2) apply force
apply(simp)
prefer 2
apply(subgoal_tac "\<not>nullable (erase r)")
apply(simp)
prefer 2
using bnullable_correctness apply presburger
using Prf_elims(2) apply force
apply (simp add: bmkeps_retrieve erase_fuse retrieve_fuse2)
apply(case_tac va)
apply(simp)
apply (simp add: erase_fuse retrieve_fuse2)
apply(simp)
apply(auto)
apply(subgoal_tac "nullable (erase v)")
prefer 2
using bnullable_correctness apply blast
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(erule Prf_elims)
apply(simp)
apply(case_tac list)
apply(simp)
apply(rotate_tac 1)
apply(drule_tac x="Left v1" in meta_spec)
apply(drule meta_mp)
apply(rule Prf.intros)
apply(simp)
apply(rule Prf.intros)
apply(simp)
apply(simp)
apply simp
apply(simp)
apply(case_tac "bnullable a")
apply(simp)
apply(subgoal_tac "nullable (erase a)")
prefer 2
using bnullable_correctness apply blast
apply(simp)
apply(rotate_tac 1)
apply(drule_tac x="Left v1" in meta_spec)
apply(drule meta_mp)
apply(rule Prf.intros)
apply(simp)
apply(rule Prf.intros)
apply(simp)
apply force
apply simp
apply(subgoal_tac "\<not>nullable (erase a)")
prefer 2
using bnullable_correctness apply presburger
apply(simp)
apply(rotate_tac 1)
apply(drule_tac x="Left v1" in meta_spec)
apply(drule meta_mp)
apply(rule Prf.intros)
using Prf.intros(1) apply blast
apply simp
using Prf.intros(3) apply fastforce
apply(subgoal_tac "\<not>nullable (erase v)")
prefer 2
using bnullable_correctness apply presburger
apply(simp)
using Prf_elims(2) by force
lemma MAIN_decode:
assumes "\<Turnstile> v : ders s r"
shows "Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r"
using assms
proof (induct s arbitrary: v rule: rev_induct)
case Nil
have "\<Turnstile> v : ders [] r" by fact
then have "\<Turnstile> v : r" by simp
then have "Some v = decode (retrieve (intern r) v) r"
using decode_code retrieve_code by auto
then show "Some (flex r id [] v) = decode (retrieve (bders (intern r) []) v) r"
by simp
next
case (snoc c s v)
have IH: "\<And>v. \<Turnstile> v : ders s r \<Longrightarrow>
Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" by fact
have asm: "\<Turnstile> v : ders (s @ [c]) r" by fact
then have asm2: "\<Turnstile> injval (ders s r) c v : ders s r"
by (simp add: Prf_injval ders_append)
have "Some (flex r id (s @ [c]) v) = Some (flex r id s (injval (ders s r) c v))"
by (simp add: flex_append)
also have "... = decode (retrieve (bders (intern r) s) (injval (ders s r) c v)) r"
using asm2 IH by simp
also have "... = decode (retrieve (bder c (bders (intern r) s)) v) r"
using asm by (simp_all add: bder_retrieve ders_append)
finally show "Some (flex r id (s @ [c]) v) =
decode (retrieve (bders (intern r) (s @ [c])) v) r" by (simp add: bders_append)
qed
definition blexer where
"blexer r s \<equiv> if bnullable (bders (intern r) s) then
decode (bmkeps (bders (intern r) s)) r else None"
lemma blexer_correctness:
shows "blexer r s = lexer r s"
proof -
{ define bds where "bds \<equiv> bders (intern r) s"
define ds where "ds \<equiv> ders s r"
assume asm: "nullable ds"
have era: "erase bds = ds"
unfolding ds_def bds_def by simp
have mke: "\<Turnstile> mkeps ds : ds"
using asm by (simp add: mkeps_nullable)
have "decode (bmkeps bds) r = decode (retrieve bds (mkeps ds)) r"
using bmkeps_retrieve
using asm era
using bnullable_correctness by force
also have "... = Some (flex r id s (mkeps ds))"
using mke by (simp_all add: MAIN_decode ds_def bds_def)
finally have "decode (bmkeps bds) r = Some (flex r id s (mkeps ds))"
unfolding bds_def ds_def .
}
then show "blexer r s = lexer r s"
unfolding blexer_def lexer_flex
by (auto simp add: bnullable_correctness[symmetric])
qed
unused_thms
end