made lemma about AALTs_subs stronger w.r.t. flts
theory SpecAlts
imports Main "~~/src/HOL/Library/Sublist"
begin
section {* Sequential Composition of Languages *}
definition
Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
where
"A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
text {* Two Simple Properties about Sequential Composition *}
lemma Sequ_empty_string [simp]:
shows "A ;; {[]} = A"
and "{[]} ;; A = A"
by (simp_all add: Sequ_def)
lemma Sequ_empty [simp]:
shows "A ;; {} = {}"
and "{} ;; A = {}"
by (simp_all add: Sequ_def)
section {* Semantic Derivative (Left Quotient) of Languages *}
definition
Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
where
"Der c A \<equiv> {s. c # s \<in> A}"
definition
Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
where
"Ders s A \<equiv> {s'. s @ s' \<in> A}"
lemma Der_null [simp]:
shows "Der c {} = {}"
unfolding Der_def
by auto
lemma Der_empty [simp]:
shows "Der c {[]} = {}"
unfolding Der_def
by auto
lemma Der_char [simp]:
shows "Der c {[d]} = (if c = d then {[]} else {})"
unfolding Der_def
by auto
lemma Der_union [simp]:
shows "Der c (A \<union> B) = Der c A \<union> Der c B"
unfolding Der_def
by auto
lemma Der_Union [simp]:
shows "Der c (\<Union>B. A) = (\<Union>B. Der c A)"
unfolding Der_def
by auto
lemma Der_Sequ [simp]:
shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
unfolding Der_def Sequ_def
by (auto simp add: Cons_eq_append_conv)
section {* Kleene Star for Languages *}
inductive_set
Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
for A :: "string set"
where
start[intro]: "[] \<in> A\<star>"
| step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
(* Arden's lemma *)
lemma Star_cases:
shows "A\<star> = {[]} \<union> A ;; A\<star>"
unfolding Sequ_def
by (auto) (metis Star.simps)
lemma Star_decomp:
assumes "c # x \<in> A\<star>"
shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"
using assms
by (induct x\<equiv>"c # x" rule: Star.induct)
(auto simp add: append_eq_Cons_conv)
lemma Star_Der_Sequ:
shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
unfolding Der_def Sequ_def
by(auto simp add: Star_decomp)
lemma Der_star [simp]:
shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
proof -
have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
by (simp only: Star_cases[symmetric])
also have "... = Der c (A ;; A\<star>)"
by (simp only: Der_union Der_empty) (simp)
also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
by simp
also have "... = (Der c A) ;; A\<star>"
using Star_Der_Sequ by auto
finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
qed
section {* Regular Expressions *}
datatype rexp =
ZERO
| ONE
| CHAR char
| SEQ rexp rexp
| ALTS "rexp list"
| STAR rexp
section {* Semantics of Regular Expressions *}
fun
L :: "rexp \<Rightarrow> string set"
where
"L (ZERO) = {}"
| "L (ONE) = {[]}"
| "L (CHAR c) = {[c]}"
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
| "L (ALTS rs) = (\<Union>r \<in> set rs. L r)"
| "L (STAR r) = (L r)\<star>"
section {* Nullable, Derivatives *}
fun
nullable :: "rexp \<Rightarrow> bool"
where
"nullable (ZERO) = False"
| "nullable (ONE) = True"
| "nullable (CHAR c) = False"
| "nullable (ALTS rs) = (\<exists>r \<in> set rs. nullable r)"
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
| "nullable (STAR r) = True"
fun
der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
where
"der c (ZERO) = ZERO"
| "der c (ONE) = ZERO"
| "der c (CHAR d) = (if c = d then ONE else ZERO)"
| "der c (ALTS rs) = ALTS (map (der c) rs)"
| "der c (SEQ r1 r2) =
(if nullable r1
then ALTS [SEQ (der c r1) r2, der c r2]
else SEQ (der c r1) r2)"
| "der c (STAR r) = SEQ (der c r) (STAR r)"
fun
ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
where
"ders [] r = r"
| "ders (c # s) r = ders s (der c r)"
lemma nullable_correctness:
shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
by (induct r) (auto simp add: Sequ_def)
