made lemma about AALTs_subs stronger w.r.t. flts
theory PDerivs
imports Spec
begin
abbreviation
"SEQs rs r \<equiv> (\<Union>r' \<in> rs. {SEQ r' r})"
lemma SEQs_eq_image:
"SEQs rs r = (\<lambda>r'. SEQ r' r) ` rs"
by auto
primrec
pder :: "char \<Rightarrow> rexp \<Rightarrow> rexp set"
where
"pder c ZERO = {}"
| "pder c ONE = {}"
| "pder c (CHAR d) = (if c = d then {ONE} else {})"
| "pder c (ALT r1 r2) = (pder c r1) \<union> (pder c r2)"
| "pder c (SEQ r1 r2) =
(if nullable r1 then SEQs (pder c r1) r2 \<union> pder c r2 else SEQs (pder c r1) r2)"
| "pder c (STAR r) = SEQs (pder c r) (STAR r)"
primrec
pders :: "char list \<Rightarrow> rexp \<Rightarrow> rexp set"
where
"pders [] r = {r}"
| "pders (c # s) r = \<Union> (pders s ` pder c r)"
abbreviation
pder_set :: "char \<Rightarrow> rexp set \<Rightarrow> rexp set"
where
"pder_set c rs \<equiv> \<Union> (pder c ` rs)"
abbreviation
pders_set :: "char list \<Rightarrow> rexp set \<Rightarrow> rexp set"
where
"pders_set s rs \<equiv> \<Union> (pders s ` rs)"
lemma pders_append:
"pders (s1 @ s2) r = \<Union> (pders s2 ` pders s1 r)"
by (induct s1 arbitrary: r) (simp_all)
lemma pders_snoc:
shows "pders (s @ [c]) r = pder_set c (pders s r)"
by (simp add: pders_append)
lemma pders_simps [simp]:
shows "pders s ZERO = (if s = [] then {ZERO} else {})"
and "pders s ONE = (if s = [] then {ONE} else {})"
and "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \<union> (pders s r2))"
by (induct s) (simp_all)
lemma pders_CHAR:
shows "pders s (CHAR c) \<subseteq> {CHAR c, ONE}"
by (induct s) (simp_all)
subsection \<open>Relating left-quotients and partial derivatives\<close>
lemma Sequ_UNION_distrib:
shows "A ;; \<Union>(M ` I) = \<Union>((\<lambda>i. A ;; M i) ` I)"
and "\<Union>(M ` I) ;; A = \<Union>((\<lambda>i. M i ;; A) ` I)"
by (auto simp add: Sequ_def)
lemma Der_pder:
shows "Der c (L r) = \<Union> (L ` pder c r)"
by (induct r) (simp_all add: nullable_correctness Sequ_UNION_distrib)
lemma Ders_pders:
shows "Ders s (L r) = \<Union> (L ` pders s r)"
proof (induct s arbitrary: r)
case (Cons c s)
have ih: "\<And>r. Ders s (L r) = \<Union> (L ` pders s r)" by fact
have "Ders (c # s) (L r) = Ders s (Der c (L r))" by (simp add: Ders_def Der_def)
also have "\<dots> = Ders s (\<Union> (L ` pder c r))" by (simp add: Der_pder)
also have "\<dots> = (\<Union>A\<in>(L ` (pder c r)). (Ders s A))"
by (auto simp add: Ders_def)
also have "\<dots> = \<Union> (L ` (pders_set s (pder c r)))"
using ih by auto
also have "\<dots> = \<Union> (L ` (pders (c # s) r))" by simp
finally show "Ders (c # s) (L r) = \<Union> (L ` pders (c # s) r)" .
qed (simp add: Ders_def)
subsection \<open>Relating derivatives and partial derivatives\<close>
lemma der_pder:
shows "\<Union> (L ` (pder c r)) = L (der c r)"
unfolding der_correctness Der_pder by simp
lemma ders_pders:
shows "\<Union> (L ` (pders s r)) = L (ders s r)"
unfolding der_correctness ders_correctness Ders_pders by simp
subsection \<open>Finiteness property of partial derivatives\<close>
definition
pders_Set :: "string set \<Rightarrow> rexp \<Rightarrow> rexp set"
where
"pders_Set A r \<equiv> \<Union>x \<in> A. pders x r"
lemma pders_Set_subsetI:
assumes "\<And>s. s \<in> A \<Longrightarrow> pders s r \<subseteq> C"
shows "pders_Set A r \<subseteq> C"
using assms unfolding pders_Set_def by (rule UN_least)
lemma pders_Set_union:
shows "pders_Set (A \<union> B) r = (pders_Set A r \<union> pders_Set B r)"
by (simp add: pders_Set_def)
lemma pders_Set_subset:
shows "A \<subseteq> B \<Longrightarrow> pders_Set A r \<subseteq> pders_Set B r"
by (auto simp add: pders_Set_def)
definition
"UNIV1 \<equiv> UNIV - {[]}"
lemma pders_Set_ZERO [simp]:
shows "pders_Set UNIV1 ZERO = {}"
unfolding UNIV1_def pders_Set_def by auto
lemma pders_Set_ONE [simp]:
shows "pders_Set UNIV1 ONE = {}"
unfolding UNIV1_def pders_Set_def by (auto split: if_splits)
lemma pders_Set_CHAR [simp]:
shows "pders_Set UNIV1 (CHAR c) = {ONE}"
unfolding UNIV1_def pders_Set_def
apply(auto)
apply(frule rev_subsetD)
apply(rule pders_CHAR)
apply(simp)
apply(case_tac xa)
apply(auto split: if_splits)
done
lemma pders_Set_ALT [simp]:
shows "pders_Set UNIV1 (ALT r1 r2) = pders_Set UNIV1 r1 \<union> pders_Set UNIV1 r2"
unfolding UNIV1_def pders_Set_def by auto
text \<open>Non-empty suffixes of a string (needed for the cases of @{const SEQ} and @{const STAR} below)\<close>
definition
"PSuf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}"
lemma PSuf_snoc:
shows "PSuf (s @ [c]) = (PSuf s) ;; {[c]} \<union> {[c]}"
unfolding PSuf_def Sequ_def
by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv)
lemma PSuf_Union:
shows "(\<Union>v \<in> PSuf s ;; {[c]}. f v) = (\<Union>v \<in> PSuf s. f (v @ [c]))"
by (auto simp add: Sequ_def)
lemma pders_Set_snoc:
shows "pders_Set (PSuf s ;; {[c]}) r = (pder_set c (pders_Set (PSuf s) r))"
unfolding pders_Set_def
by (simp add: PSuf_Union pders_snoc)
lemma pders_SEQ:
shows "pders s (SEQ r1 r2) \<subseteq> SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2)"
proof (induct s rule: rev_induct)
case (snoc c s)
have ih: "pders s (SEQ r1 r2) \<subseteq> SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2)"
by fact
have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))"
by (simp add: pders_snoc)
also have "\<dots> \<subseteq> pder_set c (SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2))"
using ih by fastforce
also have "\<dots> = pder_set c (SEQs (pders s r1) r2) \<union> pder_set c (pders_Set (PSuf s) r2)"
by (simp)
also have "\<dots> = pder_set c (SEQs (pders s r1) r2) \<union> pders_Set (PSuf s ;; {[c]}) r2"
by (simp add: pders_Set_snoc)
also
have "\<dots> \<subseteq> pder_set c (SEQs (pders s r1) r2) \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2"
by auto
also
have "\<dots> \<subseteq> SEQs (pder_set c (pders s r1)) r2 \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2"
by (auto simp add: if_splits)
also have "\<dots> = SEQs (pders (s @ [c]) r1) r2 \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2"
by (simp add: pders_snoc)
also have "\<dots> \<subseteq> SEQs (pders (s @ [c]) r1) r2 \<union> pders_Set (PSuf (s @ [c])) r2"
unfolding pders_Set_def by (auto simp add: PSuf_snoc)
finally show ?case .