lemma der_correctness:
shows "L (der c r) = Der c (L r)"
apply(induct r)
apply(simp_all add: nullable_correctness)
apply(auto simp add: Der_def)
done
lemma ders_correctness:
shows "L (ders s r) = Ders s (L r)"
by (induct s arbitrary: r)
(simp_all add: Ders_def der_correctness Der_def)
fun flats :: "rexp list \<Rightarrow> rexp list"
where
"flats [] = []"
| "flats (ZERO # rs1) = flats(rs1)"
| "flats ((ALTS rs1) #rs2) = rs1 @ (flats rs2)"
| "flats (r1 # rs2) = r1 # flats rs2"
fun simp_SEQ where
"simp_SEQ ONE r\<^sub>2 = r\<^sub>2"
| "simp_SEQ r\<^sub>1 ONE = r\<^sub>1"
| "simp_SEQ r\<^sub>1 r\<^sub>2 = SEQ r\<^sub>1 r\<^sub>2"
fun
simp :: "rexp \<Rightarrow> rexp"
where
"simp (ALTS rs) = ALTS (remdups (flats (map simp rs)))"
| "simp (SEQ r1 r2) = simp_SEQ (simp r1) (simp r2)"
| "simp r = r"
lemma simp_SEQ_correctness:
shows "L (simp_SEQ r1 r2) = L (SEQ r1 r2)"
apply(induct r1 r2 rule: simp_SEQ.induct)
apply(simp_all)
done
lemma flats_correctness:
shows "(\<Union>r \<in> set (flats rs). L r) = L (ALTS rs)"
apply(induct rs rule: flats.induct)
apply(simp_all)
done
lemma simp_correctness:
shows "L (simp r) = L r"
apply(induct r)
apply(simp_all)
apply(simp add: simp_SEQ_correctness)
apply(simp add: flats_correctness)
done
fun
ders2 :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
where
"ders2 [] r = r"
| "ders2 (c # s) r = ders2 s (simp (der c r))"
lemma ders2_ZERO:
shows "ders2 s ZERO = ZERO"
apply(induct s)
apply(simp_all)
done
lemma ders2_ONE:
shows "ders2 s ONE \<in> {ZERO, ONE}"
apply(induct s)
apply(simp_all)
apply(auto)
apply(case_tac s)
apply(auto)
apply(case_tac s)
apply(auto)
done
lemma ders2_CHAR:
shows "ders2 s (CHAR c) \<in> {ZERO, ONE, CHAR c}"
apply(induct s)
apply(simp_all)
apply(auto simp add: ders2_ZERO)
apply(case_tac s)
apply(auto simp add: ders2_ZERO)
using ders2_ONE
apply(auto)[1]
using ders2_ONE
apply(auto)[1]
done
lemma remdup_size:
shows "size_list f (remdups rs) \<le> size_list f rs"
apply(induct rs)
apply(simp_all)
done
lemma flats_append:
shows "flats (rs1 @ rs2) = (flats rs1) @ (flats rs2)"
apply(induct rs1 arbitrary: rs2)
apply(auto)
apply(case_tac a)
apply(auto)
done
lemma flats_Cons:
shows "flats (r # rs) = (flats [r]) @ (flats rs)"
apply(subst flats_append[symmetric])
apply(simp)
done
lemma flats_size:
shows "size_list (\<lambda>x. size (ders2 s x)) (flats rs) \<le> size_list (\<lambda>x. size (ders2 s x)) rs"
apply(induct rs arbitrary: s rule: flats.induct)
apply(simp_all)
apply(simp add: ders2_ZERO)
apply (simp add: le_SucI)
apply(subst flats_Cons)
apply(simp)
apply(case_tac a)
apply(auto)
apply(simp add: ders2_ZERO)
apply (simp add: le_SucI)
sorry
lemma ders2_ALTS:
shows "size (ders2 s (ALTS rs)) \<le> size (ALTS (map (ders2 s) rs))"
apply(induct s arbitrary: rs)
apply(simp_all)
thm size_list_pointwise
apply (simp add: size_list_pointwise)
apply(drule_tac x="remdups (flats (map (simp \<circ> der a) rs))" in meta_spec)
apply(rule le_trans)
apply(assumption)
apply(simp)
apply(rule le_trans)
apply(rule remdup_size)
apply(simp add: comp_def)
apply(rule le_trans)
apply(rule flats_size)
by (simp add: size_list_pointwise)
definition
"derss2 A r = {ders2 s r | s. s \<in> A}"
lemma
"\<forall>rd \<in> derss2 (UNIV) r. size rd \<le> Suc (size r)"
apply(induct r)
apply(auto simp add: derss2_def ders2_ZERO)[1]
apply(auto simp add: derss2_def ders2_ZERO)[1]
using ders2_ONE
apply(auto)[1]
apply (metis rexp.size(7) rexp.size(8) zero_le)
using ders2_CHAR
apply(auto)[1]
apply (smt derss2_def le_SucI le_zero_eq mem_Collect_eq rexp.size(7) rexp.size(8) rexp.size(9))
defer
apply(auto simp add: derss2_def)
apply(rule le_trans)
apply(rule ders2_ALTS)
apply(simp)
apply(simp add: comp_def)
apply(simp add: size_list_pointwise)
apply(case_tac s)
apply(simp)
apply(simp only:)
apply(auto)[1]
apply(case_tac s)
apply(simp)
apply(simp)
section {* Values *}
datatype val =
Void
| Char char
| Seq val val
| Nth nat val
| Stars "val list"