qed (simp)
lemma pders_Set_SEQ_aux1:
assumes a: "s \<in> UNIV1"
shows "pders_Set (PSuf s) r \<subseteq> pders_Set UNIV1 r"
using a unfolding UNIV1_def PSuf_def pders_Set_def by auto
lemma pders_Set_SEQ_aux2:
assumes a: "s \<in> UNIV1"
shows "SEQs (pders s r1) r2 \<subseteq> SEQs (pders_Set UNIV1 r1) r2"
using a unfolding pders_Set_def by auto
lemma pders_Set_SEQ:
shows "pders_Set UNIV1 (SEQ r1 r2) \<subseteq> SEQs (pders_Set UNIV1 r1) r2 \<union> pders_Set UNIV1 r2"
apply(rule pders_Set_subsetI)
apply(rule subset_trans)
apply(rule pders_SEQ)
using pders_Set_SEQ_aux1 pders_Set_SEQ_aux2
apply auto
apply blast
done
lemma pders_STAR:
assumes a: "s \<noteq> []"
shows "pders s (STAR r) \<subseteq> SEQs (pders_Set (PSuf s) r) (STAR r)"
using a
proof (induct s rule: rev_induct)
case (snoc c s)
have ih: "s \<noteq> [] \<Longrightarrow> pders s (STAR r) \<subseteq> SEQs (pders_Set (PSuf s) r) (STAR r)" by fact
{ assume asm: "s \<noteq> []"
have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by (simp add: pders_snoc)
also have "\<dots> \<subseteq> pder_set c (SEQs (pders_Set (PSuf s) r) (STAR r))"
using ih[OF asm] by fast
also have "\<dots> \<subseteq> SEQs (pder_set c (pders_Set (PSuf s) r)) (STAR r) \<union> pder c (STAR r)"
by (auto split: if_splits)
also have "\<dots> \<subseteq> SEQs (pders_Set (PSuf (s @ [c])) r) (STAR r) \<union> (SEQs (pder c r) (STAR r))"
by (simp only: PSuf_snoc pders_Set_snoc pders_Set_union)
(auto simp add: pders_Set_def)
also have "\<dots> = SEQs (pders_Set (PSuf (s @ [c])) r) (STAR r)"
by (auto simp add: PSuf_snoc PSuf_Union pders_snoc pders_Set_def)
finally have ?case .
}
moreover
{ assume asm: "s = []"
then have ?case by (auto simp add: pders_Set_def pders_snoc PSuf_def)
}
ultimately show ?case by blast
qed (simp)
lemma pders_Set_STAR:
shows "pders_Set UNIV1 (STAR r) \<subseteq> SEQs (pders_Set UNIV1 r) (STAR r)"
apply(rule pders_Set_subsetI)
apply(rule subset_trans)
apply(rule pders_STAR)
apply(simp add: UNIV1_def)
apply(simp add: UNIV1_def PSuf_def)
apply(auto simp add: pders_Set_def)
done
lemma finite_SEQs [simp]:
assumes a: "finite A"
shows "finite (SEQs A r)"
using a by auto
thm finite.intros
lemma finite_pders_Set_UNIV1:
shows "finite (pders_Set UNIV1 r)"
apply(induct r)
apply(simp_all add:
finite_subset[OF pders_Set_SEQ]
finite_subset[OF pders_Set_STAR])
done
lemma pders_Set_UNIV:
shows "pders_Set UNIV r = pders [] r \<union> pders_Set UNIV1 r"
unfolding UNIV1_def pders_Set_def
by blast
lemma finite_pders_Set_UNIV:
shows "finite (pders_Set UNIV r)"
unfolding pders_Set_UNIV
by (simp add: finite_pders_Set_UNIV1)
lemma finite_pders_set:
shows "finite (pders_Set A r)"
by (metis finite_pders_Set_UNIV pders_Set_subset rev_finite_subset subset_UNIV)
text \<open>The following relationship between the alphabetic width of regular expressions
(called \<open>awidth\<close> below) and the number of partial derivatives was proved
by Antimirov~\cite{Antimirov95} and formalized by Max Haslbeck.\<close>
fun awidth :: "rexp \<Rightarrow> nat" where
"awidth ZERO = 0" |
"awidth ONE = 0" |
"awidth (CHAR a) = 1" |
"awidth (ALT r1 r2) = awidth r1 + awidth r2" |
"awidth (SEQ r1 r2) = awidth r1 + awidth r2" |
"awidth (STAR r1) = awidth r1"
lemma card_SEQs_pders_Set_le:
shows "card (SEQs (pders_Set A r) s) \<le> card (pders_Set A r)"
using finite_pders_set
unfolding SEQs_eq_image
by (rule card_image_le)
lemma card_pders_set_UNIV1_le_awidth:
shows "card (pders_Set UNIV1 r) \<le> awidth r"
proof (induction r)
case (ALT r1 r2)
have "card (pders_Set UNIV1 (ALT r1 r2)) = card (pders_Set UNIV1 r1 \<union> pders_Set UNIV1 r2)" by simp
also have "\<dots> \<le> card (pders_Set UNIV1 r1) + card (pders_Set UNIV1 r2)"
by(simp add: card_Un_le)
also have "\<dots> \<le> awidth (ALT r1 r2)" using ALT.IH by simp
finally show ?case .
next
case (SEQ r1 r2)
have "card (pders_Set UNIV1 (SEQ r1 r2)) \<le> card (SEQs (pders_Set UNIV1 r1) r2 \<union> pders_Set UNIV1 r2)"
by (simp add: card_mono finite_pders_set pders_Set_SEQ)
also have "\<dots> \<le> card (SEQs (pders_Set UNIV1 r1) r2) + card (pders_Set UNIV1 r2)"
by (simp add: card_Un_le)
also have "\<dots> \<le> card (pders_Set UNIV1 r1) + card (pders_Set UNIV1 r2)"
by (simp add: card_SEQs_pders_Set_le)
also have "\<dots> \<le> awidth (SEQ r1 r2)" using SEQ.IH by simp
finally show ?case .
next
case (STAR r)
have "card (pders_Set UNIV1 (STAR r)) \<le> card (SEQs (pders_Set UNIV1 r) (STAR r))"
by (simp add: card_mono finite_pders_set pders_Set_STAR)
also have "\<dots> \<le> card (pders_Set UNIV1 r)" by (rule card_SEQs_pders_Set_le)
also have "\<dots> \<le> awidth (STAR r)" by (simp add: STAR.IH)
finally show ?case .
qed (auto)
text\<open>Antimirov's Theorem 3.4:\<close>
theorem card_pders_set_UNIV_le_awidth:
shows "card (pders_Set UNIV r) \<le> awidth r + 1"
proof -
have "card (insert r (pders_Set UNIV1 r)) \<le> Suc (card (pders_Set UNIV1 r))"
by(auto simp: card_insert_if[OF finite_pders_Set_UNIV1])
also have "\<dots> \<le> Suc (awidth r)" by(simp add: card_pders_set_UNIV1_le_awidth)
finally show ?thesis by(simp add: pders_Set_UNIV)
qed
text\<open>Antimirov's Corollary 3.5:\<close>
corollary card_pders_set_le_awidth:
shows "card (pders_Set A r) \<le> awidth r + 1"
proof -
have "card (pders_Set A r) \<le> card (pders_Set UNIV r)"
by (simp add: card_mono finite_pders_set pders_Set_subset)
also have "... \<le> awidth r + 1"
by (rule card_pders_set_UNIV_le_awidth)
finally show "card (pders_Set A r) \<le> awidth r + 1" by simp
qed
(* other result by antimirov *)
lemma card_pders_awidth:
shows "card (pders s r) \<le> awidth r + 1"
proof -
have "pders s r \<subseteq> pders_Set UNIV r"
using pders_Set_def by auto