section {* The string behind a value *}
fun
flat :: "val \<Rightarrow> string"
where
"flat (Void) = []"
| "flat (Char c) = [c]"
| "flat (Nth n v) = flat v"
| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
| "flat (Stars []) = []"
| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))"
abbreviation
"flats vs \<equiv> concat (map flat vs)"
lemma flat_Stars [simp]:
"flat (Stars vs) = flats vs"
by (induct vs) (auto)
lemma Star_concat:
assumes "\<forall>s \<in> set ss. s \<in> A"
shows "concat ss \<in> A\<star>"
using assms by (induct ss) (auto)
lemma Star_cstring:
assumes "s \<in> A\<star>"
shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
using assms
apply(induct rule: Star.induct)
apply(auto)[1]
apply(rule_tac x="[]" in exI)
apply(simp)
apply(erule exE)
apply(clarify)
apply(case_tac "s1 = []")
apply(rule_tac x="ss" in exI)
apply(simp)
apply(rule_tac x="s1#ss" in exI)
apply(simp)
done
section {* Lexical Values *}
inductive
Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100)
where
"\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile> Seq v1 v2 : SEQ r1 r2"
| "\<lbrakk>\<Turnstile> v1 : (nth rs n); n < length rs\<rbrakk> \<Longrightarrow> \<Turnstile> (Nth n v1) : ALTS rs"
| "\<Turnstile> Void : ONE"
| "\<Turnstile> Char c : CHAR c"
| "\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> [] \<Longrightarrow> \<Turnstile> Stars vs : STAR r"
inductive_cases Prf_elims:
"\<Turnstile> v : ZERO"
"\<Turnstile> v : SEQ r1 r2"
"\<Turnstile> v : ALTS rs"
"\<Turnstile> v : ONE"
"\<Turnstile> v : CHAR c"
"\<Turnstile> vs : STAR r"
lemma Prf_Stars_appendE:
assumes "\<Turnstile> Stars (vs1 @ vs2) : STAR r"
shows "\<Turnstile> Stars vs1 : STAR r \<and> \<Turnstile> Stars vs2 : STAR r"
using assms
by (auto intro: Prf.intros elim!: Prf_elims)
lemma Star_cval:
assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
shows "\<exists>vs. flats vs = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
using assms
apply(induct ss)
apply(auto)
apply(rule_tac x="[]" in exI)
apply(simp)
apply(case_tac "flat v = []")
apply(rule_tac x="vs" in exI)
apply(simp)
apply(rule_tac x="v#vs" in exI)
apply(simp)
done
lemma L_flat_Prf1:
assumes "\<Turnstile> v : r"
shows "flat v \<in> L r"
using assms
apply(induct)
apply(auto simp add: Sequ_def Star_concat)
done
lemma L_flat_Prf2:
assumes "s \<in> L r"
shows "\<exists>v. \<Turnstile> v : r \<and> flat v = s"
using assms
proof(induct r arbitrary: s)
case (STAR r s)
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
have "s \<in> L (STAR r)" by fact
then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []"
using Star_cstring by auto
then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []"
using IH Star_cval by metis
then show "\<exists>v. \<Turnstile> v : STAR r \<and> flat v = s"
using Prf.intros(5) flat_Stars by blast
next
case (SEQ r1 r2 s)
then show "\<exists>v. \<Turnstile> v : SEQ r1 r2 \<and> flat v = s"
unfolding Sequ_def L.simps by (fastforce intro: Prf.intros)
next
case (ALTS rs s)
then show "\<exists>v. \<Turnstile> v : ALTS rs \<and> flat v = s"
unfolding L.simps
apply(auto)
apply(case_tac rs)
apply(simp)
apply(simp)
apply(auto)
apply(drule_tac x="a" in meta_spec)
apply(simp)
apply(drule_tac x="s" in meta_spec)
apply(simp)
apply(erule exE)
apply(rule_tac x="Nth 0 v" in exI)
apply(simp)
apply(rule Prf.intros)
apply(simp)
apply(simp)
apply(drule_tac x="x" in meta_spec)
apply(simp)
apply(drule_tac x="s" in meta_spec)
apply(simp)
apply(erule exE)
apply(subgoal_tac "\<exists>n. nth list n = x \<and> n < length list")
apply(erule exE)
apply(rule_tac x="Nth (Suc n) v" in exI)
apply(simp)
apply(rule Prf.intros)
apply(simp)
apply(simp)
by (meson in_set_conv_nth)
qed (auto intro: Prf.intros)
lemma L_flat_Prf:
shows "L(r) = {flat v | v. \<Turnstile> v : r}"
using L_flat_Prf1 L_flat_Prf2 by blast
section {* Sets of Lexical Values *}
text {*
Shows that lexical values are finite for a given regex and string.