then have "card (pders s r) \<le> card (pders_Set UNIV r)"
by (simp add: card_mono finite_pders_set)
then show "card (pders s r) \<le> awidth r + 1"
using card_pders_set_le_awidth order_trans by blast
qed
fun subs :: "rexp \<Rightarrow> rexp set" where
"subs ZERO = {ZERO}" |
"subs ONE = {ONE}" |
"subs (CHAR a) = {CHAR a, ONE}" |
"subs (ALT r1 r2) = (subs r1 \<union> subs r2 \<union> {ALT r1 r2})" |
"subs (SEQ r1 r2) = (subs r1 \<union> subs r2 \<union> {SEQ r1 r2} \<union> SEQs (subs r1) r2)" |
"subs (STAR r1) = (subs r1 \<union> {STAR r1} \<union> SEQs (subs r1) (STAR r1))"
lemma subs_finite:
shows "finite (subs r)"
apply(induct r)
apply(simp_all)
done
lemma pders_subs:
shows "pders s r \<subseteq> subs r"
apply(induct r arbitrary: s)
apply(simp)
apply(simp)
apply(simp add: pders_CHAR)
(* SEQ case *)
apply(simp)
apply(rule subset_trans)
apply(rule pders_SEQ)
defer
(* ALT case *)
apply(simp)
apply(rule impI)
apply(rule conjI)
apply blast
apply blast
(* STAR case *)
apply(case_tac s)
apply(simp)
apply(rule subset_trans)
thm pders_STAR
apply(rule pders_STAR)
apply(simp)
apply(auto simp add: pders_Set_def)[1]
apply(simp)
apply(rule conjI)
apply blast
apply(auto simp add: pders_Set_def)[1]
done
fun size2 :: "rexp \<Rightarrow> nat" where
"size2 ZERO = 1" |
"size2 ONE = 1" |
"size2 (CHAR c) = 1" |
"size2 (ALT r1 r2) = Suc (size2 r1 + size2 r2)" |
"size2 (SEQ r1 r2) = Suc (size2 r1 + size2 r2)" |
"size2 (STAR r1) = Suc (size2 r1)"
lemma size_rexp:
fixes r :: rexp
shows "1 \<le> size2 r"
apply(induct r)
apply(simp)
apply(simp_all)
done
lemma subs_card:
shows "card (subs r) \<le> Suc (size2 r + size2 r)"
apply(induct r)
apply(auto)
apply(subst card_insert)
apply(simp add: subs_finite)
apply(simp add: subs_finite)
oops
lemma subs_size2:
shows "\<forall>r1 \<in> subs r. size2 r1 \<le> Suc (size2 r * size2 r)"
apply(induct r)
apply(simp)
apply(simp)
apply(simp)
(* SEQ case *)
apply(simp)
apply(auto)[1]
apply (smt Suc_n_not_le_n add.commute distrib_left le_Suc_eq left_add_mult_distrib nat_le_linear trans_le_add1)
apply (smt Suc_le_mono Suc_n_not_le_n le_trans nat_le_linear power2_eq_square power2_sum semiring_normalization_rules(23) trans_le_add2)
apply (smt Groups.add_ac(3) Suc_n_not_le_n distrib_left le_Suc_eq left_add_mult_distrib nat_le_linear trans_le_add1)
(* ALT case *)
apply(simp)
apply(auto)[1]
apply (smt Groups.add_ac(2) Suc_le_mono Suc_n_not_le_n le_add2 linear order_trans power2_eq_square power2_sum)
apply (smt Groups.add_ac(2) Suc_le_mono Suc_n_not_le_n left_add_mult_distrib linear mult.commute order.trans trans_le_add1)
(* STAR case *)
apply(auto)[1]
apply(drule_tac x="r'" in bspec)
apply(simp)
apply(rule le_trans)
apply(assumption)
apply(simp)
using size_rexp
apply(simp)
done
lemma awidth_size:
shows "awidth r \<le> size2 r"
apply(induct r)
apply(simp_all)
done
lemma Sum1:
fixes A B :: "nat set"
assumes "A \<subseteq> B" "finite A" "finite B"
shows "\<Sum>A \<le> \<Sum>B"
using assms
by (simp add: sum_mono2)
lemma Sum2:
fixes A :: "rexp set"
and f g :: "rexp \<Rightarrow> nat"
assumes "finite A" "\<forall>x \<in> A. f x \<le> g x"
shows "sum f A \<le> sum g A"
using assms
apply(induct A)
apply(auto)
done
lemma pders_max_size:
shows "(sum size2 (pders s r)) \<le> (Suc (size2 r)) ^ 3"
proof -
have "(sum size2 (pders s r)) \<le> sum (\<lambda>_. Suc (size2 r * size2 r)) (pders s r)"
apply(rule_tac Sum2)
apply (meson pders_subs rev_finite_subset subs_finite)
using pders_subs subs_size2 by blast
also have "... \<le> (Suc (size2 r * size2 r)) * (sum (\<lambda>_. 1) (pders s r))"
by simp
also have "... \<le> (Suc (size2 r * size2 r)) * card (pders s r)"
by simp
also have "... \<le> (Suc (size2 r * size2 r)) * (Suc (awidth r))"
using Suc_eq_plus1 card_pders_awidth mult_le_mono2 by presburger
also have "... \<le> (Suc (size2 r * size2 r)) * (Suc (size2 r))"
using Suc_le_mono awidth_size mult_le_mono2 by presburger
also have "... \<le> (Suc (size2 r)) ^ 3"
by (smt One_nat_def Suc_1 Suc_mult_le_cancel1 Suc_n_not_le_n antisym_conv le_Suc_eq mult.commute nat_le_linear numeral_3_eq_3 power2_eq_square power2_le_imp_le power_Suc size_rexp)
finally show ?thesis .
qed
lemma pders_Set_max_size:
shows "(sum size2 (pders_Set A r)) \<le> (Suc (size2 r)) ^ 3"
proof -
have "(sum size2 (pders_Set A r)) \<le> sum (\<lambda>_. Suc (size2 r * size2 r)) (pders_Set A r)"
apply(rule_tac Sum2)
apply (simp add: finite_pders_set)
by (meson pders_Set_subsetI pders_subs subs_size2 subsetD)
also have "... \<le> (Suc (size2 r * size2 r)) * (sum (\<lambda>_. 1) (pders_Set A r))"
by simp
also have "... \<le> (Suc (size2 r * size2 r)) * card (pders_Set A r)"
by simp
also have "... \<le> (Suc (size2 r * size2 r)) * (Suc (awidth r))"
using Suc_eq_plus1 card_pders_set_le_awidth mult_le_mono2 by presburger
also have "... \<le> (Suc (size2 r * size2 r)) * (Suc (size2 r))"
using Suc_le_mono awidth_size mult_le_mono2 by presburger
also have "... \<le> (Suc (size2 r)) ^ 3"
by (smt One_nat_def Suc_1 Suc_mult_le_cancel1 Suc_n_not_le_n antisym_conv le_Suc_eq mult.commute nat_le_linear numeral_3_eq_3 power2_eq_square power2_le_imp_le power_Suc size_rexp)
finally show ?thesis .
qed
fun height :: "rexp \<Rightarrow> nat" where
"height ZERO = 1" |
"height ONE = 1" |
"height (CHAR c) = 1" |
"height (ALT r1 r2) = Suc (max (height r1) (height r2))" |
"height (SEQ r1 r2) = Suc (max (height r1) (height r2))" |
"height (STAR r1) = Suc (height r1)"
lemma height_size2:
shows "height r \<le> size2 r"
apply(induct r)
apply(simp_all)
done
lemma height_rexp:
fixes r :: rexp
shows "1 \<le> height r"
apply(induct r)
apply(simp_all)
done
lemma subs_height:
shows "\<forall>r1 \<in> subs r. height r1 \<le> Suc (height r)"
apply(induct r)
apply(auto)+
done
end