*}
definition
LV :: "rexp \<Rightarrow> string \<Rightarrow> val set"
where "LV r s \<equiv> {v. \<Turnstile> v : r \<and> flat v = s}"
lemma LV_simps:
shows "LV ZERO s = {}"
and "LV ONE s = (if s = [] then {Void} else {})"
and "LV (CHAR c) s = (if s = [c] then {Char c} else {})"
unfolding LV_def
by (auto intro: Prf.intros elim: Prf.cases)
abbreviation
"Prefixes s \<equiv> {s'. prefix s' s}"
abbreviation
"Suffixes s \<equiv> {s'. suffix s' s}"
abbreviation
"SSuffixes s \<equiv> {s'. strict_suffix s' s}"
lemma Suffixes_cons [simp]:
shows "Suffixes (c # s) = Suffixes s \<union> {c # s}"
by (auto simp add: suffix_def Cons_eq_append_conv)
lemma finite_Suffixes:
shows "finite (Suffixes s)"
by (induct s) (simp_all)
lemma finite_SSuffixes:
shows "finite (SSuffixes s)"
proof -
have "SSuffixes s \<subseteq> Suffixes s"
unfolding strict_suffix_def suffix_def by auto
then show "finite (SSuffixes s)"
using finite_Suffixes finite_subset by blast
qed
lemma finite_Prefixes:
shows "finite (Prefixes s)"
proof -
have "finite (Suffixes (rev s))"
by (rule finite_Suffixes)
then have "finite (rev ` Suffixes (rev s))" by simp
moreover
have "rev ` (Suffixes (rev s)) = Prefixes s"
unfolding suffix_def prefix_def image_def
by (auto)(metis rev_append rev_rev_ident)+
ultimately show "finite (Prefixes s)" by simp
qed
lemma LV_STAR_finite:
assumes "\<forall>s. finite (LV r s)"
shows "finite (LV (STAR r) s)"
proof(induct s rule: length_induct)
fix s::"char list"
assume "\<forall>s'. length s' < length s \<longrightarrow> finite (LV (STAR r) s')"
then have IH: "\<forall>s' \<in> SSuffixes s. finite (LV (STAR r) s')"
by (force simp add: strict_suffix_def suffix_def)
define f where "f \<equiv> \<lambda>(v, vs). Stars (v # vs)"
define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r s'"
define S2 where "S2 \<equiv> \<Union>s2 \<in> SSuffixes s. Stars -` (LV (STAR r) s2)"
have "finite S1" using assms
unfolding S1_def by (simp_all add: finite_Prefixes)
moreover
with IH have "finite S2" unfolding S2_def
by (auto simp add: finite_SSuffixes inj_on_def finite_vimageI)
ultimately
have "finite ({Stars []} \<union> f ` (S1 \<times> S2))" by simp
moreover
have "LV (STAR r) s \<subseteq> {Stars []} \<union> f ` (S1 \<times> S2)"
unfolding S1_def S2_def f_def
unfolding LV_def image_def prefix_def strict_suffix_def
apply(auto)
apply(case_tac x)
apply(auto elim: Prf_elims)
apply(erule Prf_elims)
apply(auto)
apply(case_tac vs)
apply(auto intro: Prf.intros)
apply(rule exI)
apply(rule conjI)
apply(rule_tac x="flat a" in exI)
apply(rule conjI)
apply(rule_tac x="flats list" in exI)
apply(simp)
apply(blast)
apply(simp add: suffix_def)
using Prf.intros(5) by blast
ultimately
show "finite (LV (STAR r) s)" by (simp add: finite_subset)
qed
lemma LV_finite:
shows "finite (LV r s)"
proof(induct r arbitrary: s)
case (ZERO s)
show "finite (LV ZERO s)" by (simp add: LV_simps)
next
case (ONE s)
show "finite (LV ONE s)" by (simp add: LV_simps)
next
case (CHAR c s)
show "finite (LV (CHAR c) s)" by (simp add: LV_simps)
next
case (ALTS rs s)
then show "finite (LV (ALTS rs) s)"
sorry
next
case (SEQ r1 r2 s)
define f where "f \<equiv> \<lambda>(v1, v2). Seq v1 v2"
define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r1 s'"
define S2 where "S2 \<equiv> \<Union>s' \<in> Suffixes s. LV r2 s'"
have IHs: "\<And>s. finite (LV r1 s)" "\<And>s. finite (LV r2 s)" by fact+
then have "finite S1" "finite S2" unfolding S1_def S2_def
by (simp_all add: finite_Prefixes finite_Suffixes)
moreover
have "LV (SEQ r1 r2) s \<subseteq> f ` (S1 \<times> S2)"
unfolding f_def S1_def S2_def
unfolding LV_def image_def prefix_def suffix_def
apply (auto elim!: Prf_elims)
by (metis (mono_tags, lifting) mem_Collect_eq)
ultimately
show "finite (LV (SEQ r1 r2) s)"
by (simp add: finite_subset)
next
case (STAR r s)
then show "finite (LV (STAR r) s)" by (simp add: LV_STAR_finite)
qed
(*
section {* Our POSIX Definition *}
inductive
Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
where
Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
| Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow>
(s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
\<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
inductive_cases Posix_elims:
"s \<in> ZERO \<rightarrow> v"
"s \<in> ONE \<rightarrow> v"
"s \<in> CHAR c \<rightarrow> v"
"s \<in> ALT r1 r2 \<rightarrow> v"
"s \<in> SEQ r1 r2 \<rightarrow> v"
"s \<in> STAR r \<rightarrow> v"
lemma Posix1:
assumes "s \<in> r \<rightarrow> v"
shows "s \<in> L r" "flat v = s"
using assms
by (induct s r v rule: Posix.induct)
(auto simp add: Sequ_def)
text {*
Our Posix definition determines a unique value.
*}
lemma Posix_determ:
assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
shows "v1 = v2"
using assms
proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
case (Posix_ONE v2)
have "[] \<in> ONE \<rightarrow> v2" by fact
then show "Void = v2" by cases auto
next
case (Posix_CHAR c v2)
have "[c] \<in> CHAR c \<rightarrow> v2" by fact
then show "Char c = v2" by cases auto
next
case (Posix_ALT1 s r1 v r2 v2)
have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
moreover
have "s \<in> r1 \<rightarrow> v" by fact
then have "s \<in> L r1" by (simp add: Posix1)
ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto
moreover
have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
ultimately have "v = v'" by simp
then show "Left v = v2" using eq by simp
next
case (Posix_ALT2 s r2 v r1 v2)
have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
moreover
have "s \<notin> L r1" by fact
ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'"
by cases (auto simp add: Posix1)
moreover
have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
ultimately have "v = v'" by simp
then show "Right v = v2" using eq by simp
next
case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'"
"s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
apply(cases) apply (auto simp add: append_eq_append_conv2)
using Posix1(1) by fastforce+
moreover
have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
"\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
ultimately show "Seq v1 v2 = v'" by simp
next
case (Posix_STAR1 s1 r v s2 vs v2)
have "(s1 @ s2) \<in> STAR r \<rightarrow> v2"
"s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
apply(cases) apply (auto simp add: append_eq_append_conv2)
using Posix1(1) apply fastforce
apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
using Posix1(2) by blast
moreover
have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
"\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
ultimately show "Stars (v # vs) = v2" by auto
next
case (Posix_STAR2 r v2)
have "[] \<in> STAR r \<rightarrow> v2" by fact
then show "Stars [] = v2" by cases (auto simp add: Posix1)
qed
text {*
Our POSIX value is a lexical value.
*}
lemma Posix_LV:
assumes "s \<in> r \<rightarrow> v"
shows "v \<in> LV r s"
using assms unfolding LV_def
apply(induct rule: Posix.induct)
apply(auto simp add: intro!: Prf.intros elim!: Prf_elims)
done
*)
end